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Capitolo 1

La graduale affermazione del
principio di relativita

1.1 Il principio di relativita in meccanica e le
trasformazioni di (alileo

Nella seconda meta dell’800 il successo della teoria dell’elettromagnetismo
di Maxwell pose il problema del suo raccordo con la meccanica di New-
ton. Questo problema si puo sinteticamente riassumere in un problema
di scelta del sistema di riferimento. Supponiamo infatti che le equazioni
di Maxwell valgano in un particolare sistema di riferimento inerziale, se si
trasformano in un altro sistema di riferimento inerziale, mediante una trasfor-
mazione di Galileo, la forma delle equazioni viene alterata. Cioe le equazioni
non sono invarianti in forma e non soddisfano il principio di relativita di
Galileo.

Inoltre il parametro c, cioe la velocita della luce, che compare nelle
equazioni, viene alterato.

Quindi, fintanto che si assumono le trasformazioni di Galileo come legge
di trasformazione, le equazioni di Maxwell valgono in un dato sistema di
riferimento e solo in quello. Resta il problema di stabilire qual’e questo
sistema privilegiato.

Rivediamo brevemente il concetto di sistema di riferimento inerziale.

Nella meccanica di Newton si definisce inerziale un sistema di riferimento
se, rispetto ad esso, un corpo libero, cioe non soggetto a forze delle quali sia
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possibile rintracciare la causa, si muove di moto rettilineo uniforme. Dato
perdo un sistema inerziale, tutti i sistemi di riferimento in moto rettilineo
e uniforme rispetto a questo sono anch’essi inerziali. Quindi non esiste un
criterio per scegliere un determinato sistema rispetto ad un altro.

Da un punto di vista sperimentale pero la situazione ¢ un po diversa.
E ovvio che il riferimento terrestre non ¢ inerziale. Il sistema concreto che
piu si avvicina ad un sistema inerziale ¢ quello astronomico, con 1’origine nel
centro del sole e gli assi orientati secondo le stelle fisse.

Questo ¢ il sistema che puo essere identificato con lo spazio assoluto
postulato da Newton.

Consideriamo ora due sistemi inerziali S e S’, ciascuno con un definito
sistema cartesiano di coordinate, per cui il vettore di posizione # di un punto
generico P abbia in S le coordinate (x,y, z) e il vettore di posizione 7' dello
stesso punto P abbia in S’ le coordinate (2, v/, 2').

Se S’ si muove rispetto ad S con velocita costante e uniforme v, si ha la
seguente trasformazione di Galileo:

o =7 — 0t (1.1)

dove 7 e 2/ individuano lo stesso punto nei due sistemi di riferimento e t e il
tempo. Per semplicita nella (1.1) si & assunto che all’istante t = 0 le origini
di S e di ' coincidano e poniamo ' = 0. Alla (1.1) va aggiunta

t =t (1.2)

che completa la trasformazione di Galileo (questa impostazione in cui si cam-
bia il riferimento mentre il sistema fisico, in questo caso il punto P, resta
invariato si chiama punto di vista passivo).

Si verifica facilmente che le leggi Newtoniane del moto sono invarianti in
forma sotto la trasformazione (1.1) e (1.2). Si ha infatti derivando rispetto
atla (1.1) e tenuto conto della (1.2)

=i — 7, (1.3)

dove @ e u sono la velocita del punto considerato, descritto da 7 e a’
rispettivamente.
Dalla (1.3) e dalla (1.2) segue

s A7
ar? — de2’




e quindi da

Pr -
—=F 1.5
segue
2 -
m = F (1.6)

dove si € posto F=Fem=m , poiché nella meccanica Newtoniana la
massa e la forza sono quantita assolute.

Tuttavia, la legge di trasformazione delle velocita (1.3) fa si che le equazioni
di Maxwell non siano invarianti, come si & gia osservato.

L’equivalenza dei sistemi di riferimento inerziali viene elevata a principio:
il principio di relativita stabilisce che tutti i sistemi di riferimento inerziali
sono equivalenti riguardo alle leggi della meccanica e che in nessun modo os-
servando fenomeni (di natura meccanica) in un dato riferimento sia possibile
stabilire il suo moto relativo rispetto ad un altro sistema.

Ricaviamo dalle (1.2) e (1.3) la legge di trasformazione dei moduli delle
velocita e dei loro angoli, che saranno utili in seguito.

Poniamo u = ||, v/ = |[u/| e v = |7]. Scegliamo gli assi del nostro
riferimento con 'asse delle x parallelo a v. Ne segue

!/
T Uy — 0,
r_
U, = Uy, (1.7)
/
; Us.

La velocita u puo essere quella di un corpo materiale che effettua un moto
arbitrario. Il piano formato da @ e ¢ ad un certo istante & anche il piano in
cui giace v/ = @ — . In questo piano siano 6 e ¢’ gli angoli formati da @ e o/
con |'asse delle x.

Allora avremo dalla Fig.(1.1)

ucost —v = ucost,
usinf = u'siné’. (1.8)
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Figura 1.1: Sistemi inerziali in moto relativo e composizione delle velocita

Da queste ricaviamo: dividendo la seconda per la prima

sin 0
tanf = ——— 1.9
an cos O — % (1.9)

e, quadrando e sommando:

u = (u? + v — 2uw cos 0)Y?,
o anche

u :u[1+(%)2 —2(%)C089]1/2. (1.10)

Concludendo, possiamo dire che l'invarianza della seconda legge della
dinamica, sotto trasformazioni di Galileo, stabilisce la sua validita in ogni
sistema di riferimento inerziale.

