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4.4 Effetto Doppler relativistico e aberrazione della luce . . . . . . 57

5 Elementi di calcolo tensoriale 60
5.1 Spazi vettoriali . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Tensori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Spazi metrici . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Lo spazio di Minkowski . . . . . . . . . . . . . . . . . . . . . . 69

6 Meccanica relativistica 75
6.1 Quadriforza e dinamica relativistica. . . . . . . . . . . . . . . 75
6.2 Impulso ed energia . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Sistema del centro di massa ed equivalenza massa-energia . . . 83
6.4 Difetto di massa . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Applicazioni di meccanica e cinematica relativistiche . . . . . 88

7 Elettrodinamica nel vuoto. 94
7.1 La corrente e la densità elettromagnetiche . . . . . . . . . . . 94
7.2 La forma covariante delle equazioni di Maxwell. . . . . . . . . 96
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Capitolo 1

Le deviazioni dalla meccanica
newtoniana

1.1 Esiste un limite superiore alla velocità?

In accordo alle legge di Newton non c’è un limite superiore per le velocità.
Infatti possiamo pensare di esercitare una forza costante ad un corpo e la sua
velocità aumenterà linearmente con il tempo. Per esempio, se applichiamo al
corpo una accelerazione pari a quella di gravità, g = 9.8m/s2, la sua velocit‘a
al tempo t sarà

v(t) = gt = 9.8 t m/s (1.1)

Dato che in un anno ci sono

1 anno = 365× 24× 3600 s ≈ 3.15× 107 s ≈ π × 107 s (1.2)

vediamo che dopo un anno la velocità raggiunta sarà pari a

v ≈ 3× 108 m/s (1.3)

che è circa la velocità della luce. È però possibile ottenere velocità molto
grandi in tempi brevi se si dispone di una forza più intensa di quella gra-
vitazionale e se l’oggetto che vogliamo accelerare ha massa piccola (perché
questo non è vero nel caso della forza gravitazionale?), dato che per una forza
costante

v(t) =
F

m
t (1.4)
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dove F è la forza agente e m è la massa dell’oggetto che stiamo accelerando.
A titolo di esempio consideriamo un elettrone che vada dal catodo all’anodo
di un tubo a vuoto con una differenza di potenziale pari a ∆V = 100 V .
L’energia cinetica che acquista un elettrone sarà

1

2
mv2 = e∆V ≈ 1.6× 10−19 × 100 J = 1.6× 10−17 J (1.5)

Vediamo che

v =

√
2e∆V

m
≈

√
2× 1.6× 10−17 J

9.1× 10−31 Kg

≈
√

36× 1012 m/s = 6× 106 m/s = 6000 Km/s (1.6)

Se la distanza tra catodo e anodo fosse 2 mm, da

s =
1

2
at2 =

1

2
vt (1.7)

segue

t =
2s

v
(1.8)

e quindi

a =
v

t
=

v2

2s
=

36× 1012 m2/s2

4× 10−3 m
= 9× 1015 m/s2 (1.9)

Si può vedere subito che l’accelerazione in questo caso è enormemente più
grande che nel caso gravitazionale. Infatti

a

g
≈ 9× 1015

9.8
≈ 1015 (1.10)

Sperimentalmente si vede che anche in una situazione di questo tipo, cioè a
queste velocità, la dinamica di Newton fornisce una ottima descrizione. Le
cose vanno però diversamente se la differenza di potenziale applicata è molto
più grande, dell’ordine dei milioni di Volts. A questo proposito vale la pena
di ricordare che una unità di misura conveniente nel campo microscopico è
l’elettronvolt (eV ), definito come l’energia acquisita da una carica elettrica
pari a quella dell’elettrone attraverso la differenza di potenziale di un Volt.
Quindi

1 eV = 1.602176× 10−19C × 1 V = 1.602176× 10−19 J (1.11)
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Una accelerazione tale da dar luogo ad elettroni con energie dell’ordine di
106 eV = 1 MeV si può ottenere con un generatore Van de Graaf. Se il Van
de Graaf si accoppia ad un misuratore di tempo di volo, come illustrato nella
figura 1.1, si ottiene un dispositivo che ci permette di esplorare cosa succeda
agli elettroni a velocità altissime, dell’ordine della velocità della luce. Gli
elettroni accelerati nel Van de Graaf sino a 1.5 MeV vengono inviati nel
LINAC, dove vengono ulteriormente accelerati nel primo tratto tramite un
sistema di radiofrequenze. Viene misurato il tempo di volo tra i punti A e
B tramite i corrispondenti elettrodi che danno un segnale nell’oscilloscopio
(vedi fig. 1.2). Dato che i cavi che portano all’oscilloscopio sono di uguale
lunghezza, la differenza temporale misurata tra gli impulsi in A e B rappre-
senta effettivamente il tempo impiegato dagli elettroni per andare da A a
B. Stiamo facendo qui una approssimazione, che è quella di non tener conto
della variazione di velocità nel primo tratto del LINAC a causa della ulterio-
re accelerazione. D’altra parte si vede che l’accelerazione successiva provoca
solo una piccola variazione della velocità. La velocità si ottiene dunque dalle
dimensioni del LINAC, ` = 8.4 m divise per il tempo di volo

v =
`

t
(1.12)

Nel caso di accelerazione sino a 0.5 MeV , che corrisponde ad impulsi come
in fig. 1.2, si ha t ≈ 3.3× 10−8 s e quindi

v ≈ 8.4

3.3× 10−8 s
≈ 2.5× 108 m/s (1.13)

. D’altra parte la velocità, in accorda alla fisica di Newton, si può anche
ottenere uguagliando l’energia cinetica K all’energia acquisita nel Van de
Graaf

K =
1

2
mv2 = e∆V (1.14)

Si può dunque costruire la tabella 1.1. È subito chiaro che i risultati sono in
contraddizione con quanto ci aspettiamo. Infatti nel passare da 0.5 MeV a
15 MeV di accelerazione ci saremmo aspettati che il quadrato della velocità
cambiasse di un fattore 30, mentre cambia solo di 1.3. In effetti, data la non
grande accuratezza di una misura di questo tipo, la differenza di velocità tra
0.5 e 4.5 MeV è difficilmente rivelabile. Il risultato è illustrato in figura 1.3.

Ovviamente occorre essere sicuri che gli elettroni ricevono effettivamente
l’energia pari a e∆V , ma questo viene verificato sperimentalmente effettuan-
do una misura di tipo calorimetrico dell’energia degli elettroni che arrivano
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Figura 1.1: Diagramma di un apparato per la misura del tempo di volo di un
elettrone
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Figura 1.2: La traccia dell’oscilloscopio mostra gli impulsi dovuti agli elettroni
da 0.5 MeV all’inizio e alla fine del tratto di volo di 8.4 m. Da notare che una
divisione della scala corrisponde a circa 10−8 s.

Energia fornita Tempo di volo Velocità dell’elettrone
e∆V t× 10−8 s v × 108 m/s v2 × 1016m2/s2

0.5 3.23 2.60 6.8
1.0 3.08 2.73 7.5
1.5 2.92 2.88 8.3
4.5 2.84 2.96 8.8
15 2.80 3.00 9.0

Tabella 1.1: Le quantità misurate nell’esperimento al LINAC.

in B. In figura 1.3 abbiamo riportato anche la linea che corrisponde alla
predizione newtoniana, cioè

v2 =
2e∆V

m
≈ 3.5× 1017∆V (MeV ) (1.15)

Vediamo che anche all’energia più bassa, 0.5 MeV , la formula newtoniana
predice v2 ≈ 1.75 × 1017 che è più di un fattore 2 maggiore del valore spe-
rimentale dato in Tabella 1.1. Mentre la formula newtoniana funziona bene
sino ad energie dell’ordine del KeV , vediamo che fallisce completamente ad
energie più elevate. Inoltre, mentre non cè un limite superiore alla velocità
nella dinamica di Newton, l’andamento trovato mostra che la curva satura
verso una velocità di ≈ 3 × 108 m/s cioè alla velocità della luce. Questo è
ancora più evidente se si considera la misura fatta a 15 MeV , non riporta-
ta nel grafico. Il risultato sperimentale è quindi consistente con la seguente
affermazione: Esiste una velocità limite per gli oggetti materiali e
questa è la velocità della luce.
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Figura 1.3: Il grafico mostra il quadrato della velocità misurata dal tempo di
volo, in funzione dell’energia fornita dal van de Graaf e dal LINAC. La linea
tratteggiata è la predizione che segue dalle equazioni di Newton. I punti sono i
dati sperimentali, e la linea continua è la predizione che segue dalla relatività di
Einstein (vedi dopo).

Per quanto sorprendente possa essere questo risultato lo è ancora di più
se lo esaminiamo da un altro punto di vista. Supponiamo di avere un LINAC
molto lungo nel quale si accelerano continuamente gli elettroni. Supponiamo
inoltre di essere in un riferimento che si muove solidalmente con gli elettroni
accelerati da una differenza di potenziale di 0.5 MV. Possiamo allora facil-
mente immaginare che gli elettroni continueranno ad accelerare fino a rag-
giungere ancora la velocità equivalente a 0.5 MeV nel riferimento in moto,
cioè 2.6×108 m/s (vedi Tabella 1.1). Ma questo significa che questi elettroni
avranno una velocità, rispetto al riferimento fisso data 2× 2.6× 108 m/s che
è più grande della velocità della luce, in contraddizione con il risultato spe-
rimentale. Dunque questo risultato mette in dubbio la formula newtoniana
di addizione delle velocità. ma quale è l’origine profonda di questa formula?
Come vedremo è nella natura stessa della nostra concezione di spazio e di
tempo. L’analisi profonda di Einstein fa infatti riferimento a queste conce-
zioni e mostra come il problema delle misure di spazio e di tempo debba
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essere reimpostato.
Una domanda che nasce spontanea dall’esperimento che abbiamo studiato

è che fine faccia l’energia che forniamo agli elettroni se esiste una velocità
limite. Dato che questa velocità coincide sperimentalmente con la velocità
della luce, sembra ragionevole andare ad esaminare più in dettaglio alcune
proprietà della luce stessa.

1.2 Fotoni

x

y

z

E

H

v

ew

Figura 1.4: La figura mostra la propagazione di un’onda elettromagnetica che
incide su una particella di carica e.

Come vedremo meglio in seguito nella parte di Quanti di questo corso
Einstein ipotizzò che l’energia luminosa U che compete alla banda di fre-
quenze compresa tra ν e ν + dν, fosse composta da un numero di fotoni pari
a

n =
U

hν
(1.16)

dove h è la costante di Planck

h = 6.626× 10−34 J · s (1.17)
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È da notare che la costante di Planck ha le dimensione di un’azione cioè di
una energia per un tempo. L’affermazione precedente è equivalente a dire
che ogni fotone ha una energia pari a

E = hν (1.18)

Una conferma a queste idee venne anche dall’effetto Compton (1923), cioè
nello studio della diffusione di un fotone su elettroni. Tutto succede come se
la radiazione fosse composta da particelle (fotoni) con energia pari a quella
della formula (1.18) ed impulso pari a

p =
E

c
=

hν

c
(1.19)

Questa relazione tra energia ed impulso trasportato da un’onda elettroma-
gnetica è facilmente dimostrabile nel contesto della teoria di Maxwell. Sup-
poniamo infatti di avere un’onda e.m. che si propaga nella direzione dell’asse
delle x con campi elettrico e magnetico diretti rispettivamente lungo l’asse y
e l’asse z, come mostrato in figura 1.4. Quindi

~E = (0, E, 0), ~H = (0, 0, H), E = H (1.20)

Il lavoro fatto nel tempo dt dal campo elettrico su una particella di carica e
che si muove con velocità ~v è dato da

dL = e ~E · ~vdt = eEvydt (1.21)

D’altra parte la forza che agisce lungo l’asse x (direzione di propagazione) è
data da

Fx = e

(
~E +

1

c
~v ∧ ~H

)
=

e

c
vyH (1.22)

Pertanto l’impulso trasmesso dall’onda alla particella è dato da

dp =
e

c
vyHdt =

dL

c
(1.23)

Dunque l’impulso trasferito alla particella è uguale all’energia trasferita divisa
per la velocità della luce.

Se quanto detto sopra è corretto vediamo che la velocità dei fotoni è
sempre uguale alla velocità della luce indipendentemente dalla loro energia.
Questo è stato verificato sperimentalmente a partire da fotoni di energia

10



10−7 eV sino ad energie dell’ordine di 108 eV , cioè su 15 ordini di grandezza
in energia. Quindi i fotoni appaiono molto simili agli elettroni di alta energia
la cui velocità, come abbiamo visto, è indipendente dall’energia e pari alla
velocità della luce. È interessante osservare che nel caso newtoniana, la
relazione tra energia ed impulso è data da

K =
1

2
vp (1.24)

che differisce per un fattore 2 da quella dei fotoni. In realtà anche per gli
elettroni di alta energia si osserva sperimentalmente (tramite collisioni ato-
miche) che il loro impulso è dato da K/c, in accordo con quanto vale per i
fotoni.

Nella prossima Sezione cercheremo di dare una risposta al quesito su dove
vada a finire l’energia degli elettroni o dei fotoni se non si ha un aumento
della velocità.

1.3 L’inerzia dell’energia

x∆

L

M

E

E

a)

b)

Figura 1.5: La scatola passa dalla posizione a) alla posizione b) per effetto
dell’emissione luminosa dal lato sinistro.

Consideriamo il seguente esperimento pensato (gedanken experiment) in-
ventato da Einstein nel 1906. Immaginiamo che una quantità di energia
luminosa sia emessa dal lato sinistro della scatola nella posizione a) in figura
1.5. Per la conservazione dell’impulso la scatola deve acquistare un impulso

11



opposto a quello della radiazione e si muoverà verso sinistra. Quando la ra-
diazione viene assorbita sul lato destro la scatola si fermerà in una posizione
diversa da quella iniziale. Riesce però difficile immaginare che il centro di
massa del sistema si sia spostato, dato che si ha un sistema isolato. La sola
soluzione possibile sembra essere quella in cui il fotone trasporta una massa
dal lato sinistro al lato destro. Per calcolare questa massa, osserviamo che
l’impulso acquistato dalla scatola sarà pari a −E/c e quindi si muoverà con
velocità

v = − E

Mc
(1.25)

In buona approssimazione la radiazione arriva sull’altro lato della scatola
dopo un tempo pari a

∆t =
L

c
(1.26)

e quindi lo spostamento della scatola in questo tempo sarà

∆x = v∆t = − E

Mc
× L

c
= − EL

Mc2
(1.27)

Se associamo alla radiazione una massa equivalente m, che passa dal lato
sinistro al lato destro, la condizione che il centro di massa sia rimasto nella
posizione iniziale richiede

mL + M∆x = 0 (1.28)

da cui

m = −M

L
∆x =

E

c2
(1.29)

Quindi
E = mc2 (1.30)

Sebbene qui m venga associata alla radiazione, in realtà le implicazioni
sono molto più grandi. Infatti occorre riconoscere che quando la radiazione
viene emessa dal lato sinistro, questo subisce una perdita di massa pari a
m, che viene trasportata via sotto forma di radiazione e che viene ritrasfor-
mata in massa all’altra estremità. Quindi l’implicazione è che all’energia sia
associata una massa e viceversa. In definitiva ad ogni variazione ∆E dell’e-
nergia di un corpo corrisponde una variazione della massa inerziale tale che
∆E = ∆mc2.
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Figura 1.6: Versione migliorata dell’esperimento di Einstein.

Nella discussione precedente abbiamo trattato la scatola come un corpo
rigido. L’idea di corpo rigido non ha però significato se si accetta l’idea di una
velocità limite. Infatti un corpo può essere rigido solo se le informazioni tra le
sue parti vengono trasmesse a velocità infinita. In figura 1.6 è rappresentata
una versione dell’esperimento di Einstein che non fa uso di una scatola, ma
di due masse m1 e m2. La massa m1 emette radiazione e quindi si muove
verso sinistra con velocità v1 e contemporaneamente varia la sua massa da
m1 a m′

1. Quando la radiazione arriva sulla massa a destra, viene assorbita
conferendole una velocità v2. Anche in questo caso la massa cambia da m2 a
m′

2. Richiedendo che la massa totale del sistema non cambi e che il baricentro
rimanga nella posizione originaria si ritrova la relazione di Einstein. Infatti
si ha

v1 = − E

m′
1c

(1.31)

e la posizione di al tempo t sarà (usando un sistema di coordinate tale che
x1(0) = 0 e x2(0) = L)

x(t) = − E

m′
1c

t (1.32)

Analogamente si ha

v2 =
E

m′
2c

(1.33)
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e

x2(t) = L +
E

m′
2c

(
t− L

c

)
(1.34)

dove si è tenuto conto che la massa m2 inizia a muoversi al tempo L/c quando
la radiazione la raggiunge (anche in questo caso si assume che le velocità delle
due acquisite dalle due masse siano piccole rispetto a c). La posizione del
centro di massa prima dell’emissione era (M = m1 + m2 = m′

1 + m′
2)

Mx̄ = m1 · 0 + m2L (1.35)

mentre dopo l’assorbimento

Mx̄′ = m′
1

(
− E

m′
1c

t

)
+ m′

2

(
L +

E

m′
2c

(
t− L

c

))
= m′

2L−
EL

c2
(1.36)

Richiedendo x̄ = x̄′ segue

m2L = m′
2L−

EL

c2
(1.37)

da cui

∆m = m′
2 −m2 =

E

c2
(1.38)

e dato che M non cambia si ha anche

∆m1 = −∆m2 = −E

c2
(1.39)

1.4 Energia, impulso e massa

Usando i risultati precedenti si vede facilmente che l’energia di un corpo
aumenta tanto più rapidamente quanto più il corpo ha velocità vicina a
quella della luce. Ricordiamo che abbiamo visto che per i fotoni E = cp
ed inoltre associata all’energia E c’e’ una massa m = E/c2. Sostituendo la
prima relazione nella seconda segue

m =
p

c
(1.40)

Questa relazione è identica a quelle per particelle ordinarie

m =
p

v
(1.41)

14



Quindi la (1.40) può essere vista come un caso particolare della (1.41).
Combinando questa relazione con m = E/c2 ed eliminando m si ottiene

E =
c2p

v
(1.42)

In meccanica si è usualmente interessati nella variazioni di energia prodotte
da forze. Questa variazione si calcola con

dE = Fdx =
dp

dt
dx = v dp (1.43)

Usando questa relazione con la (1.42) si trova

E dE = E v dp = c2 p dp (1.44)

che integrata da
E2 = c2p2 + E2

0 (1.45)

da questa possiamo trovare E in funzione della velocità riesprimendo p in
funzione di v tramite la (1.42). Si trova

E = c2

(
vE

c2

)2

+ E2
0 (1.46)

da cui

E(v) =
E0√

1− v2/c2
(1.47)

per velocità piccole rispetto a quelle della luce, v ¿ c, si trova

E(v) ≈ E0 +
1

2

(
E0

c2

)
v2 (1.48)

Se identifichiamo E0/c
2 con la massa inerziale del corpo si ottiene

E(v) ≈ m0c
2 +

1

2
m0v

2, E0 = m0c
2 (1.49)

Vediamo che il secondo termine non è altro che l’energia cinetica newtoniana,
mentre il primo termine è l’energia associata alla massa inerziale. In mec-
canica newtoniana il prime termine viene ignorato perchè è una costante,
mentre adesso abbiamo visto che ci può essere un trasferimento tra la parte
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di massa e la parte di energia cinetica. Infatti possiamo definire, nel caso
in esame, l’energia cinetica come la differenza tra l’energia della particella in
moto e l’energia della particella ferma. Il risultato è

K = m0c
2

(
1√

1− v2/c2
− 1

)
(1.50)

Se da questa si ricava v in funzione di K

v2 = c2

(
1− m2

0c
4

(K + m0c2)2

)
(1.51)

si trova la curva continua di figura 1.3 indicata come predizione einsteniana.
Quindi abbiamo riprodotto correttamente i risultati sperimentali. Usando
ancora p = vE/c2 si trova

p(v) =
m0v√

1− v2/c2
(1.52)

Questa, assieme

E(v) =
m0c

2

√
1− v2/c2

(1.53)

definisce completamente la cinematica relativistica. In alcuni testi il fattore
contenente la radice viene attribuito alla massa. In questo caso le formule
precedenti diventano

p = m(v)v, E = m(v)c2 (1.54)

In questo contesto m0 assume il significato di massa del corpo a riposo, dato
che

m(v) =
m0√

1− v2/c2
(1.55)

Ovviamente questa è solo una questione di linguaggio. Noi non introdurremo
una massa dipendente dalla velocità, ma il linguaggio precedente può essere
utile per un confronto con il caso newtoniano. Infatti vediamo che facendo
tendere la velocità a quella della luce l’energia e l’impulso di una particella
diventano sempre più grandi. Se si reinterpreta questo in termini newtoniani
è come se fornendo energia agli elettroni nel LINAC convertissimo la gran
parte di questa energia in massa della particella invece che in aumento di
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velocità. D’altra parte, nel linguaggio einsteiniano, poichè massa ed energia
possono trasformarsi l’una nell’altra e non esistono più due quantità conser-
vate, la massa e l’ energia, ma solo l’energia totale, risulta più conveniente
non introdurre il concetto di massa dipendente dalla velocità, ma parlare
solo dell’energia totale. In questo contesto anche l’energia cinetica perde di
valore teorico, sebbene sia ancora importante ai fini sperimentali.

Possiamo vedere sotto queste nuove assunzioni cosa succede ad un corpo
soggetto ad una forza costante. Nel caso classico abbiamo visto che la sua
velocità cresce senza limite. Nel caso relativistico invece ci aspettiamo che
la velocità tenda a c. Per dimostrare questo risultato assumeremo che valga
ancora la seconda legge di Newton, ma con il valore relativistico dell’impulso.
Cioè

F∆t = ∆p (1.56)

e nel caso in cui la forza sia costante e la si applichi per un tempo t ad una
particella inizialmente ferma

Ft = p(v) =
m0v√

1− v2/c2
(1.57)

Da cui

1− v2

c2
=

(m0v

Ft

)2

(1.58)

da cui

1 =
v2

c2

[
1 +

(m0c

F t

)2
]

(1.59)

e finalmente
v(t) =

c√
1 + (m0c/F t)2

(1.60)

Per tempi sufficientemente piccoli tali che Ft ¿ m0c segue

v(t) ≈ c

(m0c/F t)
=

F

m0

t (1.61)

che è il risultato newtoniano. Per tempi t tali che Ft À m0c invece

v ≈ c

[
1− 1

2

(m0c

F t

)2
]
→ c (1.62)
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1.5 Commenti

Come abbiamo visto, i risultati dell’esperimento sul LINAC ci hanno portato
a cambiare alcuni risultati della meccanica di Newton, nel caso di velocità
vicine a quella della luce. In particolare abbiamo visto l’equivalenza massa-
energia e quindi la possibilità di trasformazione dell’una nell’altra. La più
importante differenza è però nel fatto che l’esperimento ci porta a concludere
che debba esistere una velocità limite, quella della luce, mentre nella mec-
canica newtoniana tale limite non esiste. Abbiamo anche fatto vedere nella
sezione precedente, come, pur facendo uso delle equazioni di Newton con
una modifica nell’espressione dell’impulso, si ritrovi effettivamente il fatto
sperimentale che allorché si sottoponga una particella ad una forza costan-
te, questa aumenta la sua energia, ma la velocità tende a c. Ovviamente
vorremmo ottenere questo risultato nell’ambito di una teoria unitaria e non
facendo uso di informazioni sperimentali unite in modo ad hoc alla meccanica
di Newton. Sembra quindi necessario un riesame completo delle basi stesse
della meccanica. Infatti, abbiamo già accennato al fatto che l’esistenza di
una velocità limite richiede che la legge di composizione delle velocità di un
corpo rispetto ad un riferimento, S ′, in moto rispetto ad un riferimento S, e
la velocità del riferimento S ′ rispetto ad S non possa essere semplicemente
la somma delle due velocità, come richiederebbe l’intuizione che noi abbiamo
dello spazio e del tempo. La necessità di questa analisi originò già alla metà
dell’ottocento in relazione ai successi della teoria di Maxwell dell’elettroma-
gnetismo. Per dirla in breve, la velocità della luce appare nelle equazioni
di Maxwell come un coefficiente legato alla permeabilità magnetica ed alla
costante dielettrica del vuoto. Pertanto se effettuiamo una trasformazione
da un riferimento S ad un altro in moto rettilineo uniforme S ′ rispetto ad S,
la velocità della luce in S ed in S ′ non può essere la stessa. Ne risulterebbe
quindi che le equazioni di Maxwell non sono invarianti e quindi sarebbero
valide in un solo sistema di riferimento. Questo fu il punto di vista adottato
inizialmente. Una delle ragioni fu anche dovuta al fatto che le equazioni di
Maxwell hanno soluzioni di tipo ondulatorio e quindi, da un punto di vista
meccanicistico, questo richiedeva l’esistenza di un mezzo che in qualche modo
vibrasse, come succede per le onde elastiche. Un tale mezzo fu denominato
con la parola etere e nacque il problema di identificare questo mezzo ed in
particolare la velocità con la quale noi ci muoviamo rispetto a tale mezzo.
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Capitolo 2

L’affermazione del principio di
relatività

2.1 Il principio di relatività in meccanica e le

trasformazioni di Galileo

S S'

x x'

x
x'

vt

P

v

Figura 2.1: Il punto P come descritto dai due riferimenti S e S′ in moto uno
rispetto all’altro con velocità costante v.

Ricordiamo che il principio di relatività di Galileo richiede che le leggi
della meccanica siano le stesse quando le si descrivano da due sistemi di
riferimento S e S ′ in moto rettilineo uniforme uno rispetto all’altro. Se
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consideriamo i due sistemi in moto come descritti in figura 2.1 si ha

x′ = x− vt, y′ = y, z′ = z (2.1)

dove abbiamo assunto che all’istante t = 0 i due riferimenti coincidano. A
questa relazione si aggiunge l’ulteriore condizione che i tempi misurati nei
due riferimenti coincidano

t′ = t (2.2)

Le equazioni (2.1) e 2.2) costituiscono le trasformazioni di Galileo. La
relazione tra la velocità di P nel sistema S, ~u e S ′, ~u′ si trova immediatamente
per differenziazione

~u ′ = ~u− ~v (2.3)

Come si vede la legge di composizione delle velocità è conseguenza immediata
delle trasformazioni di Galileo. Verifichiamo adesso che le leggi della dinamica
sono invarianti rispetto a trasformazioni di Galileo se facciamo l’ulteriore
assunzione che la massa e le forze siano assolute, cioè

m′ = m, ~F ′ = ~F (2.4)

Infatti si ha subito dalla (2.1)

d2x ′

dt′ 2
=

d2x

dt2
(2.5)

ed analoghe per le altre coordinate. Pertanto

m′d
2~x ′

dt′ 2
= ~F ′ (2.6)

La proprietà della massa di essere invariante di Galileo è legata alla legge
di conservazione della massa, che è sperimentalmente corretta per velocità
piccole rispetto a quella della luce. Per quanto riguarda la forza, notiamo che
tipicamente le forze derivano da interazioni a due corpi (vedi il principio di
azione e reazione). Ma la distanza relativa tra due corpi non cambia rispetto
ad una trasformazione di Galileo e questo giustifica l’assunzione che anche la
forza sia una grandezza assoluta.

Occorre qui fare una precisazione, cioè che le leggi di Newton stesse sono
valide solo in una categoria di sistemi di riferimento, i cosi detti riferimenti
inerziali, cioè quei riferimenti in cui un corpo libero, non soggetto a for-
ze delle quali sia possibile rintracciare la causa, si muove di moto rettilineo

20



uniforme. L’invarianza galileiana ci dice che di tali riferimenti ne esistano
infiniti, tutti quelli collegati da una trasformazione di Galileo. Non è facile
definire. o determinare sperimentalmente, un riferimento inerziale. Sicura-
mente la terra non è un tale riferimento. In genere si assume che un tale
riferimento possa essere costituito da uno con l’origine nel sole e gli assi
orientati secondo le stelle fisse.

Una volta chiarita la struttura delle trasformazioni di Galileo è evidente la
loro incompatibilità con le equazioni di Maxwell, che prevedono che nel vuo-
to le onde e.m. si muovano sempre con velocità pari a c indipendentemente
dal moto della sorgente delle onde stesse. Più formalmente si può verificare
esplicitamente che le equazioni di Maxwell non sono invarianti rispetto a tra-
sformazioni di Galileo. Se d’altro canto richiediamo alle equazioni di Maxwell
di soddisfare il principio di relatività, è evidente che sotto le corrispondenti
trasformazioni la velocità della luce non può cambiare. Quindi queste tra-
sformazioni non possono coincidere con le trasformazioni di Galileo. Infatti
Poincaré determinò queste trasformazioni (dette adesso trasformazioni di Lo-
rentz) che sono tali da ridursi a quelle di Galileo per v ¿ c. Ritorneremo in
seguito sulla forma di queste equazioni. Vediamo dunque che si aprono due
possibilità

• La fisica è invariante sotto trasformazioni di Galileo. In questo caso la
meccanica di Newton è corretta, ma esiste un riferimento privilegiato
in cui valgono le equazioni di Maxwell.

• La fisica è invariante sotto trasformazioni che lasciano invariate le equa-
zioni di Maxwell. In questo caso la velocità della luce è invariante ed
occorre modificare la meccanica di Newton

Ovviamente esiste una terza possibilità, cioè che nessuna delle due precedenti
sia corretta. Per quanto riguarda il primo caso l’ovvio punto a cui mirare è
quello di determinare se la velocità della luce sia la stessa in tutti i riferimenti
inerziali, oppure se cambi da un riferimento ad un altro. Prima di passare a
questa discussione ci sarà però utile ricavare dalla (2.3) le leggi di trasforma-
zione dei moduli e degli angoli delle velocità. facendo uso della (2.3) con le
definizioni in figura 2.2 si ha

u cos θ − v = u′ cos θ′

u sin θ = u′ sin θ′ (2.7)
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Da queste ricaviamo: dividendo la seconda per la prima

tan θ ′ =
sin θ

cos θ − v/u
(2.8)

e, quadrando e sommando:

u′ = (u2 + v2 − 2uv cos θ)1/2

o anche

u′ = u

[
1 +

(v

u

)2

− 2
(v

u

)
cos θ

]1/2

(2.9)

x  x'

z z'

V

X X'

y y'

O O'

P

θ θ'
v

u u'

Figura 2.2: La figura illustra due riferimenti inerziali in moto relativo e la
composizione delle velocità.
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2.2 L’invarianza della fase di un’onda piana

Assumiamo per il momento l’atteggiamento che le equazioni di Maxwell sia-
no vere in un riferimento privilegiato, quello dell’ etere. Quindi in ogni
riferimento diverso da questo le equazioni di Maxwell devono avere delle cor-
rezioni, che ci aspettiamo essere piccole, almeno di ordine v/c, dove v è la
velocità del riferimento in relazione a quello dell’etere. Ci aspettiamo dun-
que di poter mettere in evidenza queste correzioni con esperimenti di tipo
ottico. Ai fini di questa discussione introduciamo una proprietà particolare
delle onde piane, cioè l’ invarianza della fase.

x  x'

z z'

V

O O'

S S'

n

P
P'

Q

L

Figura 2.3: La figura illustra il principio dell’invarianza della fase di un’onda
piana.
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Nel riferimento S l’onda piana è descritta dalla funzione

ψ(~x, t) = A cos

[
ω

(
t− ~n · ~x

c

)]
(2.10)

dove

ω = 2πν;
ω~n

c
= ~k; |~k| = 2π

λ
; ~n2 = 1 (2.11)

e dove ~k è il vettore di propagazione e c è la velocità della luce, c ≈ 3 ×
1010cm/s1. Si definisce fase dell’onda piana la quantità

F (~x, t) = ν

(
t− ~n · ~x

c

)
(2.12)

La fase ha un significato fisico molto interessante. Supponiamo, vedi figura
2.3, di aver marcato l’onda che a t = 0 passa dall’origine O del riferimento
S. Supponiamo di aver posizionato un osservatore nel punto P solidale con
S. Si ha allora che il numero di onde che P conta a partire dall’istante in
cui l’onda marcata passa per P sino al tempo t è dato esattamente dalla
fase F calcolata in P . Infatti l’onda marcata impiega un tempo pari a L/c
per arrivare in P che quindi conterà per un tempo pari a t− L/c. Dato che
arrivano ν onde al secondo, il numero di onde contate sarà pari a

ν

(
t− L

c

)
= F (~x, t) (2.13)

dato che
L = ~n · ~x (2.14)

Consideriamo adesso un riferimento S ′ che si muova rispetto ad S con velocità
v come in figura 2.3 ed un punto P ′, solidale con S ′ che coincida con P al
tempo t′ = t. È evidente che il numero di onde che P ′ conta a partire
dall’onda marcata sino a quando coincide con P sarà identico a quello contato
da P . D’altra parte anche nel riferimento S ′ vale il ragionamento fatto in S
e quindi il numero di onde contato da S ′ sarà pari a F (~x′, t) con

F (~x′, t) = ν ′
(

t ′ −
~n ′ · ~x ′

c ′

)
= F (~x, t) = ν

(
t− ~n · ~x

c

)
(2.15)

1Attualmente la velocità della luce viene usata per definire l’unità di lunghezza. Il metro
è definito come la distanza percorsa da un raggio luminoso in un intervallo di tempo pari
a 1/299792458 secondi. Dunque per definizione si ha c = 2.99792458 1010cm/s.
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Usando le trasformazioni di Galileo (eq. (2.1))

~x ′ = ~x− ~vt (2.16)

segue

ν ′
(

t ′ −
~n ′ · ~x ′

c ′

)
= ν

(
t− ~n · ( ~x ′ + ~vt ′)

c

)
(2.17)

Uguagliando i coefficienti di ~x ′ e di t ′ si ottiene

ν ′ = ν

(
1− ~n · ~v

c

)
(2.18)

e

ν ′~n
′

c ′
= ν

~n

c
(2.19)

Quest’ultima ci dice che ~n e ~n ′ sono vettori paralleli, ma essendo versori
dovranno essere uguali. Quindi

~n = ~n ′,
ν ′

c ′
=

ν

c
(2.20)

La seconda relazione in congiunzione con la (2.18) ci permette di determinare
c ′:

c ′ = c
ν ′

ν
= c

(
1− ~n · ~v

c

)
= c− ~n · ~v (2.21)

2.3 Effetto Doppler

la (2.18) è l’espressione matematica dell’effetto Doppler, che è l’effetto che
si verifica quando l’osservatore e la sorgente sono in moto relativo. Però
questa equazione non può essere usata direttamente perché se assumiamo le
trasformazioni di Galileo dobbiamo anche assumere l’esistenza dell’etere e sia
l’osservatore che la sorgente potrebbero essere in moto rispetto al riferimento
dell’etere. Consideriamo allora tre sistemi di riferimento S0, il riferimento in
cui la sorgente è a riposo, S, il riferimento dell’etere e S ′, il riferimento
dell’osservatore. Detto questo, possiamo applicare la (2.18) al moto della
sorgente rispetto all’etere. Quindi

ν0 = ν

(
1− ~n · ~v0

c

)
(2.22)
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dove ~v0 è la velocità della sorgente rispetto all’etere. Possiamo usare questa
equazione per eliminare la frequenza ν che è la frequenza dell’onda considera-
ta nel riferimento dell’etere. Usando ancora la (2.18) tra S ′ e S ed eliminando
ν si ha

ν ′ = ν0

1− ~n · ~v
c

1− ~n · ~v0

c

(2.23)

con ~v la velocità dell’osservatore rispetto all’etere. Dato che è possibile
misurare la velocità relativa tra la sorgente e l’osservatore

~vr = ~v − ~v0 (2.24)

e le due frequenze ν0 e ν ′ dalla equazione precedente possiamo determinare
la velocità assoluta della sorgente ~v. D’altra parte se sia ~v che ~v0 sono piccoli
rispetto alla velocità della luce (come è praticamente il caso), sviluppando al
primo ordine in ~v/c e ~v0/c segue

ν ′ ≈ ν0

(
1− ~n · ~v

c

) (
1 +

(~n · ~v0)

c
+

(
(~n · ~v0)

c

)2
)

≈ ν0

(
1− ~n · ~vr

c
− (~n · ~v0)(~n · ~vr)

c2

)
(2.25)

Quindi la velocità assoluta ~v = ~v0 + ~vr è contenuta solo nei termini del
secondo ordine. L’effetto Doppler viene osservato negli spettri stellari dove
le linee sono spostate verso il rosso o verso il violetto a seconda che la terra
si allontani o si avvicini all stella. Dato che la velocità della terra sulla sua
orbita è dell’ordine di 3 × 106 cm/s e le velocità stellari sono dello stesso
ordine di grandezza, si ha tipicamente v/c ≈ 10−4. Dunque gli effetti del
secondo ordine sono circa 10−8, praticamente inosservabili. Questo effetto
si può misurare anche in sorgenti terrestri. Stark [1] nel 1906 misurava le
frequenze emesse da atomi idrogenoidi in movimento con velocità dell’ordine
di 108 cm/s. Adesso si hanno valori tipici v/c ≈ 1/300 che danno però
effetti del secondo ordine ancora inosservabili. Nel 1938 Ives [2] sfruttando i
notevoli miglioramenti tecnici fu in grado di osservare gli effetti del secondo
ordine dimostrando che questi non erano in accordo con il risultato da noi
trovato, ma che invece dipendevano dalla sola velocità relativa in accordo con
la teoria della relatività di Einstein (vedi dopo).
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2.4 Velocità di fase, velocità di gruppo e aber-

razione della luce

Ricordiamo dalla (2.21)

c ′ = c− (~n · ~v) (2.26)

Questa equazione permetterebbe in linea di principio la determinazione
dela velocità assoluta della terra v, misurando c′ e data c. Queste misure
furono fatte (Fizeau 1848; Foucault 1865), ma non fu rilevata alcuna influenza
del moto della terra sulla velocità della luce. In altre parole la velocità della
luce risultò invariata, in accordo con il principio di relatività speciale, per cui
il valore di c, che compare nelle equazioni di Maxwell, non può variare da un
sistema di riferimento inerziale ad un altro.

Tuttavia va osservato che la (2.26) è ricavata dalle formule di trasfor-
mazione delle caratteristiche di un’onda, mentre gli esperimenti sulla velo-
cità della luce devono essere interpretati in termini di pacchetti d’onda, e
quindi in termini di velocità di gruppo. Poiché queste due grandezze hanno
importanza di carattere generale, apriamo una parentesi per discuterle.

2.4.1 La velocità di fase e la velocità di gruppo

Sia f(~x, t) un segnale e.m.. Per esempio si può considerare una componente
del campo elettrico o magnetico. Possiamo rappresentarlo come trasformata
di Fourier

f(~x, t) =

∫
A(~k)e−i[ω(~k)t−~k·~x]d3~k (2.27)

In questa relazione ω è una funzione assegnata di ~k, determinata dall’e-
quazione d’onda. Questa relazione tra la frequenza angolare ω e il vettore
di propagazione ~k si chiama relazione di dispersione. Il rapporto ω/|~k| è la
velocità di fase vf ed è la velocità di propagazione di quell’onda che ha come

vettore di propagazione ~k e come lunghezza d’onda λ = 2π/k. Nel caso della

propagazione della luce nel vuoto si ha ω = c|~k|. Quindi, la velocità di fase
è costante ed è uguale a c.
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Se f rappresenta un pacchetto l’ampiezza di Fourier A è una funzione
con un massimo ben definito per un determinato valore di ~k = ~k0. Poniamo
ω0 = ω(~k0).

L’esponente si può approssimare nel modo seguente

ω(~k)t− ~k · ~x =

=
(
ω0 + ~∇ω(~k0) · (~k − ~k0)

)
t− ~k · ~x =

=
(
ω0 − ~k0 · ~∇ω(~k0)

)
t−

(
~x− ~∇ω(~k0)t

)
· ~k (2.28)

e poniamo

f(~x, t) = e−i(ω0−~k0·~∇ω(~k0))tM(~x, t), (2.29)

M(~x, t) =

∫
A(~k)e+i[(~x−~∇ω(~k0)t)·~k]d3k (2.30)

dove M è il fattore modulante, mentre l’esponenziale a fattore rappresenta
l’onda portante. Comparando la (2.27) con la (2.30) vediamo che

M(~x, t) = f(~x− ~∇ω(~k0)t, 0)) (2.31)

Pertanto M(~x, t) soddisfa l’equazione delle onde con velocità pari a

~vg = ~∇ω(~k0)) (2.32)

Dato che l’energia trasportata dall’onda è proporzionale al modulo quadro
dell’ampiezza vediamo che il fattore di fase in fronte non è rilevante a questi
fini e quindi l’energia si propaga con velocità pari a ~vg, la velocità di grup-

po. È interessante notare che la (2.31) può essere interpretata nel seguente
modo: consideriamo il valore del fattore modulante in un dato punto ~x0 a
t = 0, M(~x0, 0) e consideriamo al tempo t il punto che si muove con velocità
~vg a partire da ~x0, cioè

~x(t) = ~x0 + ~vgt (2.33)

segue allora immediatamente dalla (2.31) che

M(~x(t), t) = M(~x0, 0) (2.34)
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Dunque lungo i punti che si muovono a velocità ~vg il fattore modulante
è costante e quindi il profilo dell’onda è trasportato senza alterazioni con
velocità ~vg.