Abbiamo gia osservato che le equazioni di Maxwell non sono invarianti
per trasformazione di Galileo. Esse devono percio valere in un determinato
sitema di riferimento, che fu identificato col sistema assoluto, del quale si e
parlato piu sopra.



Poiché questo riferimento assoluto non puo essere il riferimento terrestre,
per la ben nota presenza di effetti non inerziali (forza centrifuga, forza di
Coriolis), la velocita della luce misurata in un laboratorio terrestre dovra
differire dal valore di ¢ secondo la regola (1.3), dove ¢ sara ora la velocita
della terra rispetto al riferimento assoluto, u = c e ' 1a velocita osservata.

Nasce quindi il problema di determinare la velocita della luce nel riferi-
mento terrestre per verificare la (1.3) e determinare percio il moto del riferi-
mento terrestre rispetto al riferimento assoluto. Cio porterebbe ad una veri-
fica del principio di relativita della meccanica da un lato, ma anche alla verifi-
ca del principio di relativita esteso ai fenomeni elettromagnetici (detto anche
principio di relativita speciale). Quest’ultimo principio estende il principio di
relativita di Galileo a tutte le leggi della fisica, con ’esclusione della gravita.

Se sia possibile o meno determinare la velocita del laboratorio rispetto al
riferimento assoluto, cioe la sua velocita assoluta, sara stabilito solo
dall’esperimento.

In effetti furono eseguiti tutta una serie di esperimenti di questo tipo, ma
parleremo solo di alcuni di questi.

Prima di cio e pero necessario studiare come si trasformano le caratteris-
tiche di un’onda piana da un sistema inerziale ad un altro.

1.2 Invarianza della fase di un’onda piana

In questa sezione (e solo in questa) adotteremo il punto di vista che le
equazioni dell’elettromagnetismo siano valide in uno specifico sistema in-
erziale, cioe in un sistema a riposo rispetto all’etere. Con questo termine
veniva indicata una sostanza che realizzava il concetto di spazio assoluto di
Newton, nel senso che era per definizione un sistema di riferimento inerziale
e era, allo stesso tempo il supporto necessario alla propagazione delle onde
elettromagnetiche.

La legge di trasformazione da un sistema inerziale S ad un altro S’ sara
ancora quella della relativita Galileiana.

Consideriamo ora un’onda elettromagnetica piana e monocromatica 1),
che si propaga nel vuoto nella direzione del versore 77 con frequenza angolare
w e lunghezza d’onda . Quest’onda si puo scrivere

n-T

(@, t) = Acos [w(t — T)], (1.11)



Figura 1.2: Il fronte di un’onda piana

dove

7. .2
w = 27v; ﬂ:k; \k]:—W;
c A

e dove k ¢ il vettore di propagazione e ¢ ¢ la velocita della luce, ¢ ~ 3 1010%’;
(il dato pili recente & ¢ = 2,99792458 1010<2)
La fase di quest’onda &

i =1, (1.12)

F(7,1) = w(t — %f). (1.13)

Vogliamo dimostrare che F' ¢ invariante, nel senso che il suo valore nu-
merico e lo stesso sia che si misuri in S che in S’.

Infatti, supponiamo che nel punto P (vedi la Fig.(1.2) ) sia situato un
osservatore e che questo osservatore conti i picchi d’onda via via che questi
lo sorpassano.

Supponiamo anche che il picco d’onda che, al tempo ¢t = 0, passa per
I'origine sia provvisto di un segnale di riconoscimento.

Se l'osservatore in P comincia a contare i picchi d’onda a partire dal
momento in cui viene sorpassato dal picco segnato, si ha che conta zero picchi



dal tempo zero fino al tempo é (dove [ & la distanza indicata in Fig.(1.2) e é
¢ il tempo che I'onda impiega dall’origine al punto Q).

Dal tempo % fino al tempo t, cioe al tempo in cui si calcola la F' (1.13),
I'osservatore in P conta un numero di picchi che ¢ dato dal numero di picchi
per secondo, cioe dalla frequenza v, per il tempo trascorso; quindi

vt — ). (1.14)

c
Poiché

=17, (1.15)

si ha che questo numero ¢ la fase F'.

Sia ora P’ il punto che al tempo t = t’ coincide con P e che si muove
solidalmente con S’, & cioe un osservatore in S’. P’ raggiunge quindi P al
tempo t, ma, prima di raggiungerlo, conta il numero di picchi d’onda che
lo superano (o che supera, se v ¢ maggiore della velocita di propagazione
dell’onda) e che arriveranno in P, a partire da quello segnato.

Questo e anche il numero contato da P, si ha percio

Vit — l—/) =v(t— £) (1.16)
o4 c’’
cioe la fase F' ¢ invariante.

Da questa invarianza si ricavano le regole di trasformazione della fre-
quenza e della direzione dell’onda. Infatti la (1.16) vale per qualunque #' e
#’. Quindi si ha, per le (1.1) e (1.2):

n -l i (2 + Ut
"t — =t — ——2 1.17
(=" < R (117)
e, uguagliando i coefficienti di ' e ':

V=1 - Y, (1.18)

c

—/ —
= (1.19)

c c

La (1.19)ci dice che i vettori 77 e 7i’ sono paralleli e che, essendo vettori
unitari, sono uguali



n =i, (1.20)
inoltre si ha che
vVov

In definitiva le formule che descrivono la legge di trasformazione delle
caratteristiche di un’onda e.m. sono le (1.18), (1.20) e (1.21). In particolare
la (1.18) da conto dell’effetto Doppler.