La velocità di fase e la velocità di gruppo in generale non coicidono.
Nel caso di una relazione di dispersione non dispersiva, cioè quando ω è

proporzionale a |~k|, le due velocità coincidono, altrimenti si dice che si ha
dispersione.

2.4.2 Legge di trasformazione della velocità di gruppo

Se osserviamo un segnale e.m. in un sistema di riferimento inerziale S ′,
in moto rettilineo e uniforme rispetto al sistema S, nel quale osserviamo
lo stesso segnale f(~x, t), sappiamo che le sue caratteristiche si trasformano
secondo equazioni (2.18), (2.20) e (2.21). Queste valgono nel caso di un’onda
e.m. e permettono di determinare la regola di trasformazione della velocità
di gruppo.

Si può però dimostrare che la regola cos̀ı determinata vale in generale,
anche per altri tipi di onde.

Poiché nel caso e.m. il modulo del vettore di propagazione è dato da

|~k| = ω

c
(2.35)

e ~n è la sua direzione, l’equazione (2.18) si può scrivere

ω′ = ω − ~k · ~v (2.36)

Questa è la legge di trasformazione di ω dal sistema S al sistema S ′.
Tenuto conto dell’espressione per la velocità di gruppo (2.32), si ha che la
velocità di gruppo in S ′ cioè ~v ′g è data da

~v ′g = ~vg − ~v (2.37)

cioè la velocità di gruppo segue la stessa legge di trasformazione della velocità
di una particella materiale.

Se si confronta la legge di trasformazione (2.37) con la legge di trasfor-
mazione per le velocità di fase (2.26), si vede che sono diverse, salvo il caso
molto particolare in cui ~v e ~n sono paralleli (si può però mostrare che differi-
scono solo per termini del secondo ordine in v/c (vedi referenza [3] e sezione
seguente).
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2.4.3 L’aberrazione della luce

Tornando alla determinazione della velocità assoluta della terra, gli esperi-
menti fatti a questo scopo non dettero alcun risultato, pur tenendo conto che
la velocità da considerare è la velocità di gruppo e non quella di fase. È però
da tener presente che ciò è vero per gli effetti del primo ordine in v/c. Negli
esperimenti citati (Fizeau), nei quali si misurava la velocità di un raggio di
luce su di un cammino chiuso, la precisione della misura permetteva di tener
conto dei soli termini del primo ordine.

Questi esperimenti furono condotti anche in presenza di un mezzo rifrat-
tivo, con gli stessi risultati.

In conclusione, solo con esperimenti in grado di misurare termini di ordine
superiore si poteva sperare di ottenere un risultato significativo, perché allora,
come mostra l’equazione (2.25), si possono misurare termini che dipendono
dalla velocità assoluta.

Prima di passare alla descrizione del più famoso di questi esperimenti, cioè
quello di Michelson, discutiamo l’altro effetto che si può ricavare dalla legge
di trasformazione di un pacchetto di radiazione e.m. (2.37), cioè la variazione
della direzione di un raggio luminoso dovuta al moto della sorgente; questo
effetto si chiama aberrazione della luce.

Se θ e θ ′ sono gli angoli tra la direzione di ~v con ~vg e ~v ′g rispettivamente,
dalla (2.37) si ricava, tenendo conto della Fig. (2.4),

Vθ θ '

Vg Vg'

Figura 2.4: L’aberrazione stellare
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{
v′g cos θ ′ = vg cos θ + v

v′g sin θ ′ = vg sin θ
(2.38)

dalle quali, dividendo membro a membro

tan θ ′ =
sin θ

cos θ + v/vg

(2.39)

che è l’espressione per l’aberrazione della luce proveniente da un stella, dove
θ ′ è l’angolo sotto il quale si osserva la stella dal riferimento terrestre e θ è
l’angolo sotto il quale apparirebbe la stella in un riferimento assoluto. ~v è la
velocità del riferimento terrestre rispetto allo spazio assoluto.

Questa formula è corretta al primo ordine in v/c, se con v si intende la
velocità della terra rispetto al riferimento astronomico delle stelle fisse.

Osservare che la (2.39) si può ricavare dall’analoga (2.8) con la sostitu-
zione

θ → θ + π; θ′ → θ′ + π (2.40)

che è dovuta al fatto che gli angoli che si misurano sono appunto quelli
indicati in Fig. (2.4), mentre gli angoli che i vettori ~vg e ~v ′g formano con la
direzione di ~v, coerentemente con la Fig. (2.2), sarebbero quelli aumentati
di π nel senso positivo (antiorario).

Dalle (2.38) si può ricavare anche il modulo di ~v ′g,. Portando v a primo
membro e poi quadrando e sommando si ottiene

v′g
2
+ v2 − 2vv′g cos (θ′) = v2

g (2.41)

che, risolta in v′g (e scegliendo il ramo opportuno) fornisce

v′g =
√

v2
g − v2 + (v cos (θ′))2 + v cos (θ′) (2.42)

che si può anche riscrivere

v′g =
√

v2
g − v2 + (~v · ~e ′)2 − (~v · ~e ′) (2.43)

dove ~e ′ è il versore di ~v ′g. Notiamo che sviluppando questa formula al primo
ordine in v/c si ha

v′g = vg − (~v · ~e ′) +O((v/c)2) (2.44)
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Quindi vediamo che a meno di termini del secondo ordine la velocità di fase
e quella di gruppo si trasformano nello stesso modo.

Possiamo anche verificare che per esperimenti effettuati su percorsi chiusi
di un raggio luminoso non ci sono effetti del primo ordine dovuti al moto
rispetto all’etere. In un arrangiamento sperimentale come in figura 2.5, se
indichiamo con ~ei i versori dei lati del poligono e con `i i lati si ha:

O

e1

e

e

e

2

3

4

eN

Figura 2.5: Percorso chiuso di un raggio luminoso come usato negli esperimenti
di Fizeau e di Foucault.

∑
i

~ei`i = 0 (2.45)

Il tempo necessario al raggio luminoso a percorrere il cammino chiuso sarà
dato da

t =
∑

i

`i

ui
′ =

∑
i

`i√
c2 − v2 + (~v · ~ei)2 − ~v · ~ei

(2.46)

dove ~v è la velocità del riferimento terrestre rispetto all’etere. Espandendo
al primo ordine in v/c si ha

t ≈
∑

i

`i

c− ~v · ~ei

≈
∑

i

`i

c
+

∑
i

(~v · ~ei)`i

c2
=

∑
i

`i

c
(2.47)

Quindi non sono visibili effetti al primo ordine. Questo completa gli argo-
menti precedenti.
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2.5 L’esperimento di Michelson

Abbiamo visto che tutti gli esperimenti citati mostrano accordo con il princi-
pio di relatività esteso ai fenomeni e.m. (indipendenza del moto del sistema
rispetto al sistema assoluto). Tuttavia non avevano l’accuratezza necessaria
per testare i termini del secondo ordine in v/c.

Fu Michelson (A.A.Michelson, 1881, e poi A.A.Michelson e E.W.Morley,
1887) che misurò la velocità della luce con un interferometro con una preci-
sione che permetteva di determinare i termini del secondo ordine in v/c.

V

T

P

L S1

S2

d

d

1

2

Figura 2.6: Schema dell’interferometro di Michelson
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In modo estremamente schematico l’interferometro era come indicato in
figura 2.6.

Mediante lo specchio semitrasparente P un raggio di luce proveniente dal-
la sorgente L viene diviso in due parti, un raggio 1 e un raggio 2, mutuamente
perpendicolari.

Il raggio 1 viene riflesso dallo specchio S1 verso P , dove una sua parte
viene riflessa ulteriormente nel telescopio T .

Il raggio 2 viene riflesso dallo specchio S2 verso P e una sua parte attra-
versa P ed entra nel telescopio T , dove interferisce col raggio 1.

Anche se l’apparato fosse a riposo rispetto all’etere dovremmo osservare
delle frange d’interferenza in T , a causa delle inevitabili differenza nei due
bracci PS1 e PS2.

Supponiamo ora che l’apparato sia disposto con il braccio PS1 parallelo
alla direzione del moto della terra rispetto all’etere e siano i due bracci uguali
a d (in realtà vi sarà una piccola differenza responsabile dell’interferenza di
cui abbiamo già parlato, il cui effetto sarà però eliminato come vedremo più
sotto).

Per mezzo dell’equazione (2.43) con vg = c si può calcolare la differenza di
fase ∆F dei raggi 1 e 2, dovuta al moto dell’apparato sperimentale nell’etere.

Applicando la (2.43) al caso del percorso PS1, si ha che ~e′ è parallelo a
~v, dove ~v è la velocità della terra rispetto all’etere.

Quindi, per il percorso da P a S1 si ha

v ′g = c− v (2.48)

mentre per il percorso inverso si ha

v ′g = c + v (2.49)

Quindi il tempo t1 che il raggio 1 impiega per andare da P a S1 e ritorno
è

t1 =
d

c− v
+

d

c + v
=

2d

c(1− v2/c2)
(2.50)

Per il percorso PS2 ed anche per il ritorno S2P si ha

v ′g =
√

c2 − v2 (2.51)

e il tempo t2 impiegato è
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t2 = 2d
1√

c2 − v2
(2.52)

Per ∆F si ha

∆F = ν(t1 − t2) = ν

[
2d

c(1− v2/c2)
− 2d

c
√

1− v2/c2

]
=

2dν

c

1−
√

1− v2/c2

1− v2/c2

(2.53)
Se si calcola ∆F al secondo ordine, si ha

∆F = νd
v2

c3
(2.54)

Se ora si ruota tutto l’apparato di 900 i due percorsi si scambiano e la
differenza di fase diventa −∆F . Viceversa, la differenza di fase dovuta alla
piccola differenza dei due bracci resta identica. Quindi, facendo la differenza,
si ottiene 2∆F e l’effetto della differenza dei bracci si elide.

Il risultato dell’esperimento di Michelson fu che questa differenza di fase
era zero, nonostante che il valore aspettato, dato dalla (2.54), fosse due ordini
di grandezza superiore alla precisione dell’apparato.

Quindi si ha un risultato che indica che il principio di relatività, nella sua
forma estesa, è valido almeno fino al secondo ordine in v/c.
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Capitolo 3

La critica della simultaneità e
la cinematica relativistica

3.1 Critica della simultaneità

L’insieme degli esperimenti sulla velocità della luce avevano determinato se
non la certezza almeno la convinzione della validità del principio di relatività
esteso a tutti i fenomeni (meccanici ed elettromagnetici). In particolare, se si
assumono valide le equazioni di Maxwell, si ha come conseguenza la costanza
del valore numerico c della velocità della luce, che compare nella forma delle
equazioni. Ma questa costanza è in conflitto con il consueto concetto di
velocità e della sua legge di composizione. Ne viene di conseguenza che
dobbiamo rivedere questo concetto.

La misura della velocità in un dato sistema di riferimento inerziale S
richiede la misura di una distanza, per esempio tra un punto A e un punto B
e la misura di una differenza di tempi. Mentre la misura della distanza non
pone particolari problemi, ma solo l’ipotesi di disporre di regoli calibrati a
riposo nel sistema S, la misura della differenza tra il tempo t2 di arrivo in B
di una particella partita da A, della quale si vuol misurare la velocità, e il
tempo t1 di partenza da A, presenta qualche difficoltà.

Il problema è quello della sincronizzare di due orologi situati in punti
diversi, in A e in B. Il metodo di inviare un segnale da A a B, in modo che
se un orologio in A segna il tempo t si possa allora regolare un orologio in
B al tempo di arrivo del segnale cioè al tempo t + l/v, dove v è la velocità
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del segnale di sincronizzazione e l è la distanza AB, richiede a sua volta la
misura di una velocità (quella del segnale di sincronizzazione).

Si potrebbe vedere che altri metodi di sincronizzazione portano a conclu-
sioni analoghe, per cui siamo in un circolo vizioso.

Il punto è che il concetto di simultaneità deve essere definito, altrimenti,
come si è visto, non ha significato. La stessa conclusione si ha naturalmente
per il concetto di velocità.

Il punto di partenza per definire cosa si intende per simultaneità è un
insieme di fatti sperimentali sulla propagazione luminosa, tra i quali in par-
ticolare indicheremo l’esperimento di Fizeau, nel quale si misurava la velocità
della luce su di un percorso chiuso, come particolarmente utile al nostro ra-
gionamento. Il risultato dell’esperimento fu che la velocità della luce risultava
c, cioè lo stesso valore della costante che compare nelle equazioni di Maxwell.

Se eleviamo questo fatto sperimentale a postulato, postulato della costan-
za della velocità della luce, allora potremo usare questo per definire cosa si
intende per simultaneità.

Possiamo ora usare la luce come segnale per sincronizzare tutta una col-
lezione di orologi, disposti nel riferimento inerziale S in tutti i punti nei quali
si intende effettuare delle misure. Se t0 è un istante iniziale segnato dall’oro-
logio posto in un punto O di riferimento, origine del nostro sistema, inviando
da O un segnale luminoso verso un punto arbitrario P , a distanza l da O,
distanza misurata a riposo in S, regoleremo l’orologio in P al tempo t0 + l/c.

In ogni punto dove abbiamo disposto un orologio potremo sincronizzarlo
con questo procedimento. Per ciò che riguarda la definizione di simultaneità
avremo che due eventi, cioè due avvenimenti che si verificano in due determi-
nati punti dello spazio e a due dati tempi, si diranno simultanei se gli orologi
situati nei due punti corripondenti segnano lo stesso tempo.

Compare qui per la prima volta la parola evento, che esprime un concetto
centrale in tutta la teoria della relatività. Il suo significato è facile da spiegare:
si tratta di un fatto (un fatto fisico) che si manifesta in un determinato punto
dello spazio e ad un determinato istante. Come tale precede l’eventuale
descrizione che di esso ne possiamo dare. Se abbiamo scelto un sistema di
riferimento e un sistema di orologi sincronizzati allora potremo assegnare
all’evento una quaterna di numeri (t, x, y, z).

Tutto ciò suona molto naturale. Il punto è che, perché si possa affermare
che questa è una sincronizzazione consistente, occorre dimostrare che è indi-
pendente dalla scelta del tempo iniziale t0 e che è anche indipendente dalla
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scelta del punto O di riferimento. Il procedimento di sincronizzazione dovrà
poi essere ripetuto in ogni sistema di riferimento inerziale.

Sono in particolare questi ultimi due punti che richiedono il ricorso all’e-
sperimento citato di Fizeau, e quindi è qui che si rivela il carattere particolare
della luce come mezzo per trasmettere i segnali di sincronizzazione.

3.1.1 Dimostrazione della consistenza della definizione
di sincronizzazione

a)-Il primo punto da dimostrare è l’indipendenza della sincronizzazione dal
tempo iniziale t0. Questo punto è sicuramente soddisfatto poichè se si hanno
due orologi sincronizzati nel punto O, se uno dei due viene spostato in un
altro punto P , sotto alcune ipotesi del tutto naturali, riacquisterà lo stesso
ritmo.

Va notato che non si sta affermando che il ritmo del secondo orologio resta
invariato durante il trasporto, anzi si lascia aperta la possibilità che possa
essere alterato in funzione della velocità, ma una volta posto nuovamente a
riposo in P , non vi è nessun motivo di ritenere che non abbia nuovamente lo
stesso ritmo, se nel trasporto non è stato danneggiato.

E’ chiaro allora che, se si varia il tempo iniziale dell’orologio in O da t0 a
t0 + τ , avremo che anche l’orologio in P misurerà un tempo aumentato di τ .

Quindi il primo punto è verificato.
Per ciò che riguarda il secondo punto facciamo un’osservazione prelimi-

nare.
b)-Se un segnale luminoso è inviato dal punto O al punto P e viene

rimandato da P verso O, idealmente senza alcun ritardo, se il tempo iniziale
di sincronizzazione, segnato dall’orologio in O è t0, allora, facendo appello
all’esperienza di Fizeau già citata, possiamo dire che il tempo impiegato per
tornare in O dal raggio luminoso è

t0 + 2(l/c) (3.1)

Se allora si calcola la differenza del tempo di arrivo in O e del tempo in
cui il segnale era arrivato in P , si ha

[t0 + 2(l/c)]− [t0 + (l/c)] = l/c (3.2)
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cioè il tempo necessario per il percorso OP è uguale a quello per il percorso
inverso PO.

c)-A questo punto passiamo a dimostrare il secondo punto e cioè che la
sincronizzazione è indipendente dalla scelta del punto di riferimento O. Per
vedere questo consideriamo un secondo punto O′, oltre ad O e P e dimostria-
mo che il tempo che impiega un raggio luminoso emesso da O′ per raggiungere
P è dato da l′/c, dove l′ è la distanza tra O′ e P .

Se dimostriamo questo è chiaro che potremo usare il nuovo punto O′ come
nuova origine, essendo poi P del tutto arbitrario.

Richiamando ancora una volta l’esperienza di Fizeau, avremo che il tempo
di arrivo in O di un segnale luminoso emesso da O verso O′, riemesso da O′

verso P e poi riemesso da P verso O sarà dato da

tOO′PO = t0 + (l0 + l′ + l)/c (3.3)

dove l0 è la distanza tra O e O′ e l′ è la distanza tra O′ e P .
Se tOO′P è il tempo in cui questo segnale transita dal punto P , allora si

ha

tOO′PO = tOO′P + (l/c) (3.4)

per quanto detto in (b). Poiché il tempo in cui il segnale transita per O′ è
dato da tOO′ = t0 +(l0/c), eliminando tOO′PO dalle due equazioni (3.3), (3.4)
si ha

tOO′P − t0 =
l0 + l′

c
(3.5)

e ricavando t0 in termini di tOO′

tOO′P −
(

tOO′ − l0
c

)
=

l0 + l′

c
(3.6)

e quindi

tOO′P − tOO′ = tO′P =
l′

c
(3.7)

che è quello che si voleva dimostrare.
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3.1.2 Relatività della simultaneità

Passiamo ora a considerare un secondo sistema inerziale S ′. Anche in S ′

potremo costruire un sistema di orologi sincronizzati disposti in vari punti
dello spazio come nel caso di S. Il valore della velocità della luce sarà ancora
c, come sappiamo dai vari esperimenti. Questo sistema di sincronizazione
sarà consistente nel modo precedentemente discusso e per le stesse ragioni.
In particolare le distanze saranno misurate mediante regoli a riposo in S ′.
Cos̀ı come per S anche in S ′ due eventi saranno considerati simultanei se gli
orologi situati nelle corrispondenti posizioni segnano lo stesso tempo.

Ora, ciò che avviene è che due eventi simultanei in S non saranno piú
necessariamente simultanei in S ′.

Per convincersi di ciò consideriamo due eventi che si manifestano in due
punti A e B, a distanza fissa in S; per esempio gli estremi di una sbarra
dai quali vengono emessi due raggi luminosi verso il suo centro. Questi due
eventi si diranno simultanei, relativamente a S, se i due raggi di luce emessi
da A e B si incontrano nel punto di mezzo.

Questo criterio di simultaneità vale anche per S ′. Ora, supponiamo che
S ′ si muova rispetto a S con velocità v parallela alla congiungente dei due
punti, ovvero alla sbarra. In S ′ la velocità della luce è ancora c. Quindi,
il punto in S ′, che all’istante iniziale coincideva col punto di mezzo e che si
muove solidalmente con S ′ con velocità v verso il punto B è il punto di mezzo
per S ′, ma, poichè va incontro alla sorgente sarà raggiunto dal raggio emesso
da B prima del raggio luminoso emesso da A. Si vede perciò che due eventi
simultanei in S non lo sono piú in S ′.

Si conclude che il concetto di simultaneità è relativo (al sistema di riferi-
mento).

3.1.3 Le trasformazioni di Lorentz

Riassumendo la discussione precedente, la relatività di Einstein (o relatività
ristretta) si basa sui seguenti due postulati:

1. Le leggi della fisica sono le stesse in tutti i sistemi inerziali

2. La velocità della luce è la stessa in tutti i sistemi inerziali

Consideriamo adesso due riferimenti inerziali S e S ′ che si muovano di
moto rettilineo uniforme uno rispetto all’altro, come in figura 3.1. Vogliamo
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costruire le trasformazioni (dette di Lorentz) che connettono i due riferimenti
e che soddisfano ai due postulati precedenti. In base al postulato di relati-
vità (postulato 1) se P è un punto di S che si muove di moto rettilineo
uniforme anche S ′ lo vedrà muoversi di moto rettilineo uniforme. Dunque il
cambiamento di coordinate tra S e S ′ dovrà essere lineare

x′ = a11x + a12y + a13z + a14t + c1

y′ = a21x + a22y + a23z + a24t + c2

z′ = a31x + a32y + a33z + a34t + c3

t′ = a41x + a42y + a43z + a44t + c4 (3.8)

Se i due riferimenti sono tali che le origini coincidono a t = t′ = 0 avremo

c1 = c2 = c3 = c4 = 0 (3.9)

Inoltre i piani y = 0 e y′ = 0 cosi come i piani z = 0 e z′ = 0 coincidono per
tutta la durata del moto e quindi dovremo avere

a21 = a23 = a24 = 0 (3.10)

e
a31 = a32 = a34 = 0 (3.11)

Infine, per le scelte fatte, i piani x = 0 e x′ = 0 coincidono a t = t′ = 0.
Pertanto

a12 = a13 = a42 = a43 = 0 (3.12)

In definitiva si ha

x′ = a11x + a14t

y′ = a22y

z′ = a33z

t′ = a41x + a44t (3.13)

Ovviamente a22 (ed anche a33) possono dipendere solo dalla velocità. Dunque
se ricaviamo le coordinate di P in S dalle coordinate in S ′ dovremo avere

y = a(−v)y′ (3.14)
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Figura 3.1: I sistemi di riferimento S e S′.

dato che S si muove con velocità −v rispetto a S ′. Ma dalle (3.13) segue

y =
1

a(v)
y′ (3.15)

e quindi
a(v)a(−v) = 1 (3.16)

Se ora invertiamo gli assi x, x′, z e z′ vediamo che S ′ si muove con velocità
−v rispetto a S ma dato che y e y′ rimangono invariate avremo

y′ = a(−v)y (3.17)
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e quindi
a2(v) = 1 (3.18)

. Dunque avremo a22 = 1 (e per lo stesso motivo a33 = 1). Si ottiene cosi

x′ = a11x + a14t

y′ = y

z′ = z

t′ = a41x + a44t (3.19)

Per determinare i coefficienti rimanenti consideriamo un’onda luminosa emes-
sa a t = t′ = 0 dall’origine comune di S e S ′. In virtù della costanza della
velocità della luce in ogni sistema inerziale, le equazioni dei fronti d’onda nei
due riferimenti saranno

x2 + y2 + z2 = c2t2, x′2 + y′2 + z′2 = c2t′2 (3.20)

Sottraendo membro a membro queste due equazioni si ha

c2t2 − x2 = c2t′2 − x′2 (3.21)

Sostituendo la (3.19) si trovano le condizioni

a2
11 − c2a2

41 = 1

c2a2
44 − a2

14 = c2

a11a14 − c2a41a44 = 0 (3.22)

La prima si risolve immediatamente in forma parametrica ponendo

a11 = cosh χ, ca41 = sinh χ (3.23)

Sostituendo nella terza delle (3.22) si ha

a14 cosh χ− ca44 sinh χ = 0 (3.24)

da cui
a14 = ca44 tanh χ (3.25)

Sostituendo questa relazione nella seconda delle (3.22) si ha infine

a44 = cosh χ, a14 = c sinh χ (3.26)
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Pertanto le trasformazioni di Lorentz risultano

x′ = x cosh χ + ct sinh χ

t′ = t cosh χ +
x

c
sinh χ (3.27)

Determiniamo adesso il parametro χ. Consideriamo i punti del piano x = 0.
Questi sono visti da S ′ allontanarsi con velocità −v e soddisfano la relazione

x′ = −vt′ (3.28)

Segue dunque, per x = 0,

t′ = t cosh χ, x′ = ct sinh χ (3.29)

da cui
x′ = (c tanh χ)t (3.30)

e quindi

tanh χ = −v

c
(3.31)

Segue

sinh χ = − v/c√
1− v2/c2

, cosh χ =
1√

1− v2/c2
(3.32)

Dunque le (3.27) diventano

x′ =
x− vt√
1− v2/c2

y′ = y

z′ = z

t′ =
t− vx/c2

√
1− v2/c2

(3.33)

Le trasformazioni di Lorentz assumono un significato geometrico più tra-
sparente se introduciamo coordinate con le stesse dimensioni. Possiamo cioè
trasformare la coordinata temporale in una coordinata con le dimensioni di
una lunghezza moltiplicandola per la velocità della luce. Introducendo allora
la notazione

x0 = ct, x1 = x, x2 = y, x3 = z (3.34)
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si ha

x′0 = x0 cosh χ + x1 sinh χ

x′1 = x0 sinh χ + x1 cosh χ (3.35)

Risulta cosi evidente che questa trasformazione lascia invariata la forma qua-
dratica (x0)2 − (x1)2, infatti per le proprietà delle funzioni iperboliche si ha
subito

(x′0)2 − (x′1)2 = (x0)2 − (x1)2 (3.36)

È anche interessante notare che se si introduce formalmente una coordinata
x4 tale che

x4 = ix0 (3.37)

allora le trasformazioni di Lorentz assumono la forma

x′1 = x1 cosh χ− ix4 sinh χ

x′4 = ix1 sinh χ + x4 cosh χ (3.38)

Ponendo
χ = iφ (3.39)

e osservando che
cosh χ = cos φ, sinh χ = i sin φ (3.40)

si ha

x′1 = x1 cos φ + x4 sin φ

x′4 = −x1 sin φ + x4 cos φ (3.41)

Inoltre nelle nuove variabili la forma quadratica che è lasciata invariante
risulta

(x1)2 + (x2)2 + (x3)2 + (x4)2 (3.42)

che è una forma quadratica definita positiva. Questa è lasciata invariata da
trasformazioni ortogonale che altro non sono che combinazioni di rotazioni
attorno ai vari assi coordinati, Nel particolare caso in esame si ha a che fare
con una rotazione di un angolo φ del piano x1 − x4. Una forma quadratica
reale è sempre diagonalizzabile ed i segni dei suoi autovalori costituiscono la
segnatura della forma quadratica. Una forma quadratica positiva ha segna-
tura positiva e nel caso in esame sarà (+, +, +, +). D’altra parte questo è
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formale perché in realtà non si ha a che fare con coordinate reali, visto che
x4 è immaginaria pura. Infatti nelle coordinate reali (x0, x1, x2, x3) la forma
quadratica ha segnatura (−, +, +, +). Poiché una forma quadratica definisce
anche una forma metrica, cioè una forma per la distanza tra due punti in
uno spazio assegnato, le forme quadratiche definite positive corrispondono a
metriche a segnatura positiva, o metriche euclidee. Le metriche a segnatura
non definita positiva sono dette anche metriche pseudo-euclidee, dato che si
possono riportare a metriche euclidee ridefinendo come immaginarie pure le
coordinate corrispondenti alla parte negativa della segnatura. Dunque l’equa-
zione che definisce la propagazione del fronte d’onda di un raggio luminoso da
luogo ad una metrica pseudoeuclidea. Le trasformazioni che lasciano invaria-
te le metriche pseudoeuclidee sono dette pseudo-ortogonali perché si riducono
ovviamente a trasformazioni ortogonali passando a coordinate immaginarie.
In sostanza si passa da trasformazioni ortogonali a pseudo-ortogonali consi-
derando parte degli angoli delle rotazioni come immaginari puri. L’uso della
coordinata tempo di tipo x4, cioè immaginaria pura, è usato nei testi più
vecchi ma oggi è quasi sempre sostituita dalla versione reale, cioè x0.

Concludiamo questo paragrafo con alcune osservazioni. Primo che le tra-
sformazioni di Lorentz inverse si possono ottenere semplicemente osservando
che la situazione relativa di S e di S ′ si può ottenere mandando v in −v.
Infatti se S vede S ′ muoversi con velocità v, S ′ vede S muoversi con velo-
cità −v. Quindi le formule inverse si ottengono immediatamente con questo
scambio

x =
x′ + vt′√
1− v2/c2

y = y′

z = z′

t =
t′ + vx′/c2

√
1− v2/c2

(3.43)

Secondo che nel limite c →∞ si ha dalle (3.33)

x′ = x− vt

y′ = y

z′ = z

t′ = t (3.44)
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si riottengono cioè le trasformazioni di Galileo.
Osserviamo anche che un modo standard di scrivere le trasformazioni di

Lorentz è quello che fa uso delle notazioni

β =
v

c
, γ =

1√
1− β2

(3.45)

Si ottiene cioè

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ(t− βx/c) (3.46)

Dal procedimento seguito risulta chiaro che, se si ammette l’esistenza di
un tipo di segnale con velocità costante in ogni riferimento, questo può essere
usato al posto della luce, dando luogo ad una trasformazione della forma della
(3.33), ma con questa velocità al posto di c.

Tuttavia, poiché solo un trasformazione può essere valida, cioè o la (3.33)
o quest’ultima, ne segue che questo segnale dovrà propagarsi alla velocità c e
ciò sarà vero per ogni tipo di segnale con queste caratteristiche (per esempio
le onde gravitazionali).

Notare che in quanto precede abbiamo fatto uso del principio di costanza
della velocità della luce, che in effetti deve essere formulato indipendente-
mente dal principio di relatività, cosi come fece Einstein ed abbiamo fatto
noi all’inizio di questo paragrafo. Potrebbe sembrare che il principio di relati-
vità, che afferma l’invarianza delle equazioni di Maxwell, implichi la costanza
della velocità della luce. Ma per poter parlare di invarianza delle equazioni
di Maxwell occorre prima aver definito i nostri sistemi di riferimento, con le
loro sincronizzazioni.

Osserviamo che per v → c la trasformazione è singolare, nel senso che il
fattore γ diventa infinito. Ciò significa che un sistema di riferimento non si
potrà muovere rispetto ad un altro sistema con velocità uguale o superiore a
quella della luce.

Ora, un sistema di riferimento si può pensare costituito da corpi materiali,
per cui ne segue che una particella materiale non può muoversi con velocità
uguale o maggiore di quella della luce, rispetto ad un qualsiasi sistema di
riferimento.
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Capitolo 4

Le proprietà delle
trasformazioni di Lorentz

4.1 Forma generale delle trasformazioni di Lo-

rentz

Abbiamo ottenuto con la (3.46) un caso particolare di trasformazione di
Lorentz, corrispondente alla figura (3.1). Si può però ottenere un caso piu’
generale e cioè il caso in cui gli assi di S ′ sono paralleli a quelli di S, ma ~v è
orientata in modo generico.

Basta per questo decomporre il vettore di posizione ~x′ del punto gene-
rico P nel sistema S ′ in una parte parallela ed in una perpendicolare a ~v.
Si comprende come la parte perpendicolare rimanga invariata, cos̀ı come le
coordinate y e z restavano invariate nella (3.46), mentre la parte parallela si
trasformerà in modo analogo alla x delle (3.46). In questo modo si ottiene la
trasformazione





~x′ = ~x− (~v · ~x)

v2
~v + γ

[
(~v · ~x)

v2
~v − ~vt

]
,

t′ = γ

[
t− (~v · ~x)

c2

]
.

(4.1)

Infatti i primi due termini della prima equazione dicono che la parte di ~x
perpendicolare a ~v è inalterata, mentre la parte in parentesi mostra che la
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parte parallela a ~v si trasforma come la x nella (3.46). Se poi gli assi di S ′

sono ruotati rispetto a S, allora occorre preventivamente ruotare gli assi di
S in modo da portarli ad essere paralleli a quelli di S ′. Ma questo caso non
lo discuteremo.

Ovviamente la trasformazione più generale lascia invariata l’espressione
(cosi come la (3.46))

x2 + y2 + z2 − c2t2 = (x1)2 + (x2)2 + (x3)2 − (x0)2 ≡ (x, x) (4.2)

Come si verifica subito vale la proprietà

(y + z, y + z) = (y, y) + (z, z) + 2(y, z) (4.3)

dove
(y, z) = y1z1 + y2z2 + y3z3 − y0z0) (4.4)

Dunque dato che abbiamo visto che una trasformazione di Lorentz lascia
invariata l’espressione (x, x), lascerà invariate si (y + z, y + z) che (y, y) e
(z, z). Dalla formula (4.3) vediamo che anche l’espressione (4.4) è invariante.
Quest è molto importanteperche’ si può dimostrare che le trasformazioni di
Lorentz nella loro forma estesa, che comprende anche il caso delle inversioni
spaziali e dell’inversione temporale, sono le piú generali trasformazioni che
lasciano invariata questa forma quadratica.

4.2 Contrazione delle lunghezze e dilatazione

dei tempi

Possiamo ora ricavare alcune conseguenze della legge di trasformazione di
Lorentz (3.46), che riguardano il confronto di misure effettuate nei due sistemi
di riferimento S ed S ′.

Considereremo le due situazioni: a) un regolo a riposo in S ′ disposto pa-
rallelamente all’asse delle x′ e b) un orologio, opportunamente sincronizzato
come già spiegato, posto a riposo in S ′ su di punto dell’asse delle x′ con
ascissa x′1.

a) Contrazione delle lunghezze - Come illustrato in figura (4.1), gli
estremi del regolo in S ′ abbiano le coordinate x′1 e x′2 rispettivamente. La
lunghezza del regolo misurata in S ′ è perciò data da
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Figura 4.1: Illustrazione dei due riferimenti coinvolti nella discussione sulla
contrazione delle lunghezze.

l0 = x′2 − x′1. (4.5)

Questa la chiameremo la lunghezza a riposo o semplicemente la lunghezza
del regolo.

Ponendoci in S, è naturale definire come lunghezza del regolo l = x2−x1,
dove le misure dei due estremi x1, x2 sono effettuate allo stesso istante t1 =
t2 = t. Usando allora le (3.46) si ha

x′1 = γ(x1 − vt), x′2 = γ(x2 − vt). (4.6)

da cui, sottraendo membro a membro, si trova la lunghezza del regolo, l, in
S:

l = x2 − x1 =
1

γ
(x′2 − x′1), (4.7)

cioè
l = l0

√
1− v2/c2, (4.8)

che è indipendente da t. Questa è la famosa espressione della contrazione
delle lunghezze.

E’ chiaro dalla derivazione che se il regolo fosse stato perpendicolare alla
velocità ~v, la sua lunghezza sarebbe rimasta invariata. Quindi, se si considera
un corpo esteso di volume V , misurato in S e di volume V 0 se misurato in
S ′, avremo la seguente relazione

V = V 0

√
1− v2

c2
, (4.9)
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dove la contrazione del corpo avviene nella direzione del moto.

b) Dilatazione dei tempi - Supponiamo adesso che due eventi si verifi-
chino in S ′ nello stesso punto x′ e agli istanti t′1 e t′2. Usando le trasformazioni
di Lorentz inverse (vedi equazioni (3.43)) si ottiene

{
t1 = γ(t′1 + vx′/c2),

t2 = γ(t′2 + vx′/c2),
(4.10)

e quindi

t2 − t1 = γ(t′2 − t′1) =
t′2 − t′1√
1− v2/c2

(4.11)

La (4.11) è l’espressione della dilatazione dei tempi. Il termine a fattore
è adesso invertito rispetto al caso delle lunghezze (4.8).

Possiamo introdurre il concetto di tempo proprio considerando una
particella nel suo sistema di riposo S ′. L’ intervallo di tempo infinitesimo
in questo sistema dτ è connesso con l’intervallo di tempo dt misurato da un
osservatore S rispetto al quale la particella si muove con velocità ~u, tramite
la (4.11)

dτ =
√

1− u2/c2dt (4.12)

Si assume che questa relazione sia valida per un moto arbitrario, con ~u data
dalla velocità istantanea dell’orologio. Quindi si assume che l’accelerazio-
ne dell’orologio relativa ad un sistema inerziale non abbia influenza sul suo
ritmo. Il tempo τ cosi definito si chiama tempo proprio.

Notare che, per il modo nel quale è stato definito, il tempo proprio è un
invariante. Infatti si tratta di una misura eseguita in un determinato sistema
di riferimento, quello di riposo della particella. Non ha perciò senso parlare
di proprietà di trasformazione! Sarà la sua relazione con il tempo misurato
da un orologio fisso in un sistema inerziale a cambiare se si cambia sistema
inerziale.

4.2.1 Orologio a luce

Un orologio si basa sull’idea di osservare un fenomeno periodico e contare
il numero delle volte che, in un certo tempo, il fenomeno si ripete. Questo
numero si può prendere a misura del tempo in un sistema di unità di misura
in cui l’unità è il periodo del fenomeno. Per esempio, negli orologi a pendolo
si sfrutta l’isocronismo delle piccole oscillazioni del pendolo che assicurano un
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periodo costante (trascurando gli attriti), ecc. Un orologio concettualmente
semplice, sebbene di difficile realizzazione pratica, è il cosi detto orologio a
luce. Nel tubo indicato in Figura 4.2, un raggio luminoso parte dal basso,
viene riflesso dallo specchio in alto e ritorna all’origine dove viene riflesso
ancora. In questo modo, misurando con un contatore le volte in cui il raggio
ritorna in basso, abbiamo a disposizione un orologio. Il periodo di questo
orologio, o il tempo ∆t che la luce impiega a percorrere andata e ritorno è,
per un osservatore S ′ solidale con l’orologio, dato da

∆t′ =
2`0

c
(4.13)

dove `0 è la lunghezza dell’orologio misurata in S ′. Se il riferimento S ′ (so-
lidale con l’orologio) si muove di velocità v (vedi Figura 4.2) rispetto ad un
riferimento fisso S, l’osservatore in S vedrà il raggio luminoso fare il percorso
ABC, rappresentato nella Figura. Se ∆t è il tempo impiegato dalla luce a
fare questo percorso, come visto in S, avremo

AN = NC =
v∆t

2
(4.14)

Se assumiamo, come ragionevole e come visto quando abbiamo studiato
le trasformazioni di Lorentz, che le coordinate perpendicolari al moto non
cambino, la lunghezza `0 dell’orologio vista in S ′ coinciderà con la lunghezza
vista in S. Quindi

AB + BC = 2
√

(BN)2 + ((AN)2 = 2
√

`2
0 + v2∆t2/4 (4.15)

Ma, dato che la velocità della luce è la stessa in S e in S ′ si ha anche

AB + BC = c∆t (4.16)

Uguagliando le ultime due relazioni segue

c2∆t2 = 4`2
0 + v2∆t2 (4.17)

da cui

∆t =
2`0

c
√

1− v2/c2
(4.18)

Confrontando con la (4.13) si ottiene

∆t =
∆t′√

1− v2/c2
(4.19)
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Figura 4.2: L’orologio luce descritto nel testo.

Riotteniamo dunque la legge di dilatazione dei tempi ma vista in un contesto
più fisico rispetto a quello un pò formale considerato in precedenza.

In maniera analoga possiamo descrivere la contrazione delle lunghezze.
Consideriamo ancora l’orologio di luce in posizione orizzontale rispetto alla
velocità del riferimento S ′ (solidale con l’orologio) ed il riferimento S. Al
tempo t = ∆t1, in S, quando il raggio luminoso raggiunge l’estremità B
avremo la relazione

` + v∆t1 = c∆t1 (4.20)

con ` la lunghezza dell’orologio vista in S. Dopo un tempo ∆t2 il raggio
luminoso ritorna in A e abbiamo

`− v∆t2 = c∆t2 (4.21)

Dunque il tempo impiegato dal raggio luminoso a percorrere l’intero tragitto
è dato da

∆t = ∆t1 + ∆t2 =
`

c− v
+

`

c + v
=

2`

c

1

1− v2/c2
(4.22)
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Figura 4.3: In questo caso l’orologio luce serve per illustrare la contrazione delle
lunghezze.