1.3 L’effetto Doppler

L’equazione (1.18) rende conto dell’effetto Doppler, cioe della variazione della
frequenza della radiazione elettromagnetica (e.m.) emessa da una sorgente
in movimento rispetto all’osservatore. v/ ¢ la frequenza misurata nel sistema
di riferimento S’ mentre v ¢ la frequenza, ¢ la velocita e 71 la direzione della
radiazione nel sistema S.

L’equazione (1.18) non puo pero essere usata direttamente, perche anche
la sorgente avra un moto rispetto al riferimento assoluto. La possiamo appli-
care successivamente a tre sistemi di riferimento: il sistema .S, nel quale la
sorgente € a riposo, il sistema S che e 'ipotetico sistema assoluto e il sistema
S’ dove l'osservatore ¢ a riposo. Le frequenze corrispondenti saranno v,, v
e V. La velocita della radiazione sara assegnata in S, dove per ipotesi ¢ la
velocita c.

Tenuto conto di cio avremo che vale la (1.18) e

- =

n - Vo

vo =v(l— ), (1.22)

C

dove v, e la velocita della sorgente rispetto al riferimento assoluto.
Dalle (1.18) e (1.22) si ha

1-— 1%
v = VolT’ (123)

oz 0|3L

dove ¥ e la velocita dell’osservatore rispetto al riferimento assoluto.
In questa equazione non compare piu la frequenza incognita v.
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Notare che v — v, = v, & la velocita relativa dell’osservatore rispetto alla
sorgente. Questa e le frequenze v, e 1/ possono essere misurate. Anche la
direzione 7 € nota. Quindi la (1.23) puo essere utilizzata per determinare la
velocita assoluta v.

Tuttavia sia ¢’ che ¥, sono molto piccole rispetto alla velocita della luce (o
meglio, lo erano per gli esperimenti che erano stati progettati). Se allora si
sviluppa la (1.23) nei termini g e %" si ha che solo i termini del primo ordine
sono determinabili con ’esperimento. Tuttavia questi termini non dipendono
dalla velocita assoluta v,. Infatti si ha

B LAY iy A0 [ G2 (1.24)

e il termine del primo ordine dipende solo da v,.

L’effetto Doppler si puo osservare nello spettro delle stelle: le linee spet-
trali sono spostate verso il violetto o verso il rosso, secondo che la terra,
nel suo moto annuale, si muove verso la stella o se ne allontana. Tuttavia
la velocita della terra, nella sua orbita attorno al sole e rispetto al sistema
di riferimento astronomico (delle stelle fisse), ha una velocita di circa 310°
cm/sec, e le stelle hanno una velocita dello stesso ordine di grandezza. Quindi
si ha v/c- ~ 107, e i termini del secondo ordine risultavano trascurabili.

1.4 Velocita di fase, velocita di gruppo e aber-
razione della luce

Ricavando ¢ dalla (1.21), con l'uso della (1.18), si ha

d=c—(i-7). (1.25)
Questa equazione permetterebbe in linea di principio la determinazione
dela velocita assoluta della terra v, misurando ¢’ e data ¢. Queste misure
furono fatte (Fizeau 1848; Foucault 1865), ma non fu rilevata alcuna influenza
del moto della terra sulla velocita della luce. In altre parole la velocita della
luce risulto invariata, in accordo con il principio di relativita speciale, per cui
il valore di ¢, che compare nelle equazioni di Maxwell, non puo variare da un
sistema di riferimento inerziale ad un altro.
Tuttavia va osservato che la (1.25) & ricavata dalle formule di trasfor-
mazione delle caratteristiche di un’onda, mentre gli esperimenti sulla veloc-
ita della luce devono essere interpretati in termini di pacchetti d’onda, e
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quindi in termini di velocita di gruppo. Poiché queste due grandezze hanno
importanza di carattere generale, apriamo una parentesi per discuterli.

1.4.1 La velocita di fase e la velocita di gruppo

Sia f(#,t) un segnale e.m.. Per esempio puo essere una componente del
campo elettrico o magnetico. Possiamo rappresentarlo come trasformata di
Fourier

—

F(@ 1) = / A(R)e~ e Ri—Ra g3 (1.26)

In questa relazione w e una funzione assegnata di k, determinata dall’e-

quazione d’onda. Questa relazione tra la frequenza angolare w e il vettore
di propagazione k si chiama relazione di dispersione. Il rapporto ﬁ e la
velocita di fase vy ed ¢ la velocita di propagazione di quell’onda che ha come

2
-
propagazione della luce nel vuoto si ha w = C|E| Quindi, la velocita di fase
¢ costante ed e uguale a c.

Se f rappresenta un pacchetto 'ampiezza di Fourier A ¢ una funzione
con un massimo ben definito per un determinato valore di k = k.. Poniamo
wo = w(ko).

L’esponente si puo approssimare nel modo seguente

vettore di propagazione k e come lunghezza d’onda \ = Nel caso della

wk)t — k-7 =
= [wo + Vw(ks) - (k— k)t —k -7 =
= (ot — ko - T) + (k — ko) - [Vew(ko)t — ] (1.27)
e poniamo
F(@t) = exp (wot — ko - T)M(Z, 1), 1.28)
M(Z,t) = [ A(k)exp{—i(k — k) - [Vw(ko)t — Z]|}dF, (1.29)
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dove M e il fattore modulante, mentre I’esponenziale a fattore rappresenta
I’onda portante.

La velocita di gruppo e definita dalla condizione M (Z,t) = costante; ci0
significa che, fissati i valori iniziali Z, e t,, dopo un tempo t & dovra essere
tale da soddisfare la condizione di costanza di M, ovvero ¥ sara una funzione
del tempo.

Da cio segue

M (Z(t),t) = costante,
da cui
OM (Z,t) N OM (Z,t)
ot or

dove @ ¢ proprio la velocita di gruppo v, cioe la velocita del segnale.
La velocita di fase e la velocita di gruppo in generale non coicidono.
Nel caso di una relazione di dispersione non dispersiva, cioe quando w e

=0, (1.30)

proporzionale a |k|, le due velocita coincidono, altrimenti si dice che si ha
dispersione.

Con la (1.30) si puo calcolare @,. Se si calcolano 8M8(f’t) e ngt) si ha che
OM(Z,t) -~ - OM(Z,1t)
T == —VW(I{?O) . T, (131)
e quindi la (1.30) si puo scrivere
- OM(Zt
(5, — Vw(k,)) . 2MED (1.32)

ox

Questa equazione e soddisfatta se il gradiente di M e nullo od ortogonale a
Uy — ﬁw(lzo) o se infine e nullo il primo fattore. Le prime due condizioni impli-
cano che il segnale non sia un pacchetto, cioe limitato spazialmente, contrari-
amente all’ipotesi. Infatti, nel primo caso si avrebbe M costante in Z e quindi
non delimitato spazialmente e nel secondo si avrebbe M costante nella di-
rezione parallela al primo fattore e quindi ancora non delimitato spazialmente
seppure solo nella direzione parallela al primo fattore. Resta percio

7, = Vw(ks), (1.33)

che determina la velocita di gruppo.
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1.4.2 Legge di trasformazione della velocita di gruppo

Se osserviamo un segnale e.m. in un sistema di riferimento inerziale S,
in moto rettilineo e uniforme rispetto al sistema S, nel quale osserviamo
lo stesso segnale f(Z,t), sappiamo che le sue caratteristiche si trasformano
secondo equazioni (1.18), (1.20) e (1.21). Queste valgono nel caso di un’onda
e.m. e permettono di determinare la regola di trasformazione della velocita
di gruppo.

Si puo pero dimostrare che la regola cosi determinata vale in generale,
anche per altri tipi di onde.

Poiché nel caso e.m. il modulo del vettore di propagazione ¢ dato da

g w
k| =— 1.34
H="2, (134)

e 7 ¢ la sua direzione, 'equazione (1.18) si puo scrivere

W=w—Fk-7. (1.35)

Questa ¢ la legge di trasformazione di w dal sistema S al sistema S’
Tenuto conto dell’espressione per la velocita di gruppo (1.33), si ha che la
velocita di gruppo in S’ cioe ¥, ¢ data da

7 =@, — 7, (1.36)

cioe la velocita di gruppo segue la stessa legge di trasformazione della velocita
di una particella materiale.

Se si confronta la legge di trasformazione (1.36) con la legge di trasfor-
mazione per le velocita di fase (1.25), si vede che sono diverse, salvo il caso
molto particolare in cui ¢ e 77 sono paralleli.

1.4.3 L’aberrazione della luce

Tornando alla determinazione della velocita assoluta della terra, gli esperi-
menti fatti a questo scopo non dettero alcun risultato, pur tenendo conto che
la velocita da considerare ¢ la velocita di gruppo e non quella di fase. E pero
da tener presente che cio ¢ vero per gli effetti del primo ordine in 7. Negli
esperimenti citati (Fizeau), nei quali si misurava la velocita di un raggio di
luce su di un cammino chiuso, la precisione della misura permetteva di tener

conto dei soli termini del primo ordine.
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Figura 1.3: L’aberrazione stellare

Questi esperimenti furono condotti anche in presenza di un mezzo rifrat-
tivo, con gli stessi risultati.

In conclusione, solo con esperimenti in grado di misurare termini di ordine
superiore si poteva sperare di ottenere un risultato significativo, perché allora,
come mostra 'equazione (1.24), si possono misurare termini che dipendono
dalla velocita assoluta.

Prima di passare alla descrizione del piu famoso di questi esperimenti, cioe
quello di Michelson, discutiamo l’altro effetto che si puo ricavare dalla legge
di trasformazione di un pacchetto di radiazione e.m. (1.36), cioe la variazione
della direzione di un raggio luminoso dovuta al moto della sorgente; questo
effetto si chiama aberrazione della luce.

Se 0 e ¢ sono gli angoli tra la direzione di @ con 1, ¥, rispettivamente,
dalla (1.36) si ricava, tenendo conto della Fig. (1.3),

15



v% c?s (0/’) = v, c.os 0) + v, (1.37)
vy sin (0') = wysin (0),
dalle quali, dividendo membro a membro
in (6
tan (¢) = S0 (1.38)

B cos(9)+%’

che e I'espressione per I'aberrazione della luce proveniente da un stella, dove
0" & I'angolo sotto il quale si osserva la stella dal riferimento terrestre e 6 ¢
I’angolo sotto il quale apparirebbe la stella in un riferimento assoluto. v e la
velocita del riferimento terrestre rispetto allo spazio assoluto.
Questa formula ¢ corretta al primo ordine in 7, se con v si intende la
velocita della terra rispetto al riferimento astronomico delle stelle fisse.
Osservare che la (1.38) si puo ricavare dall’analoga (1.9) con la sosti-

tuzione

0 —0+m 0 —0+m, (1.39)

che ¢ dovuta al fatto che gli angoli che si misurano sono appunto quelli
indicati in Fig.(1.3), mentre gli angoli che i vettori @, e ¥, formano con la
direzione di ¥, coerentemente con la Figura (1.1), sarebbero quelli aumentati
di 7 nel senso positivo (antiorario).