Ma poiché si ha

∆t =
2`0

c

1√
1− v2/c2

(4.23)

segue
` =

√
1− v2/c2`0 (4.24)

4.2.2 Inversione temporale

Vogliamo ora studiare le condizioni sotto le quali un evento A che nel rife-
rimento S precede temporalmente l’evento B possa essere osservato, da un
osservatore S ′ in moto rispetto a S, come posteriore a B. Le coordinata di A
saranno (xA, tA) e quelle di B, (xB, tB). Per ipotesi tA < tB. Nel riferimento
S ′ dovremmo avere

t′A − t′B = γ(tA − β

c
xA)− γ(tB − β

c
xB) = γ

[
(tA − tB)− β

c
(xA − xB)

]
> 0

(4.25)

54



Questa relazione richiede

(tB − tA) <
β

c
(xB − xA) (4.26)

Nel caso limite β = 1 cioè quando S ′ si muove a velocità c rispetto ad S si
ha

(tB − tA) <
(xB − xA)

c
(4.27)

Questa relazione mostra che è possibile vedere l’inversione temporale degli
eventi solo se la distanza temporale tra gli eventi è più piccola del tempo
che impiega la luce a percorrere la distanza tra gli eventi stessi. Possiamo

A = 0

ct

x

cono luce

cono luce in avanti

cono luce indietro

Figura 4.4: Il cone di luce relativo all’evento A.

illustrare queste considerazioni nella figura 4.4 dove abbiamo posto l’evento
A nel punto xA = 0 ed al tempo tA = 0. Le bisettrici danno l’equazione di
un raggio di luce (x2 − c2t2 = 0). Se B si trova nel cono luce in avanti si ha

ctB > xB : cono luce in avanti (4.28)

e non è possibile trovare un riferimento in cui B preceda A. Se invece B è
fuori del cono di luce, allora

ctB < xB (4.29)
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ed è possibile trovare un riferimento in cui gli eventi si invertono. Se assu-
miamo la validità del principio di causalità, cioè che la causa deve precedere
l’effetto, segue che nessun agente fisico (o segnale) che trasporti informazioni
può propagarsi a velocità superiori a quelle della luce, perché in questo caso
la connessione tra i due eventi soddisfa

tB − tA <
(xB − xA)

c
(4.30)

e quindi si potrebbe invertire l’ordine temporale di causa ed effetto.

4.3 La legge di composizione delle velocità

Un’altra proprietà importante delle trasformazioni di Lorentz è la legge di
composizione delle velocità. Questa, nel caso particolare delle trasformazioni
(3.43), si può ottenere differenziando le (3.43) stesse





dx′ = γ(dx− vdt),

dy′ = dy,

dz′ = dz,

dt′ = γ(dt− vdx/c2),

(4.31)

dalle quali, ponendo ~u = d~x/dt e ~u′ = d~x′/dt′, si ha subito

u′x =
ux − v

1− vux

c2

u′y =
uy

γ(1− vux

c2
)

u′z =
uz

γ(1− vux

c2
)

(4.32)

che si riducono a quelle Galileiane nel limite c →∞.
Notare che questa legge di composizione delle velocità non contraddice il

fatto che la velocità della luce sia la velocità limite. Infatti si verifica che se
si pone, per esempio, ux = c e uy = uz = 0 si ha u′x = c.
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In modo analogo possiamo anche ricavare l’analoga formula per la tra-
sformazione (4.1):

~u ′ =
~u + ~v

[
(γ − 1)

(~v · ~u)

v2
− γ

]

γ

(
1− (~v · ~u)

c2

) , (4.33)

che si riduce, per ~u parallelo a ~v, a ~u′ = ~u− ~v nel limite c →∞.

4.4 Effetto Doppler relativistico e aberrazio-

ne della luce

Per ottenere le formule relativistiche dell’effetto Doppler è necessario studiare
prima la legge di trasformazione delle caratteristiche di un’onda, cioè deter-
minare la versione relativistica delle formule (2.18) e (2.20). Consideriamo
ancora un’onda monocromatica nel sistema inerziale S

ψ(~x, t) = A cos [ω(t− ~n · ~x
c

)], (4.34)

Esattamente lo stesso ragionamento usato in sezione (2.2) dimostra l’in-
varianza della fase di quest’onda, dove però questa volta la trasformazione è
una trasformazione di Lorentz, cioè

ω′(t′ − ~n′ · ~x′
c

) = ω(t− ~n · ~x
c

), (4.35)

dove le grandezze con l’apice sono misurate nel sistema S ′, che al solito si
muove rispetto a S di moto rettilineo uniforme con velocità ~v.

Se si considera la trasformazione di Lorentz (3.43) e si identificano i
coefficienti di x′ e t′, si ha

ω′ = ωγ(1− nxv

c
), (4.36)

per ciò che riguarda i coefficienti di t′ e

57



ω

c
γ(nx − v

c
) =

ω′

c
n′x

ω

c
ny =

ω′

c
n′y

ω

c
nz =

ω′

c
n′z (4.37)

per ciò che riguarda i coefficienti di x′, y′ e z′ rispettivamente.
Tenuto conto che ~v è parallela all’asse delle x, la prima di queste equazioni

si può riscrivere

ω′ = ωγ(1− ~n · ~v
c

). (4.38)

Se poi si sceglie l’asse delle y nel piano formato dall’asse delle x e ~n e
ponendo

~n = cos α~i + sin α~j, (4.39)

si ha che le altre equazioni si riducono a

ωγ(cos α− v

c
) = ω′ cos α′, (4.40)

ω sin α = ω′ sin α′ (4.41)

Dividendo membro a membro queste due equazioni, si ha

tan α′ =
sin α

γ(cos α− v/c)
(4.42)

L’equazione (4.38) si riduce alla corrispondente equazione non relativisti-
ca (2.18) nel limite c → ∞. Essa rende conto dell’effetto Doppler relativi-
stico. Infatti, se in S ′ c’è un osservatore e in S una sorgente, per esempio
di luce con frequenza ν = ω/2π, la sorgente si allontana dall’osservatore con
velocità costante v. Allora l’osservatore osserva una radiazione con frequenza
ν ′ = ω′/2π, data da

ν ′ = νγ(1− ~n · ~v
c

) (4.43)
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Per quanto riguarda l’aberrazione della luce abbiamo già osservato che ciò
che conta non è la velocità di fase, cioè la velocità w che compare nella (4.34),
ma la velocità di gruppo. Abbiamo anche visto che la velocità di gruppo si
trasforma come la velocità di una particella nel caso non relativistico. Si può
dimostrare che ciò vale anche nel caso relativistico, per cui dobbiamo usare
le equazioni (4.32) piuttosto che l’equazione (4.42).

Dalle (4.32), prendendo ~u e quindi ~u ′ nel piano (x, y), e chiamando con
θ e θ ′ gli angoli che ~u e ~u ′ formano con l’asse delle x, si ha

u ′ cos θ ′ =
u cos θ − v

1− vu cos θ/c2

u ′ sin θ ′ =
u sin θ

γ(1− vu cos θ/c2)
(4.44)

e, dividendo membro a membro

tan θ′ =
sin θ

γ(cos θ − v/u)
(4.45)

Questa formula rende conto dell’aberrazione della luce se, come nel caso della
(2.39), si opera la sostituzione (2.40)

θ → θ + π; θ′ → θ′ + π, (4.46)

dove adesso θ e θ ′ sono gli angoli come in figura (2.4). Si ottiene allora

tan θ ′ =
sin θ

γ(cos θ + v/u)
. (4.47)

Si vede che questa formula differisce da quella non relativistica per il fattore
γ, cioè per termini del secondo ordine in v/c.

59



Capitolo 5

Elementi di calcolo tensoriale

5.1 Spazi vettoriali

Consideriamo uno spazio vettoriale V ad n dimensioni e sia ea una base in
tale spazio (a = 1, 2 · · · , n). Un generico vettore v sara’ allora esprimibile
come1

v = vaea (5.1)

Chiameremo i vettori di V vettori controvarianti. Dato V e’ possibile costrui-
re uno spazio vettoriale associato, detto il duale di V e che sara’ indicato con
V ∗. Lo spazio V ∗ e’ lo spazio della applicazioni lineari da V → R dove R e’
lo spazio dei reali. Se indichiamo con f l’applicazione, avremo

f(v) ≡ 〈f, v〉 ∈ R (5.2)

dove la notazione introdotta anticipa il fatto che le applicazioni lineari di
V → R sono elementi dello spazio vettoriale V ∗. Poiche’ f e’ lineare avremo

f(αv + βw) = αf(v) + βf(w) (5.3)

od anche
〈f, αv + βw〉 = α〈f, v〉+ β〈f, w〉 (5.4)

Vediamo ora come sia possibili assegnare a V ∗ la struttura di spazio vetto-
riale. Definiamo a questo scopo la somma di due applicazioni

(f + g)(v) = f(v) + g(v),
(〈f + g, v〉 = 〈f, v〉+ 〈g, v〉) (5.5)

1Qui e nel seguito adotteremo la convenzione di Einstein, cioè quando si scriva una
coppia di indici uguali, uno in alto ed uno in basso, una somma su questo indice è sottintesa.
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ed il prodotto di un’applicazione per un numero reale

(αf)(v) = αf(v),
(〈αf, v〉 = α〈f, v〉) (5.6)

Dove in parentesi abbiamo anche usato l’altra definizione di f(v). Questa
quantita’ viene anche chiamata la valutazione dell’applicazione f in quanto
calcola l’applicazione al punto v. Notiamo che le definizioni date hanno senso
poiche’ il risultato dell’applicazione f e’ un numero reale ed i reali possono
essere addizionati e moltiplicati tra loro. A questo proposito si puo’ notare
che se lo spazio vettoriale invece di essere definito su R fosse definito su un
generico campo numerico F , le applicazioni f dovrebbero essere considerate
come applicazioni da V → F . Dalle definizioni date di somma di applicazioni
e di prodotto di un’applicazione per un numero e’ immediato verificare che
V ∗ soddisfa gli assiomi di spazio vettoriale.

Data una base in V si puo’ costruire una base in V ∗ nel seguente modo:
consideriamo le applicazioni ωa tali che

〈ωa, eb〉 = δa
b (5.7)

Notiamo anche che il piu’ generale mapping lineare potra’ essere rappresen-
tato nella forma

f(v) = fav
a (5.8)

dove va sono le componenti di v nella base data. Pertanto l’applicazione f
potra’ essere sempre decomposta nella forma

f = faω
a (5.9)

dato che
〈faω

a, v〉 = fa〈ωa, vbeb〉 = fav
bδa

b = fav
a (5.10)

Questo mostra che in effetti le ωa formano una base per V ∗ e quindi anche
V ∗ e’ uno spazio vettoriale n-dimensionale.

Se consideriamo il caso V = Rn, potremo scrivere il generico elemento
come il vettore riga

v = (v1, v2, · · · , vn) (5.11)

Una base e’ data allora da

e1 = (1, 0, · · · , 0), · · · , en = (0, 0, · · · , 1) (5.12)
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Possiamo allora rappresentare la generica applicazione come

f(v) = vafa = (v1, v2, · · · , vn)




f1

f2

.

.

.
fn




(5.13)

Pertanto i vettori duali possono essere pensati come vettori colonna. Il ge-
nerico elemento del duale potra’ allora essere scritto come f = faω

a, con la
base duale data da

ω1 =




1
0
.
.
.
0




, · · · , ωn =




0
0
.
.
.
1




(5.14)

I vettori dello spazio duale V ∗ saranno chiamati vettori covarianti.

5.2 Tensori

Usando una procedura analoga a quella seguita per la costruzione del duale
e’ possibile costruire altri spazi vettoriali che ci permetteranno di definire i
tensori di rango (r, s). A tal fine costruiamo il seguente spazio ottenuto come
prodotto cartesiano di r copie di V ∗ e di s copie di V :

Πs
r = (V ∗)r(V )s (5.15)

Consideriamo poi le applicazioni multilineari da Πs
r → R (cioe’ lineari in

tutti gli argomenti). Lo spazio di queste applicazioni lineari sara’ indicato con
T (r, s) e sara’ detto lo spazio dei tensori di rango (r, s). Per esempio T (0, 1) =
V ∗ poiche’ questo e’ lo spazio delle applicazioni da V → R. Analogamente
si ha T (1, 0) = V , poiche’ le applicazioni da V ∗ → R danno il duale del
duale che come noto coincide con lo spazio vettoriale di partenza. Il generico
elemento di T (r, s) sara’ allora indicato con

T (η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s), ηi ∈ V ∗, Y i ∈ V (5.16)
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Lo spazio T (r, s) puo’ essere dotato della struttura di spazio vettoriale cosi’
come abbiamo fatto per lo spazio duale. Definiremo cioe’ la somma di due
elementi T (r, s)

(T + T ′)(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)

= T (η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)

+ T ′(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s) (5.17)

ed il prodotto di un elemento di T (r, s) per un numero reale

(αT )(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s) = αT (η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)
(5.18)

Introduciamo ora un insieme speciale di elementi di T (r, s)

tb1b2···bs
a1a2···ar

≡ ea1
⊗ ea2

⊗ · · · ⊗ ear
⊗ ωb1 ⊗ ωb2 ⊗ · · · ⊗ ωbs (5.19)

definiti come quelle applicazioni che mappano

(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s) (5.20)

in
〈η1, ea1

〉 · · · 〈ηr, ear
〉〈ωb1 , Y 1〉 · · · 〈ωbs , Y s〉 (5.21)

Cioe’

tb1b2···bs
a1a2···ar

(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)

= 〈η1, ea1
〉 · · · 〈ηr, ear

〉〈ωb1 , Y 1〉 · · · 〈ωbs , Y s〉 (5.22)

Possiamo vedere facilmente che gli nr+s elementi di T (r, s) costituiscono una
base. Infatti la generica applicazione multilineare sara’

T (η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s) = T a1a2···ar

b1b2···bs
η1

a1
η2

a2
· · · ηr

ar
Y b1

1 Y b2
2 · · ·Y bs

s

(5.23)
dove abbiamo introdotto le componenti degli ηi e degli Y i:

ηi = ηi
aω

a, Y i = Y a
i ea (5.24)

Si vede allora che l’applicazione T puo’ essere decomposta come

T = T a1a2···ar

b1b2···bs
tb1b2···bs
a1a2···ar

(5.25)

63



Infatti

T (η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)

= T a1a2···ar

b1b2···bs
tb1b2···bs
a1a2···ar

(η1, η2, · · · , ηr; Y 1, Y 2, · · · , Y s)

= T a1a2···ar

b1b2···bs
η1

a1
η2

a2
· · · ηr

ar
Y b1

1 Y b2
2 · · ·Y bs

s (5.26)

Le quantita’ T a1a2···ar

b1b2···bs
sono le componenti del tensore T . E’ ovvio dalle

definizioni date che:

(T + T ′)a1a2···ar

b1b2···bs
= T a1a2···ar

b1b2···bs
+ T ′a1a2···ar

b1b2···bs
(5.27)

e
(αT )a1a2···ar

b1b2···bs
= αT a1a2···ar

b1b2···bs
(5.28)

Consideriamo ora lo spazio T costituito dall’insieme di tutti gli spazi
T (r, s). È allora possibile definire in questo spazio una operazione che prende
il nome di prodotto tensoriale. Questa e’ una operazione che mappa la coppia
T (r, s)T (r′, s′) in T (r + r′, s + s′) e se T ∈ T (r, s) e T ′ ∈ T (r′, s′), e’ definita
dalla relazione

(T ⊗ T ′)(η1, · · · , ηr+r′ , Y 1, · · · , Y s+s′)

= T (η1, · · · , ηr, Y 1, · · · , Y s)×
×T ′((ηr+1, · · · , ηr+r′ , Y s+1, · · · , Y s+s′) (5.29)

o, in componenti

(T ⊗ T ′)
a1···ar+r′
b1···bs+s′

= T a1···ar

b1···bs
· T ar+1···ar+r′

bs+1···bs+s′
(5.30)

Questa definizione giustifica la scrittura usata nella formula (5.19) per indica-
re gli elementi della base di T (r, s) che possono dunque essere ottenuti come
prodotto tensoriale delle basi di V e di V ∗. Pertanto le regole del calcolo
per i prodotti tensoriali sono molto semplici poiche’ e’ sufficiente decomporre
ogni tensore nella propria base e poi moltiplicare tensorialmente tra loro le
basi stesse. Per esempio

v ⊗ w = vaea ⊗ wb ⊗ eb = vawbea ⊗ eb (5.31)

da cui, come deve essere
(v ⊗ w)ab = vawb (5.32)
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Poiche’ un vettore ha una definizione intrinseca non dipende dalla scelta
della base. Naturalmente in una base diversa da quella fissata originariamen-
te le componenti del vettore saranno diverse. La variazione delle componenti
puo’ essere facilmente calcolata a partire dalla trasformazione della base.
Supponiamo allora che la base sia trasformata nel modo seguente:

ea → ea′ = Λa
a′ea (5.33)

con Λa
a′ una matrice nonsingolare. Per calcolare la trasformazione delle

componenti usiamo il fatto che v non dipende dalla base e quindi

v = vaea = va′ea′ = va′Λa
a′ea (5.34)

e pertanto
va = Λa

a′v
a′ (5.35)

Congiuntamente alla base ea, la base duale ωa subira’ una trasformazione,
visto che la base duale e’ definita in riferimento alla base usata per V (vedi
equazione (5.7)). Avremo dunque

ωa → ωa′ = Λ̃a′
a ωa (5.36)

con Λ̃a′
a un’altra matrice nonsingolare. Ma usando la (5.7) nella nuova base

si ha
〈ωa′ , eb′〉 = Λ̃a′

a Λb
b′〈ωa, eb〉 = Λ̃a′

a Λa
b′ (5.37)

Segue dunque
Λ̃a′

a Λa
b′ = δb′

a′ (5.38)

Dunque la matrice che trasforma la base e quella che trasforma la base duale
sono l’una l’inversa dell’altra. Facendo attenzione alla posizione degli indici
scriveremo

Λa′
a ≡ (Λ−1)a′

a (5.39)

Possiamo allora invertire la relazione (5.34)

va′ = Λa′
a va (5.40)

Questa formula puo’ anche essere ottenuta osservando che in generale le
componenti di un tensore possono essere ottenute valutando il tensore sulla
base duale, cioe’

T a1a2···ar

b1b2···bs
= T (ωa1 , ωa2 , · · · , ωar , eb1

, eb2
, · · · , ebs

) (5.41)
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come segue subito dalla (5.25). Per esempio

va = 〈ωa, v〉 (5.42)

Usando quest’ultima relazione si ha

va′ = 〈ωa′ , v〉 = Λa′
a 〈ωa, v〉 = Λa′

a va (5.43)

Segue allora

T a1
′a2

′···ar
′

b1
′b2′···bs

′ = T (ωa1
′
, ωa2

′
, · · · , ωar

′
, eb1

′ , eb2
′ , · · · , ebs

′)

= Λa1
′

a1
Λa2

′
a2
· · ·Λar

′
ar

Λb1
b1
′Λ

b2
b2
′ · · ·Λbs

bs
′T

a1a2···ar

b1b2···bs
(5.44)

Dato un tensore in T (r, s) con r > 1, s > 1 e’ possibile definire un tensore
appartenente a T (r−1, s−1) tramite la cosi’ detta operazione di contrazione
C1

1 . Dunque per definizione C1
1 e’ una applicazione T (r, s) → T (r− 1, s− 1)

cosi’ definita: dato un tensore T di T (r, s)

T = T a1a2···ar

b1b2···bs
ea1

⊗ ea2
⊗ · · · ⊗ ear

⊗ ωb1ωb2 ⊗ · · · ⊗ ωbs (5.45)

C1
1(T ) ∈ T (r − 1, s− 1) e’ dato da

C1
1(T ) = T aa2···ar

ab2···bs
ea2

⊗ · · · ⊗ ear
⊗ ωb2 · · · ⊗ ωbs (5.46)

Affinche’ la contrazione sia ben definita e’ necessario verificare che la defini-
zione data sia indipendente dalla base. Infatti si ha

C1
1(T )

′
= T a′a2

′···ar
′

a′b2′···bs
′ ea2

′ ⊗ · · · ⊗ ear
′ ⊗ ωb2

′ · · · ⊗ ωbs
′

= Λa′
a Λb

a′T
aa2···ar

bb2···bs
ea2

′ ⊗ · · · ⊗ ear
′ ⊗ ωb2

′ · · · ⊗ ωbs
′

= C1
1(T ) (5.47)

Altre operazioni che si possono definire su un tensore sono le operazioni
di simmetrizzazione ed antisimmetrizzazione. Per esempio, dato un tensore
di tipo (2, 0), T (η

1
, η

2
), la sua parte simmetrica e’ data da

(ST )(η
1
, η

2
) =

1

2

(
T (η

1
, η

2
) + T (η

2
, η

1
)
)

(5.48)

e la sua parte antisimmetrica da

(AT )(η
1
, η

2
) =

1

2

(
T (η

1
, η

2
)− T (η

2
, η

1
)
)

(5.49)
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Si verifica immediatamente che ST ed AT sono tensori (cioe’ che le defini-
zioni date non dipendono dalla base). Le componenti di questi tensori son
rispettivamente

(ST )ab =
1

2

(
T ab + T ba

)
, (AT )ab =

1

2

(
T ab − T ba

)
(5.50)