Dalle (1.37) si puo ricavare anche il modulo di oj,. Portando v a primo
membro e poi quadrando e sommando si ottiene

U;Q + v = 2v; cos (0') = v, (1.40)

che, risolta in v; (e scegliendo il ramo opportuno) fornisce

vl = \/yg — 02+ (veos (6)2 + vcos (#), (1.41)

che si puo anche riscrivere

vy = Juz -0+ (3 0)2 - (3 2), (1.42)

dove € ¢ il versore di 17;.
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Figura 1.4: Schema dell’interferometro di Michelson

1.5 L’esperimento di Michelson

Abbiamo visto che tutti gli esperimenti citati mostrano accordo con il princi-
pio di relativita esteso ai fenomeni e.m. (indipendenza del moto del sistema
rispetto al sistema assoluto). Tuttavia non avevano ’accuratezza necessaria
per testare i termini del secondo ordine in v/c.

Fu Michelson (A.A.Michelson, 1881, e poi A.A.Michelson e E.W.Morley,
1887) che misuro la velocita della luce con un interferometro con una preci-
sione che permetteva di determinare i termini del secondo ordine in v/c.

In modo estremamente schematico l'interferometro era come indicato in
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Fig.(1.4).

Mediante lo specchio semitrasparente P un raggio di luce proveniente dal-
la sorgente L viene diviso in due parti, un raggio 1 e un raggio 2, mutuamente
perpendicolari.

Il raggio 1 viene riflesso dallo specchio S; verso P, dove una sua parte
viene riflessa ulteriormente nel telescopio T'.

Il raggio 2 viene riflesso dallo specchio Sy verso P e una sua parte at-
traversa P ed entra nel telescopio 7', dove interferisce col raggio 1.

Anche se I'apparato fosse a riposo rispetto all’etere dovremmo osservare
delle frange d’interferenza in T, a causa delle inevitabili differenza nei due
bracci PS; e PSs.

Supponiamo ora che 'apparato sia disposto con il braccio PS; parallelo
alla direzione del moto della terra rispetto all’etere e siano i due bracci uguali
ad [ (in realta vi sara una piccola differenza responsabile dell’'interferenza di
cui abbiamo gia parlato, il cui effetto sara pero eliminato come vedremo pitu
sotto).

Per mezzo dell’equazione (1.42) con v, = ¢ si puo calcolare la differenza di
fase AF dei raggi 1 e 2, dovuta al moto dell’apparato sperimentale nell’etere.

Applicando la (1.42) al caso del percorso PSjy, si ha che € ¢ parallelo a
v, dove U e la velocita della terra rispetto all’etere.

Quindi, per il percorso da P a Sy si ha

vy = ¢ —, (1.43)

mentre per il percorso inverso si ha

v, = c+v. (1.44)

Quindi il tempo ¢; che il raggio 1 impiega per andare da P a S; e ritorno

[ [ 21

c—v c+v ¢ —Z—g)

Per il percorso PS; ed anche per il ritorno Sy P si ha

v =V — 2, (1.46)

g

e il tempo %5 impiegato ¢
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Per AF si ha
21 2l oy l—/1-%
AF = vty — t5) = v[——— — ==XV (148)
c1=%) ¢f1-% ¢ - =

Se si calcola AF al secondo ordine, si ha

2

AF:m%. (1.49)

Se ora si ruota tutto 'apparato di 90° i due percorsi si scambiano e la
differenza di fase diventa —AF. Viceversa, la differenza di fase dovuta alla
piccola differenza dei due bracci resta identica. Quindi, facendo la differenza,
si ottiene 2AF e leffetto della differenza dei bracci si elide.

Il risultato dell’esperimento di Michelson fu che questa differenza di fase
era zero, nonostante che il valore aspettato, dato dalla (1.49), fosse due ordini
di grandezza superiore alla precisione dell’apparato.

Quindi si ha un risultato che indica che il principio di relativita, nella sua
forma estesa, ¢ valido almeno fino al secondo ordine in v/c.
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Capitolo 2

La critica della simultaneita e
la cinematica relativistica

2.1 Critica della simultaneita

L’insieme degli esperimenti sulla velocita della luce avevano determinato se
non la certezza almeno la convinzione della validita del principio di relativita
esteso a tutti i fenomeni (meccanici ed elettromagnetici). In particolare, se si
assumono valide le equazioni di Maxwell, si ha come conseguenza la costanza
del valore numerico ¢ della velocita della luce, che compare nella forma delle
equazioni. Ma questa costanza e in conflitto con il consueto concetto di
velocita e della sua legge di composizione. Ne viene di conseguenza che
dobbiamo rivedere questo concetto.

La misura della velocita in un dato sistema di riferimento inerziale S
richiede la misura di una distanza, per esempio tra un punto A e un punto B
e la misura di una differenza di tempi. Mentre la misura della distanza non
pone particolari problemi, ma solo I'ipotesi di disporre di regoli calibrati a
riposo nel sistema S, la misura della differenza tra il tempo t, di arrivo in B
di una particella partita da A, della quale si vuol misurare la velocita, e il
tempo t; di partenza da A, presenta qualche difficolta.

Il problema e quello della sincronizzare di due orologi situati in punti
diversi, in A e in B. Il metodo di inviare un segnale da A a B, in modo che
se un orologio in A segna il tempo ¢ si possa allora regolare un orologio in
B al tempo di arrivo del segnale cioe al tempo t + [ /v, dove v & la velocita
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del segnale di sincronizzazione e [ ¢ la distanza AB, richiede a sua volta la
misura di una velocita (quella del segnale di sincronizzazione).

Si potrebbe vedere che altri metodi di sincronizzazione portano a conclu-
sioni analoghe, per cui siamo in un circolo vizioso.

Il punto e che il concetto di simultaneita deve essere definito, altrimenti,
come si e visto, non ha significato. La stessa conclusione si ha naturalmente
per il concetto di velocita.

Il punto di partenza per definire cosa si intende per simultaneita ¢ un
insieme di fatti sperimentali sulla propagazione luminosa, tra i quali in par-
ticolare indicheremo 'esperimento di Fizeau, nel quale si misurava la velocita
della luce su di un percorso chiuso, come particolarmente utile al nostro ra-
gionamento. Il risultato dell’esperimento fu che la velocita della luce risultava
¢, cioe lo stesso valore della costante che compare nelle equazioni di Maxwell.

Se eleviamo questo fatto sperimentale a postulato, postulato della costan-
za della velocita della luce, allora potremo usare questo per definire cosa si
intende per simultaneita.

Possiamo ora usare la luce come segnale per sincronizzare tutta una
collezione di orologi, disposti nel riferimento inerziale S in tutti i punti nei
quali si intende effettuare delle misure. Se t, ¢ un istante iniziale segnato
dall’orologio posto in un punto O di riferimento, origine del nostro sistema,
inviando da O un segnale luminoso verso un punto arbitrario P, a distanza
[ da O, distanza misurata a riposo in S, regoleremo l'orologio in P al tempo
to +1/c.

In ogni punto dove abbiamo disposto un orologio potremo sincronizzarlo
con questo procedimento. Per cio che riguarda la definizione di simultaneita
avremo che due eventi, cioe due avvenimenti che si verificano in due determi-
nati punti dello spazio e a due dati tempi, si diranno simultanei se gli orologi
situati nei due punti corripondenti segnano lo stesso tempo.

Compare qui per la prima volta la parola evento, che esprime un concetto
centrale in tutta la teoria della relativita. Il suo significato e facile da spiegare:
si tratta di un fatto (un fatto fisico) che si manifesta in un determinato punto
dello spazio e ad un determinato istante. Come tale precede 'eventuale
descrizione che di esso ne possiamo dare. Se abbiamo scelto un sistema di
riferimento e un sistema di orologi sincronizzati allora potremo assegnare
all’evento una quaterna di numeri (¢, z, y, z).

Tutto cio suona molto naturale. Il punto ¢ che, perché si possa affermare
che questa e una sincronizzazione consistente, occorre dimostrare che e in-
dipendente dalla scelta del tempo iniziale ¢, e che e anche indipendente dalla
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scelta del punto O di riferimento. Il procedimento di sincronizzazione dovra
poi essere ripetuto in ogni sistema di riferimento inerziale.

Sono in particolare questi ultimi due punti che richiedono il ricorso all’es-
perimento citato di Fizeau, e quindi ¢ qui che si rivela il carattere particolare
della luce come mezzo per trasmettere i segnali di sincronizzazione.

2.1.1 Dimostrazione della consistenza della definizione
di sincronizzazione

a)-Il primo punto da dimostrare e 'indipendenza della sincronizzazione dal
tempo iniziale t,. Questo punto e sicuramente soddisfatto poiche, se si hanno
due orologi sincronizzati nel punto O, se uno dei due viene spostato in un
altro punto P, sotto alcune ipotesi del tutto naturali, riacquistera lo stesso
ritmo.

Va notato che non si sta affermando che il ritmo del secondo orologio resta
invariato durante il trasporto, anzi si lascia aperta la possibilita che possa
essere alterato in funzione della velocita, ma una volta posto nuovamente a
riposo in P, non vi & nessun motivo di ritenere che non abbia nuovamente lo
stesso ritmo, se nel trasporto non e stato danneggiato.

E’ chiaro allora che, se si varia il tempo iniziale dell’orologio in O da t, a
t, + 7, avremo che anche 1'orologio in P misurera un tempo aumentato di 7.

Quindi il primo punto e verificato.

Per cio che riguarda il secondo punto facciamo un’osservazione prelim-
inare.

b)-Se un segnale luminoso & inviato dal punto O al punto P e viene
rimandato da P verso O, idealmente senza alcun ritardo, se il tempo iniziale
di sincronizzazione, segnato dall’orologio in O ¢ t,, allora, facendo appello
all’esperienza di Fizeau gia citata, possiamo dire che il tempo impiegato per
tornare in O dal raggio luminoso &

to +2(1/c), (2.1)

dove [ e la distanza di P da O.
Se allora si calcola la differenza del tempo di arrivo in O e del tempo in
cui il segnale era arrivato in P, si ha

[to +2(1/0)] = [t + (/)] = I/c, (2.2)
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cioe il tempo necessario per il percorso OP e uguale a quello per il percorso
inverso PO.

¢)-A questo punto passiamo a dimostrare il secondo punto e cioe che
la sincronizzazione ¢ indipendente dalla scelta del punto di riferimento O.
Per vedere questo consideriamo un secondo punto O’, oltre ad O e P e di-
mostriamo che il tempo che impiega un raggio luminoso emesso da O" per
raggiungere P & dato da l'/c, dove I’ & la distanza tra O e P.

Se dimostriamo questo & chiaro che potremo usare il nuovo punto O’ come
nuova origine, essendo P del tutto arbitrario.

Richiamando ancora una volta ’esperienza di Fizeau, avremo che il tempo
di arrivo in O di un segnale luminoso emesso da O verso O’, riemesso da O’
verso P e poi riemesso da P verso O sara dato da

th=to+ (lo+1'"+1)/c, (2.3)

dove [, ¢ la distanza tra O e O" e I’ ¢ la distanza tra O’ e P.
Se t e il tempo in cui questo segnale transita dal punto P, allora si ha

tv=t+(l/c), (2.4)

per quanto detto in (b). Poiché il tempo in cui il segnale transita per O’
¢ dato da t, = t, + (Io/c), eliminando ¢, dalle due equazioni (2.3), (2.4) e
ricavando t si ha che

t—tl =t — (to+1o)c) = (I'/e), (2.5)

che e quello che si voleva dimostrare.