5.3 Spazi metrici

Un altro tensore che ci sara’ utile nel seguito e’ il tensore metrico. Questi e’
un tensore simmetrico di rango (0,2), cioe’ una applicazione g di V xV → R.
Le componenti di g si ottengono valutandolo su una base

g(ei, ej) = gij (5.51)

e quindi potremo scrivere

g = gijω
i ⊗ ωj, gij = gji (5.52)

Se det |gij| 6= 0 si dice che la metrica e’ non degenere. L’assegnazione di un
tensore metrico permette di definire un mapping da V → V ∗, che indicheremo
ancora con g, definito come

〈g(v), w〉 = g(v, w) (5.53)

Le componenti di g(v) possono essere calcolate immediatamente notanto che
si puo’ scrivere

g(v, w) = gijv
iwj = g(v)jw

j (5.54)

dove nell’ultimo passaggio abbiamo usato la definizione di g(v). Per confronto
vediamo che

g(v)i = gijv
j (5.55)

Queste quantita’ sono anche dette le componenti covarianti del vettore v
(mentre le vi sono le componenti controvarianti) e saranno indicate con
l’indice in basso:

vi ≡ gijv
j (5.56)

Osserviamo che il numero g(v, w) puo’ anche essere calcolato usando il map-
ping tra V e V ∗ e la contrazione. Infatti

g(v, w) = 〈g(v), w〉 = gijv
iwj = vjw

j = C1
1(g(v)⊗ w) (5.57)

67



Si ha anche immediatamente che

g(ei) = gijω
j (5.58)

Notiamo che se g e’ non degenere allora il mapping tra V e V ∗ definito dalla
metrica e’ invertibile, e si puo’ introdurre il mapping inverso. La sua azione
sulla base duale sara’

g−1(ωi) = gijej (5.59)

dove gij e’ la matrice inversa di gij

gijgjk = δi
k (5.60)

Tramite la matrice inversa possiamo definire le componenti controvarianti di
un vettore covariante come

g−1(η)i = gijηj (5.61)

Chiaramente il mapping g, quando e’ non degenere, stabilisce un isomorfismo
tra V e V ∗. Notiamo infine che g−1 puo’ essere considerato come un tensore
di rango (2,0), definendolo (η

1
, η

2
∈ V ∗)

g−1(η
1
, η

2
) = 〈η

1
, g−1(η

2
)〉 (5.62)

Se introduciamo l’elemento di linea come un vettore covariante

dx = dxµω
µ (5.63)

Possiamo introdurre la distanza infinitesima tra due punti usando l’inverso
del tensore metrico:

ds2 = g−1(dx, dx) = g−1(dxµω
µ, dxνω

ν) = gµνdxµdxν (5.64)

nel caso in cui
ds2 =

∑
µ

dxµdxµ (5.65)

(cioe’ gµν = δµν) si dice che si ha una metrica euclidea.
Un altro tensore importante e’ il cosi’ detto tensore di Ricci, che puo’

essere definito a partire dall’elemento di volume in uno spazio n-dimensionale

dV = εµ1···µndxµ1 · · · dxµn (5.66)
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Il tensore εµ1···µn e’ definito essere zero quando una o piu’ coppie di indici
sono uguali, e’ completamente antisimmetrico (cambia di segno scambiando
tra loro due indici contigui) ed e’ uguale a +1 quando gli indici sono in una
permutazione pari rispetto alla permutazione fondamentale (1, 2, · · · , n). Si
vede allora facilmente che data una matrice |Aν

µ|, il tensore di Ricci soddisfa
la relazione

εµ1···µnAν1
µ1
· · ·Aνn

µn
= εν1···νn det |A| (5.67)

Pertanto cambiando la base

εµ1···µndxµ1 · · · dxµn → det |Λ|εµ′1···µ′ndxµ′1 · · · dxµ′n (5.68)

In generale dunque il simbolo εµ1···µn non e’ un tensore ma quello che si chiama
una densita’ tensoriale. Se pero’ il cambiamento di base ha determinante
unita’ allora εµ1···µn e’ un tensore vero e per di piu’ isotropo poiche’ le sue
componenti non cambiano. Un altro esempio di tensore isotropo e’ la delta di
Kronecker che puo’ essere pensato come quel tensore di rango (1,1) definito
dalla valutazione.

5.4 Lo spazio di Minkowski

Nel caso della relativita’ ristretta ricordiamo che abbiamo ottenuto le trasfor-
mazioni di Lorentz usando l’invarianza dell’onda sferica al variare del sistema
di riferimento. Poiche’ l’equazione che descrive tale onda e’

x2 + y2 + z2 − c2t2 = 0 (5.69)

e dato che sotto una trasformazione di Lorentz il vettore infinitesimo

(cdt, dx, dy, dz) (5.70)

si trasforma come le coordinate di un evento (ct, x, y, z) vediamo che le
trasformazioni di Lorentz lasciano invariante la distanza infinitesima

dx2 + dy2 + dz2 − c2dt2 (5.71)

Interpreteremo questa distanza (che pero’ non e’ definita positiva) come una
distanza nello spazio-tempo a quattro dimensioni. Se facciamo uso di coordi-
nate reali xµ ≡ (x0 = ct, x, y, z) possiamo allora introdurre una metrica nello
spazio-tempo come

ds2 = gµνdxµdxν = c2dt2 − dx2 − dy2 − dz2 (5.72)
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Pertanto

gµν =




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (5.73)

Chiaramente avremo (notiamo che la matrice |gµν | non cambia con il riferi-
mento)

ds2 = gµνdxµdxν = gµ′ν′dxµ′dxν′ = gµ′ν′Λ
µ′
µ Λν′

ν dxµdxν (5.74)

da cui
gµν = gµ′ν′Λ

µ′
µ Λν′

ν (5.75)

Se scriviamo Λµ
.ν ≡ Λµ

ν al fine di individuare le righe e le colonne della matrice
della trasformazione2, e’ possibile scrivere la relazione precedente nella forma
matriciale

ΛT gΛ = g (5.76)

Segue da det |g| = −1 che det |Λ| = ±1.
Dunque lo spazio-tempo della relatività ristretto è uno spazio pseudo-

euclideo a quattro dimensioni, detto anche spazio di Minkowski. I vettori

xµ = (ct, x, y, z), µ = 0, 1, 2, 3 (5.77)

sono detti quadrivettori. Studiamone alcune proprietà fondamentali. Il
quadrato di un quadrivettore vµ è definito dalla relazione

v2 = gµνv
µvµ (5.78)

È conveniente introdurre la notazione

vµ = gµνv
ν ≡ (v0,−v1,−v2,−v3) (5.79)

Questa operazione viene chiamata di abbassamento degli indici. Si può
introdurre l’operazione inversa se definiamo l’inverso della metrica come

gµνgνλ = δµ
λ (5.80)

Chiaramente
gµν = gµν (5.81)

2Ricordiamo che x′µ = Λµ
νxν ≡ Λµ

.νxν .
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Quindi si ha
vµ = gµνvν (5.82)

Con queste notazioni il quadrato di un quadrivettore può essere scritto anche
nella forma

v2 = vµvµ = gµνvµvν (5.83)

Vediamo che in componenti

v2 = v2
0 − |~v|2 (5.84)

dove abbiamo introdotto il modulo del vettore spaziale ~v = (v1, v2, v3).
Studiamo adesso le proprietà geometrica di una trasformazione di Lorentz

nello spazio di Minkowski. Consideriamo solo trasformazioni della coordinata
x e del tempo, cioè trasformazioni nel piano (x0, x1). La trasformazione di
Lorentz ad un riferimento che si muove con velocità v lungo l’asse delle x è
data da

x0′ =
x0 − βx1

√
1− β2

x1′ =
−βx0 + x1

√
1− β2

(5.85)

Le equazioni degli assi coordinati (x′0, x
′
1) nel nuovo riferimento sono rispet-

tivamente
x0′ : x1′ = 0 ⇒ x1 = βx0 (5.86)

e
x1′ : x0′ = 0 ⇒ x0 = βx1 (5.87)

Abbiamo rappresentato i nuovi assi in Fig. 5.1 introducendo un angolo φ
tale che

tan φ = β (5.88)

da questo tipo di rappresentazione appare particolarmente evidente che due
eventi simultanei in un riferimento non lo sono più in un altro in moto rispetto
al primo. Vediamo anche che quando la velocità tra i due sistemi tende
a quella della luce il piano si restringe sino a degenerare in una retta a
450. Questa retta fa parte del cosi detto cono di luce (vedi dopo). Un’altra
proprietà evidente è che se si considera un punto fuori del cono di luce (come il
punto C in Figura 5.1) con una trasformazione di Lorentz è possibile invertirlo
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Figura 5.1: Il piano di Minkowski. In particolare si è mostrato come due eventi
simultanei nel riferimento S non lo siano più nel riferimento S′.

temporalmente rispetto all’origine (nel caso specifico far diventare negativa
la sua coordinata temporale x0′).

Chiaramente il quadrato di un quadrivettore è invariante sotto trasfor-
mazioni di Lorentz, ma non è una forma definita positiva. Possiamo dunque
distinguere tre casi:

1. v2 > 0. Questi vettori vengo detti di tipo-tempo (o time-like). Si vede
subito che in questo caso anche il segno di v0 è un invariante di Lorentz.
Consideriamo infatti una rotazione spaziale che allinei la parte spaziale
di ~v lungo l’asse x. Segue vµ = (v0, |~v|, 0, 0), con (v0)2 > |~v|2. Pertanto
se v0 è positivo si trova nel cono luce in avanti, mentre se è negativo nel
cono luce indietro (vedi figura 5.2). In ogni caso abbiamo visto nella
Sezione (4.2) una trasformazione di Lorentz non può invertire l’ordine
temporale di due eventi che siano uno dentro il cono di luce dell’altro.
Mostriamo anche che in questo caso è sempre possibile trovare un rife-
rimento in cui il quadrivettore ha solo la componente 0 (o componente
temporale). Questo riferimento è chiamato anche il riferimento di ri-
poso del quadrivettore (o rest-frame). Infatti, se dopo la rotazione che
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Figura 5.2: Esempi di quadrivettori nello spazio di Minkowski.

allinea la parte spaziale lungo l’asse x effettuiamo una trasformazione
di Lorentz come in eq. (3.35) segue

v′0 = v0 cosh χ + |~v| sinh χ, v′1 = v0 sinh χ + |~v| cosh χ (5.89)

Scegliendo quindi

tanh χ = −|~v|
v0

(5.90)

si ha
v′0 =

√
v2, v′1 = 0 (5.91)

Questa è una trasformazione ammissibile ricordando che in generale
tanh χ = −β dove β è il rapporto della velocità con cui un S ′ si muove
rispetto a S con la velocità della luce. Quindi si deve avere | tanh χ| < 1,
condizione soddisfatta nel nostro caso. Per inciso, questo mostra anche
in modo semplice l’invarianza del quadrato di un quadrivettore, dato
che dalla (5.91) segue v′2 = v2.

2. v2 < 0. Questi vettori vengo detti di tipo-spazio (o space-like). In
questo caso il vettore sta fuori del cono di luce e quindi è possibile
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trovare una trasformazione di Lorentz che fa cambiare di segno a v0

(vedi ancora la discussione in Sezione (4.2)). Dunque per un vettore
di tipo spazio la il segno della quarta componente non è invariante di
Lorentz. In questo caso si può trovare un riferimento in cui la parte
temporale è nulla. Procedendo come prima con una rotazione spaziale
che riduca vµ alla forma v′µ = (v0, |~v|, 0, 0) e facendo la trasformazione
di Lorentz lungo l’asse x caratterizzata da

tanh χ = − v0

|~v| (5.92)

si trova
v′0 = 0, v′1 =

√
−v2 (5.93)

3. v2 = 0. Questi vettori vengo detti di tipo-luce (o light-like). Anche
in questo caso il segno di v0 è invariante di Lorentz. Si vede facilmente
che si può sempre trovare un riferimento in cui

vµ = (±|~v|, |~v|, 0, 0) (5.94)

Infatti è sufficiente effettuare una rotazione spaziale per allineare la
parte spaziale di vµ lungo l’asse x ed usare v2 = 0 da cui

v0 = ±|~v| (5.95)

74



Capitolo 6

Meccanica relativistica

6.1 Quadriforza e dinamica relativistica.

Abbiamo visto che l’elemento di linea nello spazio di Minkowszki

ds2 = gµνdxµdxν (6.1)

è invariante di Lorentz. Osserviamo che risulta invariante anche se si traslano
le coordinate spaziali od il tempo

~x → ~x + ~a, t → t + b (6.2)

L’insieme delle trasformazioni di Lorentz e delle traslazioni spazio-temporali
prende il il nome di trasformazioni di Poincaré. Se scriviamo esplicitamente
il ds2 vediamo che

ds =
√

c2dt2 − |d~x|2 (6.3)

Ricordando che il tempo proprio è definito dalla relazione

dτ =
√

1− |~v|2/c2dt =
√

dt2 − |d~x|2/c2 (6.4)

si ha

dτ =
ds

c
(6.5)

che tra l’altro mostra esplicitamente l’invarianza del tempo proprio.
Come abbiamo detto, le trasformazioni di Lorentz lasciano invariate le

equazioni di Maxwell, per cui queste ultime soddisfano al principio di rela-
tività. La contropartita è che le equazioni della dinamica di Newton non
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soddisfano più il principio di relatività, se non nel limite di velocità piccole
rispetto alla velocità della luce. Occorre allora modificare le equazioni di
Newton in modo che lo soddisfino.

Supponiamo che una particella materiale si muova in un campo di forze
a velocità relativistica, per cui non sia possibile applicare ad essa la secon-
da legge della dinamica. Supponiamo però di saper calcolare la forza in un
riferimento in cui la particella sia momentaneamente ferma. Possiamo al-
lora effettuare una trasformazione di Lorentz in modo da portarci in tale
riferimento e determinare cos̀ı il moto della particella. L’idea è cioè quel-
la di utilizzare le trasformazioni di Lorentz per porci in una situazione in
cui possiamo applicare la dinamica di Newton. Ora noi sappiamo come si
trasformano le velocità e da ciò possiamo determinare la legge di trasforma-
zione dell’accelerazione. Vediamo subito però che questa legge sarà alquanto
complicata (basta dare uno sguardo alle (4.32) per rendersene conto).

Allo scopo di semplificare la trattazione, possiamo sfruttare il fatto che
il tempo proprio dτ è un invariante e che si riduce a dt se la particella è a
riposo.

Allora, invece di studiare il comportamento sotto trasformazioni di Lo-
rentz dell’accelerazione possiamo studiare la grandezza

d2xµ

dτ 2
, (6.6)

che, data appunto l’invarianza di dτ , si trasforma come xµ:

d2x′µ

dτ 2
= Λµ

ν
d2xν

dτ 2
, (6.7)

essendo Λ costante in τ . L’idea è allora quella di definire un quadrivettore,
la quadriforza, tramite la relazione

fµ = m
d2xµ

dτ 2
(6.8)

dove f sarà chiamata la forza relativistica, che, per quanto detto sopra, si
trasforma secondo la legge

f ′µ = Λµ
νf

ν (6.9)

La (6.8) ci fornirà la generalizzazione relativistica della seconda legge di New-
ton e, ovviamente, dovremo riottenere le equazioni di Newton nel limite
v ¿ c. Ora la fµ si può calcolare osservando che, se la particella è momenta-
neamente ferma, l’intervallo di tempo proprio dτ coincide con dt. Ne segue
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che, poichè x0 = ct, la sua derivata seconda rispetto a t è nulla e quindi,
dalla (6.8) con µ = 0, si ha

f 0 = 0, (6.10)

inoltre

f i = m
d2xi

dt2
, (6.11)

per cui ~f = ~F , cioè ~f è la forza di Newton nel riferimento in cui la particella
è momentaneamente ferma. Se ora la particella ha velocità ~v invece che
zero, basterà effettuare una trasformazione di Lorentz tale che, nel nuovo
riferimento, la particella abbia velocità ~v. Evidentemente questo riferimento
dovrà avere velocità −~v rispetto a quello in cui la particella è a riposo. Se
indichiamo con Λ(~v) questa trasformazione, avremo che la fµ sarà data da

fµ = Λµ
ν(~v)F ν , (6.12)

con F µ = (0, ~F ). Possiamo leggere la Λ(~v) dalle (4.1) (scrivendole per x0 =
ct), ponendo le componenti di fµ al posto di quelle di ~x′ e ct′ e quelle di F ν

al posto di quelle di ~x e ct. Inoltre andrà posto ~v → −~v. In questo modo si
ottiene

~f = ~F − ~v
(~v · ~F )

v2
+ ~vγ

[
(~v · ~F )

v2
+

F 0

c

]

f 0 = γ

[
F 0 +

(~v · ~F )

c

]
(6.13)

dove però F 0 = 0. In definitiva, tenendo conto che dalla prima di queste
equazioni segue

~v · ~f = γ(~v · ~F )

Quindi

~f = ~F + ~v(γ − 1)
(~v · ~F )

v2

f 0 = γ
(~v · ~F )

c
=

(~v · ~f)

c
(6.14)
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Inserendo queste espressioni nella (6.8) si ha la generalizzazone della se-
conda legge della dinamica di Newton, espressa come un sistema di equazioni
differenziali in τ . Se si risolvono e si determinano le xµ in termini di τ , si può
poi eliminare τ a favore di t e ottenere le consuete equazioni orarie per ~x.
In realtà queste sono quattro equazioni, mentre le equazioni di Newton sono
solo tre. Ma si vede che queste equazioni non sono indipendenti. Infatti,
definendo la quadrivelocità

V µ =
dxµ

dτ
= (γc, γ~v) (6.15)

si ha

V 2 =
dxµ

dτ

dxµ

dτ
=

ds2

dτ 2
= c2 (6.16)

e quindi

0 =
d

dτ
V 2 = V µ dVµ

dτ
= V µ d2xµ

dτ 2
(6.17)

Inoltre si ha
V µfµ = γcf 0 − γ~v · ~f = 0 (6.18)

dove si è fatto uso della (6.14). Quindi la componente delle equazioni del
moto (6.8) lungo la direzione di V µ (ottenuta moltiplicando le equazioni del
moto (6.8) per V µ) è soddisfatta identicamente per qualunque forma delle
xµ(τ) e le equazioni che determinano il moto del sistema sono solo tre.

Pertanto la proiezione delle equazioni del moto lungo la direzione del-
la quadrivelocità è nulla e quindi si hanno solo tre equazioni indipendenti.
Abbiamo visto che, nella forma (6.8), la seconda legge della dinamica si
trasforma da un riferimento inerziale ad un altro con la legge

Λµνf
ν = mΛµν

d2xν

dτ 2
, (6.19)

dove Λ è la trasformazione di Lorentz che trasforma le coordinate di un
riferimento in quelle di un altro.

La legge (6.8) garantisce quindi che la stessa forma della seconda legge
della dinamica valga anche nel nuovo riferimento. L’utilità del formalismo
vettoriale (quadri-vettoriale) risiede principalmente in questo fatto.

Si usa definire una forza ~fN con

~f = γ ~fN , (6.20)
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In termini di ~fN si ha

fµ = (
γ

c
(~v · ~fN), γ ~fN) (6.21)

e, tenuto conto della (6.4), la parte spaziale dell’equazione di moto si scrive

d~p

dt
= ~fN (6.22)

dove abbiamo definito

pµ = m
dxµ

dτ
(6.23)

Nel limite c → ∞, usando la (6.14) e la (6.20) si ritrova la usuale seconda
legge di Newton

d~p

dt
= ~F (6.24)

con ~F la forza misurata nel riferimento istantaneamente solidale con la par-
ticella.

6.2 Impulso ed energia

In termini del quadri-impulso definito nella (6.23) la seconda legge (vedi
equazione (6.8)) si scrive

dpµ

dτ
= fµ, (6.25)

Se calcoliamo il lavoro fatto dalla forza ~fN nel tempo dt avremo

δL = ~fN · ~vdt =
c

γ
f 0dt = cf 0dτ = c

dp0

dτ
dτ = cdp0 (6.26)

Dalla (6.23) vediamo che

~p = mγ~v, p0 = mcγ (6.27)

e quindi, integrando la (6.26)

L = c(p0(t2)− p0(t1)) = mc2(γ(v2)− γ(v1)) (6.28)
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nella meccanica di Newton il lavoro fatto da una forza è uguale alla variazione
di energia cinetica. Definiremo quindi l’analogo dell’energia cinetica come
l’espressione

K = mc2γ + K0 (6.29)

dove K0 è una costante che sceglieremo in modo tale che K si annulli a
velocità zero, come nel caso classico. Quindi K0 = −mc2 dato che γ(0) = 1
pertanto l’energia cinetica relativistica è definita da

K = mc2

(
1√

1− v2/c2
− 1

)
(6.30)

Notiamo che per piccole velocità si ha

~p = m~v +O
(

v2

c2

)

cp0 = mc2 +
m

2
~v 2 +O

(
v4

c2

)
(6.31)

e

K ≈ 1

2
m~v 2 (6.32)

Vediamo dunque che la meccanica di Einstein riproduce perfettamente i ri-
sultati della Sezione (1.4) che, come avevamo visto, sono in perfetto accordo
con gli esperimenti di accelerazione fatti con il LINAC. Tra l’altro l’espressio-
ne di cp0 nel limite di basse velocità suggerisce di introdurre l’energia totale
come

E = cp0 = mc2γ =
mc2

√
1− v2/c2

(6.33)

da cui vediamo che l’energia cinetica non è altra che l’energia totale alla quale
si sottrae l’energia di riposo della particella.