2.1.2 Relativita della simultaneita

Passiamo ora a considerare un secondo sistema inerziale S’. Anche in S’
potremo costruire un sistema di orologi sincronizzati disposti in vari punti
dello spazio come nel caso di S. Il valore della velocita della luce sara ancora
¢, come sappiamo dai vari esperimenti. Questo sistema di sincronizazione
sara consistente nel modo precedentemente discusso e per le stesse ragioni.
In particolare le distanze saranno misurate mediante regoli a riposo in S’
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Cosi come per S anche in S’ due eventi saranno considerati simultanei se gli
orologi situati nelle corrispondenti posizioni segnano lo stesso tempo.

Ora, cio che avviene ¢ che due eventi simultanei in S non saranno piu
necessariamente simultanei in S’.

Per convincersi di cio consideriamo due eventi che si manifestano in due
punti A e B, a distanza fissa in S; per esempio gli estremi di una sbarra
dai quali vengono emessi due raggi luminosi verso il suo centro. Questi due
eventi si diranno simultanei, relativamente a S, se i due raggi di luce emessi
da A e B si incontrano nel punto di mezzo.

Questo criterio di simultaneita vale anche per S’. Ora, supponiamo che
S’ si muova rispetto a S con velocita v parallela alla congiungente dei due
punti, ovvero alla sbarra. In S’ la velocita della luce & ancora c¢. Quindi,
il punto in S’, che all’istante iniziale coincideva col punto di mezzo e che si
muove solidalmente con S’ con velocita v verso il punto B ¢ il punto di mezzo
per S’, ma, poiche va incontro alla sorgente sara raggiunto dal raggio emesso
da B prima del raggio luminoso emesso da A. Si vede percio che due eventi
simultanei in .S non lo sono pid in 5.

Si conclude che il concetto di simultaneita ¢ relativo (al sistema di riferi-
mento).

2.1.3 Le trasformazioni di Lorentz

Dato un sistema di riferimento Cartesiano nel sistema inerziale .S, un evento
sara caratterizzato dalle coordinate cartesiane (z,y,z) del punto P in cui
I’evento si manifesta e dal tempo t segnato dall’orologio situato in P, sin-
cronizzato secondo la regola che abbiamo discusso. Analogamente, lo stesso
evento, visto in S’ sara caratterizzato dalle coordinate (z/,y’, z’) e dal tempo
t.

Ci proponiamo di determinare la relazione tra le coordinate (z,y, z,t) e
quelle in S" (2/,y/, 2/, ). Questa relazione sara una relazione lineare, poiché
un moto rettilineo uniforme in S dovra manifestarsi come un moto rettilineo
uniforme anche in S’. Infatti se un corpo ¢ libero visto in S, e quindi si muove
di moto rettilineo uniforme, lo sara anche visto in S” (trattandosi di sistemi
inerziali non ci sono problemi con forze apparenti). Quindi rette nello spazio
delle quattro coordinate si devono trasformare in rette. Se oltre a cio si fa
la richiesta che la trasformazione non ammetta singolarita (valori infiniti) al
finito, allora tutto cio implica la linearita della trasformazione.
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Ora, la linearita della trasformazione implica che le rette si trasformano
in rette e i piani si trasformano in piani e che quindi il nuovo sistema di assi di
S’ puo essere scelto come indicato in figura (2.1), cioe con gli assi coordinati
paralleli ai vecchi assi.

Invece di considerare un sistema S’ in moto arbitrario rispetto a .S, cioe
con la velocita ¢’ di S’ rispetto a S con direzione arbitraria, consideriamo per
ora il caso particolare di una velocita diretta secondo I’asse delle z.

Data la legge di trasformazione per questo caso particolare, vedremo poi
come si puo ottenere il caso generale.

Per semplicita facciamo anche la scelta che quando le due origini dei due
sistemi, O e O’ coincidono, i corrispondenti orologi siano regolati al tempo
zero t = t' = 0. Cio implica che la trasformazione lineare ¢ omogenea.

Siano allora gli assi Cartesiani dei due sistemi S e S’ come nella figura
(2.1).
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In particolare, il piano y = a = costante, parallelo al piano (z,z), si
trasforma nel piano iy’ = o’ = costante. Ma si ha anche ¢y = Az + By+Cz+
Dt,percui A=C=D=F =0ey = By, dove la costante B = a'/a puo
dipendere a priori dalla velocita v.

Se ora si invertono gli assi z e z e 2’ e 2’ si ha che le relazioni y = a e
y' = d restano invariate, ma i ruoli di S ed S’ si scambiano, poiché ora e S
che si muove con velocita v rispetto a S’. Infatti la velocita di S’ rispetto a
S non dipende da come si scelgono gli assi del sistema di riferimento e quindi
resta invariata come direzione, con il risultato che adesso e orientata secondo
I'asse negativo delle z e 2’. Percid avremo B = a/d’, da cui B? = 1.

Notare che qui si applica il principio di relativita, poiché si assume che
misure eseguite un due sistemi inerziali, quali sono S e S’, nelle stesse
condizioni, diano lo stesso risultato.

E’ chiaro che dovremo scegliere la soluzione B = +1, poiché le direzioni
positive di y e 3 sono le stesse.

Siamo arrivati alla conclusione

y=1y. (2.6)

In modo analogo si trova

z=2\ (2.7)

Quindi, le lunghezze trasverse al moto relativo dei due sistemi restano
invariate.