K = E −mc2 (6.34)

Se si elimina la velocità dalle equazioni (6.27)

~v 2 =
~p 2c2

~p 2 + m2c2
(6.35)

si trova
E = c

√
~p 2 + m2c2, (6.36)
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che è la forma relativistica dell’energia in funzione dell’impulso. Questa può
anche essere ottenuta dalla (6.23) e dalla (6.16), cioè

p2 = pµpνgµν = m2c2, (6.37)

che equivale alla (6.36) se si prende il ramo positivo della radice.
Il caso di un raggio di luce si può inquadrare nello schema sviluppato, con

delle modifiche importanti. Infatti, per un raggio di luce, si ha che l’elemento
di linea (6.1) è zero

ds2 = c2(1− ~v2

c2
)dt2 = 0, (6.38)

e quindi anche il tempo proprio (6.4) è nullo. L’espressione dell’impulso
(6.23) avrà allora senso solo se si fa tendere la massa a zero, cioè, dalla (6.37)

(p0)2 − (~p)2 = 0. (6.39)

È però con la meccanica quantistica che si da un significato preciso alla
nozione di particella con massa zero nel caso della luce.

Consideriamo adesso n particelle che subiscono un processo tale che sia
conservato l’impulso totale ~P dato dalla somma degli impulsi delle particelle:

∆~P = ~P (f) − ~P (i) =
n∑

k=1

~p
(f)
k −

n∑

k=1

~p
(i)
k = 0, (6.40)

dove k numera le particelle, ~p
(i)
k sono gli impulsi iniziali e ~p

(f)
k sono gli im-

pulsi finali. Notare che il numero di particelle finali potrà essere in generale
diverso da quello iniziale, se vi sono processi di annichilazione o creazione di
particelle. È importante osservare che a livello relativistico la conservazione
dell’impulso spaziale implica la conservazione delle energie.

Infatti, osserviamo che, se l’impulso totale è conservato in un riferimento,
lo deve essere in un’altro riferimento, poiché la conservazione dipende solo
dal fatto che il sistema è isolato e non dal riferimento in cui ciò si esprime.

Se ora indichiamo con un apice le stesse quantità determinate in un altro
riferimento inerziale, avremo

∆P ′µ = Λµ
ν∆P ν . (6.41)

Ma per ν = 1, 2, 3, tenuto conto della (6.40), si ha

∆P ′µ = Λµ
0∆P 0, (6.42)
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e, per µ = 1, 2, 3 il primo membro è zero, perché, come abbiamo osservato,
la conservazione dell’impulso si ha anche nel nuovo riferimento.

Quindi

0 = Λi
0∆P 0, (6.43)

da cui ∆P 0 = 0, perchè quanto sopra vale per una trasformazione di Lorentz
arbitraria. Questo dimostra che la conservazione dell’impulso implica quella
dell’energia.

Quanto detto va sotto il nome di conservazione del quadrimpulso:

P (f)µ =
n∑

i=1

p
(f)µ
i = P (i)µ =

n∑
i=1

p
(i)µ
i . (6.44)

Questa legge di conservazione giustifica il nome di energia dato alla gran-
dezza E in (6.36), poché è una quantità conservata che si riduce all’energia
classica nel limite non relativistico, salvo l’aggiunta dell’energia di riposo.

Quanto alle proprietà di trasformazione queste si ricavano immediata-
mente dalla (6.23). Nel caso della trasformazione di Lorentz (3.46) si ha
(tenuto conto dei fattori c)





p ′x = γ(px − vE/c2),

p ′y = py,

p ′z = pz,

E ′ = γ(E − vpx),

(6.45)

mentre nel caso di un trasformazione con ~v generica, ma senza rotazione degli
assi, si ha come in (4.1)

~p ′ = ~p− ~v
(~v · ~p)

v2
+ ~vγ

[
(~v · ~p)

v2
− E

c2

]

E ′ = γ [E − (~v · ~p)] (6.46)
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6.3 Sistema del centro di massa ed equivalen-

za massa-energia

Consideriamo ancora un sistema di n particelle libere. Detti (~P , E) e (~P ′, E ′)
l’impulso totale e l’energia totale del sistema in due sistemi di riferimento
inerziali S e S ′, il quadrato del quadrimpulso totale (vedi equazione (6.37))
nel riferimento S è dato da

P 2 =
E2 − c2 ~P 2

c2
=

n∑
i,j=1

gµνp
µ
i p

ν
j =

n∑
i=1

m2
i c

2 +
n∑

i6=j=1

gµνp
µ
i p

ν
j =

=
n∑

i=1

m2
i c

2 +
n∑

i6=j=1

(p0
i p

0
j − |~pi||~pj| cos θij) (6.47)

Dato che per una particella di massa mi si ha p2
i = m2

i c
2 > 0 i singoli

quadrimpulsi sono di tipo tempo e quindi

p0
i > |~pi|, ∀ i (6.48)

da cui
p0

i p
0
j − |~pi||~pj| cos θij > 0 (6.49)

Pertanto il quadrimpulso totale P µ è di tipo tempo (P 2 > 0).
Il fatto che sia di tipo tempo ci permette di determinare un sistema di

riferimento particolare tale che ~P sia zero (vedi Sezione (5.4)). Infatti, dalla

legge di trasformazione inversa della (6.46) per ~P

~P = ~P ′ − ~v
(~v · ~P ′)

v2
+ ~vγ

[
(~v · ~P ′)

v2
+

E ′

c2

]

E = γ
[
E ′ + (~v · ~P ′)

]
(6.50)

si vede che ciò è possibile con una velocità relativa di S ′ rispetto a S data da

~v =
c2 ~P

E
; (6.51)

Questo si trova subito ponendo ~P ′ = 0 nelle (6.50) ed usando l’espressione
di E ′ in termini di E.
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Il fatto che l’invariante (6.37) sia positivo ci permette anche di affermare

che questa velocità è minore di c. Infatti da E2 − c2 ~P 2 > 0 segue che E >
c|~P | e dalla (6.51) si ha che v/c < 1. Quindi questo sistema di riferimento
esiste sempre per un sistema di particelle (con massa). È il sistema del
centro di massa del sistema.

Indichiamo con S0 il sistema del centro di massa e con S un sistema di
riferimento generico. Allora, indicando con ~u la velocità di S0, identificato
con S ′, rispetto a S e applicando le formule (6.46) con ~v = −~u, si trova

~P = γ
~uE0

c2
, E = γE0 (6.52)

dove ~P e E sono l’impulso e l’energia nel sistema S e ~P 0 = 0 e E0 l’impulso
e l’energia nel sistema S0 del centro di massa. Il fattore γ è naturalmente in
termini della velocità ~u.

Abbiamo quindi mostrato che il sistema delle n particelle come insieme
si comporta come un’unica particella di impulso ~P e di energia E, che si
trasformano come l’impulso e l’energia di una singola particella.

Se si confrontano le (6.52) con le analoghe per una particella con massa
m, cioè le (6.27), e si nota che

P 2 =
E2 − c2 ~P 2

c2
=

γ2E02

c2

(
1− u2/c2

)
=

E02

c2
(6.53)

si vede che è naturale definire la massa totale del sistema di particelle M
come

M =
E0

c2
(6.54)

Notare che M è maggiore della somma delle masse delle singole particelle,
infatti per E0 abbiamo

E0 =
n∑

i=1

Ei0 =
n∑

i=1

c
√

m2
i c

2 + ~p 02
i ≥ c2

n∑
i=1

mi (6.55)

da cui

M =
E0

c2
≥

n∑
i=1

mi (6.56)

In questa equazione il segno di uguale si ha solo se tutte le particelle hanno
impulso zero, cioè nel caso statico. Con la definizione (6.54) le (6.52) si
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scrivono {
~P = γM~u

E = γMc2
(6.57)

Possiamo allora definire l’energia cinetica nel sistema del centro di massa K0

come

E0 =
n∑

i=1

mic
2 + K0 (6.58)

Dalla (6.58) segue un’importante conclusione e cioè che l’energia interna
del sistema contribuisce alla massa totale del sistema (salvo il caso particolare
statico).

Abbiamo visto ciò nel caso di un sistema di particelle libere, in cui l’e-
nergia interna è data solo dall’energia cinetica. Ma questa conclusione si può
ottenere per ogni processo fisico, si può cioè dimostrare che: ad ogni quantità
di energia ∆E corrisponde una massa

∆m =
∆E

c2
(6.59)

Non daremo qui la dimostrazione di questo risultato, la dimostrazione
si può trovare in [3], pagg. 78-82, e una discussione nei suoi aspetti speri-
mentali in [4], pagg. 220-236. In particolare valgono le considerazioni che
abbiamo fatto nella Sezione (1.4), cioè che in relatività vale la conservazio-
ne dell’energia totale ma non quella della massa. Massa ed energia sono
intercambiabili.

6.4 Difetto di massa

Una applicazione particolarmente significativa dell’equivalenza massa-energia
è data dal difetto di massa dei nuclei atomici. Infatti risulta che la mas-
sa di un nucleo atomico nel suo stato fondamentale è sempre minore della
somma delle masse dei nucleoni che lo costituiscono, Quindi, per separare i
costituenti, è necessario fornire energia, ovvero massa, al nucleo.

Il difetto di massa si definisce allora come la differenza tra la somma delle
masse dei costituenti del nucleo e la massa nucleare effettiva, cioè

∆m = Zmp + (A− Z)mn −MZ,A (6.60)
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dove mp è la massa del protone, mn quella del nautrone, MZ,A è la massa
effettiva del nucleo, Z è il numero atomico, ciò il numero di protoni del
nucleo e A è il numero di massa, cioè il numero totale di protoni e neutroni.
A approssima il peso del nucleo in unità di massa atomiche (u.m.a.), con la
massa del C12 fissata esattamente a 12 u.m.a..

Ci aspettiamo che questo difetto di massa sia tanto più grande quanto
più il nucleo è stabile. Ad esso corrisponde un’energia secondo la relazione
(6.59) che può essere interpretata come un’energia di legame (negativa). In
altre parole, per decomporre un nucleo nei suoi costituenti occorrerà fornirgli
un’energia almeno uguale all’energia di legame

∆E = ∆mc2 (6.61)

dove ∆m è il difetto di massa.
L’equazione (6.60) fornisce un’energia di legame, che, misurata in MeV

risulta

∆E(MeV) = 931, 494[Z · 1, 0078250 + (A− Z) · 1, 008665−MZ,A] (6.62)

In questa formula il numero a fattore è il fattore di conversione da unità di
massa atomiche a MeV1.

Com’è noto, sia i processi di fusione nucleare, nei quali nuclei leggeri
si fondono in un nucleo più pesante, che di fissione nucleare, nei quali un
nucleo si rompe in frammenti, sono basati sul difetto di massa. Questo è
possibile perchè si può vedere sperimentalmente che nei due casi indicati i
processi vanno nel senso che il difetto di massa del nucleo o dei nuclei iniziali è
minore di quello del nucleo o dei nuclei finali. Per rendere chiaro l’argomento
consideriamo per esempio la reazione nucleare

1
1H +6

3 Li →3
2 He +4

2 He (6.63)

dove il primo termine della reazione è un protone, il secondo un isotopo del
Litio, che ha l’isotopo più abbondante con numero atomico 7, e l’Elio-3 che è
anch’esso un isotopo della forma usuale Elio-4. Le masse di questi elementi

1Si ricorda che l’unità di massa atomica é 1/12 della massa di un atomo di carbonio
12.
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Figura 6.1: L’energia di legame media

espresse in unità di massa atomica (u.m.a.) sono2

massa del 1
1H = 1, 0078250

′′ ′′ 6
3Li = 6, 0151223

′′ ′′ 3
2He = 3, 0160293

′′ ′′ 4
2He = 4, 0026032 (6.64)

Se si calcolano i difetti di massa si ha

∆m1
1H = 0,

∆m6
3Li = 0, 0343474 u.m.a. ' 32 MeV,

∆m3
2He = 0, 0082856 u.m.a. ' 7, 72 MeV,

∆m4
2He = 0, 0303766 u.m.a. ' 28, 3 MeV

da cui si ha il difetto di massa complessivo

∆mH + ∆mLi −∆m3He −∆m4He = −0, 0043148 u.m.a. (6.65)

2Queste sono masse atomiche, che comprendono le masse degli elettroni. Però nel
calcolo del difetto di massa ciò non influisce, poichè il loro contributo si elide tra primo e
secondo termine della reazione. I dati sono ripresi da http://www2.bnl.gov/ton/.
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che è negativo e quindi la reazione avviene con produzione di energia. Lo
stesso risultato si ottiene facendo il bilancio delle masse, poiché le masse dei
costituenti si elidono nella differenza tra il contributo del primo membro della
reazione e il secondo. Il risultato sarà con il segno opposto:

mH + mLi −m3He −m4He = +0, 0043148 u.m.a. ' 4, 02 MeV (6.66)

Nella figura (6.1) è riportata l’energia di legame media per nucleone (cioè
il difetto di massa diviso il numero dei nucleoni) in funzione del numero
atomico3.

6.5 Applicazioni di meccanica e cinematica

relativistiche

1 - Moto sotto l’azione di una forza costante

Riprendiamo in considerazioni le equazioni della meccanica relativistica

dpµ

dτ
= fµ, fµ = (γ~v · ~fN/c, γ ~fN) (6.67)

e

~p = mγ~v, p0 = mcγ, γ =
1√

1− v2/c2
(6.68)

Calcoliamo la derivata temporale dell’impulso. Si ha

d~p

dt
= m

d(γ~v)

dt
= mγ

d~v

dt
+ m~v

dγ

dt
= mγ

d~v

dt
+ m~v

d(p0/mc)

dt
=

= mγ
d~v

dt
+

~v

cγ
f 0 = mγ

d~v

dt
+

~v

c2
~v · ~fN (6.69)

Pertanto

mγ
d~v

dt
= ~fN − ~v

c2
~v · ~fN (6.70)

Supponiamo di avere una forza costante diretta, per esempio, lungo l’asse
delle x. Quindi porremo

~fN = (F, 0, 0) (6.71)

3L’immagine è ripresa da http://cnx.prenhall.com/petrucci/medialib/media portfo-
lio/26.html.
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Le equazioni del moto risultanti sono

mγ
d~vx

dt
= F

(
1− v2

x

c2

)

mγ
d~vy

dt
= −F

vxvy

c2

mγ
d~vz

dt
= −F

vxvz

c2
(6.72)

Se assumiamo all’istante iniziale

vx(0) = vy(0) = vz(0) = 0 (6.73)

vediamo che
vy(t) = vz(t) = 0, ∀t (6.74)

Dato che le equazioni del moto richiedono che anche le derivate prime siano

ct

xmc
F

-
2

Figura 6.2: Il moto relativistico di una particella soggetta ad una forza costante.

nulle a t = 0. Dunque, il moto è unidimensionale e lungo la direzione della
forza. Ponendo vx = v segue

mγ
dv

dt
=

F

γ2
(6.75)
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da cui
dv

(1− v2/c2)3/2
=

F

m
dt (6.76)

Integrando tra 0 e t segue

F

m
t =

∫ v

0

dv

(1− v2/c2)3/2
= c

∫ v/c

0

dx

(1− x2)3/2
=

= c

[
x

(1− x2)1/2

]v/c

0

=
v√

1− v2/c2
(6.77)

Risolvendo in v questa equazione si trova

v =
dx

dt
=

Ft

m

1√
1 + (Ft/mc)2

=
c√

1 + (mc/Ft)2
(6.78)

L’ultima espressione per v è identica a quella che avevamo trovato in ba-
se a considerazioni euristiche nella Sezione (1.4) (vedi equazione (1.60)).
Effettuando una ulteriore integrazione si ha (si assume x(0) = 0)

x(t) =
F

m

∫ t

0

tdt√
1 + (Ft/mc)2

(6.79)

Ponendo
t =

mc

F
y (6.80)

segue

x(t) =
mc2

2F

∫ Ft/mc

0

dy2

√
1 + y2

=
mc2

2F

[
2
√

1 + y2
]Ft/mc

0
=

=
mc2

F

(√
1 + (Ft/mc)2 − 1

)
(6.81)

Questa relazione può riscriversi nella forma

(
x +

mc2

F

)2

− c2t2 =
m2c4

F 2
(6.82)

Il moto è rappresentato nella figura 6.2 ed è ovviamente detto moto iperboli-
co. Notiamo che per Ft ¿ mc, cioè quando l’impulso della forza Ft è piccolo
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rispetto al tipico impulso relativistico che è di ordine mc allora si riottiene
la soluzione newtoniana. Infatti sviluppando

x(t) ≈ mc2

F

(
1 +

1

2

(
Ft

mc

)2

− 1

)
=

1

2

F

m
t2 (6.83)

che è la soluzione classica, dato che F/m è l’accelerazione newtoniana. Invece
nel limite opposto (limite relativistico), Ft À mc segue

x(t) ≈ ct (6.84)

Quindi la particella si muove con velocità pari a quella della luce, come è
anche evidente dalla equazione (6.78).

2 - Cinematica del laboratorio e del centro di massa

L’invarianza di una teoria rispetto ad un insieme di trasformazioni per-
mette in genere una grande semplificazione dei problemi. La trattazione
formale di questo aspetto è descritta da una apposita parte della matematica
che si chiama teoria dei gruppi. Sebbene questa sia una teoria abbastanza
sofisticata, in molte applicazioni fisiche si riduce allo studio di quelle quan-
tità che non cambiano sotto le trasformazioni considerate. Per esempio se
abbiamo una teoria invariante sotto rotazioni spaziali e sappiamo che una
certa osservabile dipende solo da un vettore, risulta che può dipendere solo
dal modulo. Infatti l’invarianza per rotazioni ci permette di dire che l’osser-
vabile non dovrà cambiare ruotando il sistema di riferimento e quindi può
dipendere solo dal modulo del vettore. Più in generale se dipende da un certo
numero di vettori, potrà essere funzione solo dei prodotti scalari indipenden-
ti. L’uso degli invarianti permette delle semplificazioni notevoli, per esempio
può evitare di calcolare direttamente come le quantità si trasformano sotto
trasformazioni di Lorentz. Come esempio consideriamo un processo d’urto
tra due particelle. In generale da questo urto possono generarsi nuove parti-
celle solo se si ha sufficiente energia nel sistema del centro di massa. Quindi
all’energia totale a disposizione va sottratta l’energia del centro di massa.
Nasce pertanto il problema di mettere in relazione l’energia totale nel riferi-
mento del laboratorio con l’energia nel riferimento in cui il centro di massa
è fermo (sistema del c.d.m.). Questa relazione la si può ottenere effettuando
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esplicitamente la trasformazione di Lorentz o più semplicemente usando gli
invarianti. per fare questo si considerano i quadri-impulsi della particella
incidente, pµ

1 , e della particella bersaglio nel sistema del laboratorio, pµ
2 , in

cui, tipicamente, il bersaglio è fermo. Avremo

pµ
1 = (E/c, q, 0, 0), pµ

2 = (mc,~0) (6.85)

Invece nel sistema del c.d.m. (assumendo le due particelle della stessa massa
m)

pµ
1 = (Ecm/c, ~p), pµ

2 = (Ecm/2c,−~p) (6.86)

Infatti dato che nel c.d.m. gli impulsi sono uguali ed opposti e le particelle
hanno la stessa massa, segue da

p2
1 = p2

2 = m2c2 (6.87)

che le energie delle due particelle nel c.d.m. sono uguali. Inoltre abbiamo
chiamato con Ecm l’energia totale nel c.d.m.. Calcoliamo allora il quadrato
di (p1 + p2)

µ. Dato che questo è un invariante ha lo stesso valore nel c.d.m.
e nel laboratorio. Pertanto

(p1 + p2)
2 =

(
E

c
+ mc

)2

− q2 nel laboratorio (6.88)

e

(p1 + p2)
2 =

E2
cm

c2
nel c.d.m. (6.89)

Uguagliando queste espressioni si ha

(
E

c
+ mc

)2

− q2 =
E2

cm

c2
(6.90)

da cui
Ecm = c

√
2m(E + mc2) (6.91)

Questa relazione permette di capire la differenza tra un acceleratore a bersa-
glio fisso ed un collisionatore (o collider). Nel primo caso una delle particelle è
ferma e l’altra viene accelerata. Nel secondo caso entrambe vengono portate
allo stesso impulso ma con direzioni opposte e poi fatte collidere. Quindi nel
primo caso la cinematica è quella stessa del sistema del laboratorio, mentre
nel secondo caso di fatto siamo nel riferimento del cdm. Vediamo dunque
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che mentre per un collisionatore per avere Ecm a disposizione è sufficiente
accelerare i due fasci sino ad energie Ecm/2 nel caso di bersaglio fisso occorre
fornire ad un fascio una energia data da

E =
E2

cm

2mc2
−mc2 (6.92)

Pertanto l’energia da fornire va con il quadrato dell’energia sfruttabile.

3 - Cinematica del decadimento in due corpi

Consideriamo una particella di massa m1 che decade in due particelle di mas-
sa m3 e m4 rispettivamente, nel sistema in cui è a riposo. La conservazione
dell’impulso richiede

pµ
1 = (m1c,~0), pµ

2 = (E2/c, ~p), pµ
3 = (E3/c,−~p) (6.93)

Il calcolo di E2 e E3 è immediata se si osserva che dalla conservazione del
quadri-impulso

pµ
1 = pµ

2 + pµ
3 (6.94)

segue che
pµ

3 = pµ
1 − pµ

2 , pµ
2 = pµ

1 − pµ
3 (6.95)

Prendendo i quadrati di queste espressioni si ha

m2
3c

2 = (m2
1 + m2

2)c
2 − 2m1E2 (6.96)

e
m2

2c
2 = (m2

1 + m2
3)c

2 − 2m1E3 (6.97)

da cui

E2 =
m2

1 + m2
2 −m2

3

2m1

c2, E3 =
m2

1 + m2
3 −m2

2

2m1

c2 (6.98)

Infine quadrando la (6.94) si ha

m2
1c

2 = (m2
2 +m2

3)c
2 +

2E2E3

c2
+2|~p|2 ≥ (m2

2 +m2
3 +2m2m3)c

2 = (m2 +m3)
2c2

(6.99)
da cui si ha la condizione cinematica per il decadimento

m1 ≥ m2 + m3 (6.100)
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Capitolo 7

Elettrodinamica nel vuoto.

7.1 La corrente e la densità elettromagneti-

che

Come è abbastanza ovvio, le equazioni di Maxwell soddisfano il principio
di relatività di Einstein, quindi anche la corrente elettrica e la densità di
carica dovranno avere proprietà semplici di trasformazione rispetto alle tra-
sformazioni di Lorentz. Consideriamo per esempio la carica contenuta in un
elemento infinitesimo di volume spaziale d3~x. Tale quantità di carica non di-
pende chiaramente dal riferimento di Lorentz nel quale siamo. Dunque dovrà
essere un invariante

ρd3~x = ρ′d3~x ′ (7.1)

Notiamo poi che anche l’elemento di volume quadri-dimensionale d4x è inva-
riante per trasformazioni di Lorentz, dato che dalla 5.76) segue

det|Λ| = 1 (7.2)

dove Λ è la matrice della trasformazione di Lorentz. Vediamo dunque che

d4x = d4x ′ (7.3)

Questo mostra che la densità di carica si trasforma come dx0 cioè come la
quarta componente di un quadrivettore. Consideriamo adesso la relazione

ρd3~xdxµ = ρ
dxµ

dx0
d4x (7.4)
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Poiché ρd3~x è invariante il primo membro di questa relazione si trasforma
come un quadrivettore. E siccome d4x è invariante, segue che

ρ
dxµ

dx0
(7.5)

deve trasformarsi come un quadrivettore. Definiamo allora la quadricorrente
come

jµ = ρ
dxµ

dx0
= (ρ, ρ~v/c) ≡ (ρ, ~J/c) (7.6)

Quindi la parte spaziale di jµ è la usuale densità di corrente divisa per c.
Ricordiamo che vale la condizione di continuità

∂ρ

∂t
+ ~∇ · ~J = 0 (7.7)

Introduciamo la notazione

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,

∂

∂~x

)
(7.8)

e consideriamo la quadri-divergenza di jµ Si ha

∂µj
µ =

1

c

∂ρ

∂t
+ ~∇ ·~j =

1

c

∂ρ

∂t
+

1

c
~∇ · ~J = 0 (7.9)

dove abbiamo usato appunto la condizione di continuità. Questa proprietà si
riassume dicendo che il quadrivettore jµ rappresenta una corrente conservata
o che ha quadri-divergenza nulla.

Osserviamo che j2 è un invariante di Lorentz che vale

j2 = ρ2(1− v2/c2) =
ρ2

γ2
(7.10)

Dunque l’espressione

ρ0 =
1

γ
ρ = ρ

√
1− β2 (7.11)

è un invariante di Lorentz e rappresenta la densità di carica nel riferimento
in cui la particella è ferma. Potremo dunque scrivere la corrente nella forma

jµ =
ρ0√

1− β2

dxµ

dx0
=

ρ0

c

dxµ

dτ
=

ρ0

c
vµ (7.12)

95



Per un sistema di N particelle materiali puntiformi la densità di corrente
~J(~x, t) e di carica ρ(~x, t) sono date da

~J(~x, t) =
∑

n

enδ3(~x− ~xn(t))
d~xn(t)

dt
(7.13)

ρ(~x, t) =
∑

n

enδ3(~x− ~xn(t)) (7.14)

La carica totale si ottiene integrando la componente temporale di jµ

Q =

∫
d3xj0(x), (7.15)

che è costante nel tempo. Infatti si ha

d

dt
Q =

∫
d3x

∂j0(x)

∂t
= −

∫
d3x

∂J i(~x, t)

∂xi
, (7.16)

dove è sottintesa la somma su i. L’ultimo integrale, tramite il teorema di
Stokes 1, è un integrale di superficie che si può pensare estesa all’infinito,
dove la corrente è nulla. Quindi è zero. Dunque l’affermazione che la quadri-
divergenza della corrente è zero è equivalente ad affermare la costanza nel
tempo dell’integrale spaziale della componente temporale e viceversa (come
si può vedere subito).

7.2 La forma covariante delle equazioni di Max-

well.

Il risultato principale della sezione precedente è l’aver mostrato che jµ è un
quadrivettore. Questo è un ingrediente essenziale per determinare la forma
covariante delle equazioni di Maxwell.

Scriviamo le equazioni di Maxwell, nelle unità Heaviside-Lorentz (vedi
Appendice A.1)

1Il teorema di Stokes si può applicare alla forma ω = J1dx2dx3 + ciclic., il cui
differenziale è dω = ∂J i/∂xid3x.
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a) ∇ · ~E = ρ

b) ∇ · ~B = 0

c) ∇∧ ~E = −1

c

∂ ~B

∂t

d) ∇∧ ~B =
1

c
~J +

1

c

∂ ~E

∂t
(7.17)

Notare che l’equazione di continuità è conseguenza di queste equazioni.
Infatti si può ricavare prendendo la divergenza dell’equazione (d), tenendo
conto del fatto che la divergenza di un rotore è zero, e infine utilizzando
l’equazione (a). Definiamo adesso un tensore di Lorentz del secondo ordine,
antisimmetrico

F µν = −F νµ (7.18)

tale che1

F 0i = −Ei, F ij = −εijkB
k (7.19)

dove ~E e ~H sono rispettivamente il campo elettrico ed il campo magnetico
nel vuoto. Queste equazioni possono anche essere scritte in forma matriciale

F =‖ F µν ‖=




0 −Ex −Ey −Ez

+Ex 0 −Bz +By

+Ey +Bz 0 −Bx

+Ez −By +Bx 0


 (7.20)

È facile verificare che le equazioni di Maxwell (a) e (d) si possono scrivere in
forma compatta

∂F µν

∂xµ
= jν , (7.21)

mentre le equazioni (b) e (c) si scrivono

εµνρλ ∂Fρλ

∂xν
= 0, (7.22)

1Notiamo che al primo membro si ha un tensore di Lorentz e quindi la posizione in
alto od in basso degli indici è rilevante. le quantità a secondo membro sono invece vettori
spaziali e quindi la posizione degli indici è irrilevante
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dove εµνρλ è il tensore di Ricci totalmente antisimmetrico e che vale 1 o -1
secondo che gli indici siano in un ordine che sia una permutazione pari o
dispari rispetto alla permutazione (0, 1, 2, 3). Il tensore

εµνρλFρλ (7.23)

si chiama tensore duale di F . Come abbiamo detto F è un tensore antisim-
metrico di rango due. Ciò si verifica dall’equazione (7.21), dove il secondo
membro sappiamo che è un quadrivettore e naturalmente xµ è anche un qua-
drivettore. Ciò garantisce il carattere tensoriale di F , come si può verificare
anche esplicitamente.

Quindi le equazioni di Maxwell sono adesso scritte in forma covariante.

7.3 Le proprietà di trasformazione dei campi.

Un tensore di rango 2 si trasforma sotto trasformazione di Lorentz con la
legge

F ′µν
= Λµ

αΛν
βFαβ (7.24)

che può essere riscritta in forma matriciale come

F ′ = ΛFΛT (7.25)

con la matrice F definita in (7.20). Da questa equazione si possono ricavare

le proprietà di trasformazione dei campi ~E e ~H. Consideriamo il caso di una
trasformazione di Lorentz come in (3.33) per la quale la matrice Λ è data da2

Λ =‖ Λµ
.ν ‖=




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


 (7.26)

Effettuando il prodotto matriciale si ottiene

F ′ =




0 −Ex −γ(Ey − βBz) −γ(Ez + βBy)
Ex 0 −γ(Bz − βEy) γ(By + βEz)

γ(Ey − βBz) γ(Bz − βEy) 0 −Bx

γ(Ez + βBy) −γ(By + βEz) Bx 0




(7.27)

2Ricordarsi che x0 = ct.
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Dunque

E ′
x = Ex, E ′

y = γ(Ey − βBz), E ′
z = γ(Ez + βBy)

B′
x = Bx, B′

y = γ(By + βEz), B′
z = γ(Bz − βEy) (7.28)

dove ~E e ~B sono i campi misurati nel sistema S e ~E ′ e ~B′ sono i campi
misurati nel sistema S ′, che si muove rispetto a S con velocità ~v = v~i. Pos-
siamo facilmente estendere queste trasformazioni alle componenti parallele e
perpendicolari dei campi rispetto alla velocità notando che

~E‖ = Ex
~i, ~E⊥ = Ey

~j + Ez
~k

~B‖ = Bx
~i, ~B⊥ = By

~j + Bz
~k (7.29)

e

~v ∧ ~E = −vEz
~j + vEy

~k

~v ∧ ~B = −vBz
~j + vBy

~k (7.30)

Segue allora

~E ′
‖ = ~E‖, ~E ′

⊥ = γ( ~E⊥ + ~v ∧ ~B/c)

~B′
‖ = ~B‖, ~B′

⊥ = γ( ~B⊥ − ~v ∧ ~E/c) (7.31)

La trasformazione inversa si ottiene scambiando ~E e ~B con ~E ′ e ~B′ e ~v
con −~v. Dunque le componenti parallele alla velocità non si trasformano,
mentre si trasformano quelle perpendicolari. Notiamo che il secondo termine
nell’espressione di ~E ′

⊥ al primo ordine in v/c, altro non è che la forza di

Lorentz. Anche il secondo termine in ~B′
⊥ ha una semplice interpretazione.

Consideriamo una carica ferma nel riferimento S. nel riferimento S ′ verrà
vista in moto con velocità −~v. Quindi S ′ vedrà un campo magnetico la cui
espressione per un intervallo di percorso infinitesimo è

~B′ = i
d~̀∧ ~r

4πcr3
(7.32)

Ma
id~̀ = ρdV (−~v) (7.33)

E posto q = ρdV , la carica nell’elemento di volume dV , il campo visto in S ′

risulta
~B′ = − q

4πc

~v ∧ ~r

r3
= −1

c
~v ∧ ~E (7.34)

che, al primo ordine in v/c coincide con il secondo termine in ~B′
⊥.
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7.4 Potenziali di gauge

Ricordiamo che il potenziale vettore ed il potenziale scalare sono definiti
tramite le relazioni

~E = −1

c

∂ ~A

∂t
− ~∇φ, ~B = ~∇∧ ~A (7.35)

Con le definizioni che abbiamo dato per il tensore elettromagnetico F µν ,
introducendo

Aµ = (φ, ~A) (7.36)

si vede subito per sostituzione che

F µν = ∂µAν − ∂νAµ (7.37)

In questo modo le equazioni omogenee di Maxwell (7.22) sono automatica-
mente soddisfatte dato che

εµνρσ
∂F ρσ

∂xν

= εµνρσ∂
ν(∂ρAσ − ∂σAρ) = 0 (7.38)

per l’antisimmetria dl tensore di Ricci. Le equazioni non omogenee (7.21)
diventano

¤Aµ − ∂µ(∂νA
ν) = jµ (7.39)

dove

¤ = ∂µ∂
µ =

1

c2

∂2

∂t2
− ~∇2 (7.40)

è l’operatore di D’Alembert in quattro dimensioni spazio-temporali.
Ovviamente il quadri-potenziale Aµ non è univocamente definito, dato

che se effettuiamo la trasformazione (detta di gauge)

Ãµ = Aµ + ∂µχ (7.41)

dove χ è una arbitraria funzione di xµ si ha

F ′
µν = ∂µA

′
ν − ∂νA

′
µ = Fµν (7.42)

Quindi i campi rimangono invariati sotto una trasformazione di gauge. In
termini delle componenti si ha

~A → ~A− ~∇χ, φ → φ +
1

c

∂χ

∂t
(7.43)
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Questa libertà permette di fissare di imporre una condizione su Aµ o come
si dice di fissare il gauge per semplificare le equazioni. Una scelta comune è
quella del gauge di Lorentz

∂µA
µ = 0 (7.44)

in cui le equazioni di Maxwell per i potenziali, equazioni (7.39) diventano le
equazioni di D’Alembert

¤Aµ = jµ (7.45)

che, in particolare mostra che i potenziali, e quindi anche i campi, soddisfano
l’equazione delle onde.
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Appendice A

Appendice sulle unità di
misura.

A.1 Equazioni di Maxwell

Le unità di misura relative tra i campi elettrici e magnetici e le densità di
carica e di corrente sono a priori arbitrarie (nel senso che dipendono dalle
unità scelte). Quindi la forma più generale delle equazioni di Maxwell che
tenga conto di tale ambiguità





∇ · ~E = 4πk1ρ

∇ · ~B = 0

∇∧ ~E = −k3
∂ ~B

∂t

∇∧ ~B = 4πk2α~J + k4
∂ ~E

∂t

(A.1)

Alle equazioni di Maxwell occorre aggiungere l’equazione di continuità, che
non contiene costanti arbitrarie, dato che fissata l’unità di carica rimane
fissata anche quella di corrente, quindi

∂ρ

∂t
+ ~∇ · ~J = 0 (A.2)
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Una ulteriore costante arbitraria appare nell’espressione della forza che i
campi elettrici e magnetici applicano ad una carica q

~F = q

(
~E +

~v

α
∧ ~B

)
(A.3)

Nel termine del campo elettrico non appare una costante perché la si può
assorbire nella definizione della carica. Queste cinque costanti sono correlate,
infatti si possono stabilire tre relazioni tra di loro. Prendendo la divergenza
della quarta equazione di Maxwell (A.1) si ha

0 = 4πk2α~∇ · ~J + k4
∂

∂t
~∇ · ~E = 4πk2α~∇ · ~J + 4πk4k1

∂ρ

∂t
(A.4)

dove si è fatto uso della prima delle equazioni (A.1). La compatibilità con
l’equazione di continuità richiede

k4 = α
k2

k1

(A.5)

Il calcolo della forza per unità di lunghezza che agisce tra due fili indefiniti
posti a distanza d e percorsi da correnti I1 e I2 si riconduce al calcolo della
forza di Lorentz del campo magnetico generato da una delle correnti. Questo
campo può a sua volta essere determinato in termini della corrente dalla
quarta delle (A.1). Quindi si vede subito che la forza è proporzionale a k2

dF

d`
= 2k2

I1I2

d
(A.6)

In modo analogo la forza tra due cariche statiche (forza coulombiana) si
determina dalla prima equazione di Maxwell e dalla relazione tra forza e
campo elettrico. Si trova

F = k1
q1q2

r2
(A.7)

Vediamo dunque che le dimensioni del rapporto k1/k2 sono

[
k1

k2

]
=

[
`2 · F ·Q−2

(F`−1) · ` ·Q−2 · t2
]

=

[(
`

t

)2
]

=
[
v2

]
(A.8)

Quindi questo rapporto non dipende dalle unità di misura usata per la ca-
rica elettrica e può essere misurato sperimentalmente facendo uso solo delle
definizioni di unità meccaniche. Il risultato è che

k1

k2

= c2 (A.9)
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dove c è la velocità della luce. Prendendo poi il rotore della quarta equazione
di Maxwell con corrente nulla, si ha

~∇∧ (~∇∧ ~B) =
α

c2

∂

∂t
~∇∧ ~E = −αk3

c2

∂2 ~B

∂t2
(A.10)

dove abbiamo usato la terza equazione di Maxwell. D’altra parte si ha

(~∇∧ (~∇∧ ~B)i =
3∑

j,k,l,m=1

εijk∂j(εklm∂lBm) =
3∑

j,l,m=1

(δilδjm − δimδjl)∂j∂lBm =

= ∂i(~∇ ·B)−∆2Bi = ∆2Bi (A.11)

dove si è usato la seconda delle (A.1). Pertanto

αk3

c2

∂2 ~B

∂t2
−∆2 ~B = 0 (A.12)

Questa è l’equazione delle onde e dato che le onde elettromagnetiche si
propagano con velocità pari a c segue

αk3 = 1 (A.13)

Riassumendo si sono trovate le seguenti tre relazioni tra le cinque costanti
ki, i = 1, · · · , 4 e α

k1

k2

= c2, k3 =
1

α
, k4 =

α

c2
(A.14)

Quindi ne possiamo fissare arbitrariamente due.
Nel sistema SI si fa la scelta

k1 =
1

4πε0

= 10−7c2, k2 =
µ0

4π
= 10−7, k3 = 1, k4 =

1

c2
, α = 1

(A.15)
e quindi 




∇ · ~D = ρ

∇ · ~B = 0

∇∧ ~E = −∂ ~B

∂t

∇∧ ~H = ~J +
∂ ~D

∂t

(A.16)
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dove abbiamo definito ~D e ~B legati ai campi elettrici e magnetici ~E e ~B da

~D = ε0
~E, ~B = µ0

~H (A.17)

Nel sistema di Heaviside-Lorentz, che è quello usato nel testo, si ha

k1 =
1

4π
, k2 =

1

4πc2
, k3 =

1

c
, k4 =

1

c
, α = c (A.18)

e quindi le equazioni di Maxwell si scrivono in questo sistema





∇ · ~E = ρ

∇ · ~B = 0

∇∧ ~E = −1

c

∂ ~B

∂t

∇∧ ~B =
1

c
~J +

1

c

∂ ~E

∂t

(A.19)

mentre la forza di Lorentz è data da

~F = q

(
~E +

1

c
~v ∧ ~B

)
(A.20)

Abbiamo riportato le equazioni di Maxwell in questo sistema perchè è quello
spesso usato quando si discute di relatività. Infatti in questo sistema risulta
più evidente il fattore c, ed è anche più utile per porre queste equazioni in
una forma covariante.

A.2 Unità di energia

Per unità di energia abbiamo usato l’eV, che è stato definito come l’energia
acquistata da un elettrone nell’attraversare la differenza di potenziale di 1
Volt.

Tenuto conto che la carica di un eletrone è data da

e = 1, 602 · 10−19Coulomb, (A.21)

si ha
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1eV = 1, 602 · 10−19Coulomb Volt. (A.22)

Dato che 1Coulomb Volt = 1Joule = 10−7erg, si ha

1eV = 1, 602 · 10−12erg. (A.23)

Le masse dei nucleoni sono date da

{
mp = 931, 494 · 1, 007276 = 938, 272 MeV,

mn = 931, 494 · 1, 008666 = 939, 565 MeV,
(A.24)

dove il fattore 931, 494 è il fattore di conversione da u.m.a. a MeV.
Notare che adesso la massa del protone è inferiore alla massa data nella

(6.64), che è quella dell’atomo di idrogeno 1
1H.
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