Passando a considerare 2, questa coordinata ¢ lineare nelle vecchie coor-
dinate, ma, siccome si annulla per x = wvt, che ¢ 'ascissa di O’ al tempo t,
misurata in S, dovremo avere

' =~y(x —vt), (2.8)

dove v € una costante, che puo dipendere da v. Ma lo stesso argomento si
puo usare per O, cioe per ' = —uvt’ si deve avere x = 0, poiché —v ¢ la
velocita di O misurata nel sistema S’. Quindi si ha anche

x=7'(2' +vt'), (2.9)

dove 4/ & un’altra costante.
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Possiamo adesso sfruttare 'argomento usato precedentemente, e cioe che
se si invertono gli assi = e z e anche 2’ e 2’ si scambiano i ruoli di S e S, cioe
¢ S ora che si muove con velocita v rispetto a S’.

Quindi, dalla (2.8), cambiando il segno di x e di #/, si ha

' = y(x + vt), (2.10)

e dovremo ottenere lo stesso risultato scambiando le coordinate del sistema
S con quelle del sistema S’ nella (2.9)

' =5'(z + vt). (2.11)

Infatti 'inversione delle coordinate seguito dallo scambio dei ruoli di S e
S’ ripristina la situazione iniziale.
Da queste ultime due si ha

v =. (2.12)

Allo stesso risultato saremmo arrivati scambiando le coordinate di x,t
con le 2/, t' nella (2.8) e invertendo il segno della x e 2’. Avremmo ottenuto
I’equazione

x =y(z" +ot),

che insieme alla (2.9) conduce alla (2.12).

Osserviamo che v dovra essere positivo, poiché gli assi di x e x’ sono
coincidenti a t = 0.

La dipendenza da v di v puo essere determinata nel modo seguente. Ri-
cordiamo che si e assunto come postulato che la velocita della luce ha lo
stesso valore ¢ in ogni sistema di riferimento inerziale. L’equazione oraria
di un segnale luminoso che si propaga lungo l'asse delle x € z = ¢t in S e
' =ct’ in §'. Quindi usando le (2.8) e (2.9) con 7/ = v si ha

ct’ = ~(ct — vt), e ot =~(ct' +vt), (2.13)

da cui, moltiplicando le due equazioni membro a membro ed eliminando ¢,
si ha

1

7= A= /@) (2.14)
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dove si e scelto il segno positivo perché, come abbiamo osservato v dev’essere
una quantita positiva.

Sostituendo questa espressione di v nella (2.8) si ha 2’ in termini delle
coordinate di S. Per trovare ¢’ eliminiamo 2’ tra la (2.8) e la (2.9), si trova

t'=~(t —vz/c). (2.15)

Riassumendo, si ha la trasformazione

r = ’)/(I—Ut),

<
I

v (2.16)
Z’

= q(t—vz/c?),

©
I

dove, ricordiamo

1
7= (1 _ 112/02)1/2'

Le inverse si ottengono semplicemente scambiando v in —v, come del resto
si puo verificare facilmente

(2.17)

r= (' +ot),
= (2.18)

z=z,
t= At +vr'/c?),

Le (2.16) sono le trasformazioni di Lorentz nel caso particolare indicato
dalla figura (2.1).

Dal procedimento seguito risulta chiaro che, se si ammette 'esistenza di
un tipo di segnale con velocita costante in ogni riferimento, questo puo essere
usato al posto della luce, dando luogo ad una trasformazione della forma della
(2.16), ma con questa velocita al posto di c.

Tuttavia, poiché solo un trasformazione puo essere valida, cioe o la (2.16)
o quest’ultima, ne segue che questo segnale dovra propagarsi alla velocita c e
cio sara vero per ogni tipo di segnale con queste caratteristiche (per esempio
le onde gravitazionali).
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Notare che in quanto precede abbiamo fatto uso del principio di costanza
della velocita della luce, che in effetti deve essere formulato indipendente-
mente dal principio di relativita, cosi come fece Einstein. Potrebbe sem-
brare che il principio di relativita, che afferma l'invarianza delle equazioni di
Maxwell, implichi la costanza della velocita della luce. Ma per poter parlare
di invarianza delle equazioni di Maxwell occorre prima aver definito i nostri
sistemi di riferimento, con le loro sincronizzazioni.

Osserviamo che per v — ¢ la trasformazione ¢ singolare, nel senso che il
fattor v diventa infinito. Cio significa che un sistema di riferimento non si
potra muovere rispetto ad un altro sistema con velocita uguale o superiore a
quella della luce.

Ora, un sistema di riferimento si puo pensare costituito da corpi materiali,
ne segue che una particella materiale non puo muoversi con velocita uguale o
maggiore di quella della luce, rispetto ad un qualsiasi sistema di riferimento.
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Capitolo 3

Le proprieta delle
trasformazioni di Lorentz

3.1 Limite non relativistico e forma generale
delle trasformazioni di Lorentz

La prima proprieta che dobbiamo verificare ¢ il limite di piccole velocita v
rispetto a ¢, perché in questo caso la trasformazione (2.16) dovra ridursi ad
una trasformazione di Galileo. Vediamo infatti che, facendo formalmente
il limite ¢ — o0, che equivale a considerare il termine di ordine zero nello
sviluppo delle formule precedenti, si ottiene

2

= (143%)(z—vt) ~z—vt,
y =y (3.1)

= 1+ %Z—;)(t —vx/c?) ~t,

cioe la trasformazione di Galileo, come ci si aspettava.

Abbiamo ottenuto con la (2.16) un caso particolare di trasformazione di
Lorentz, corrispondente alla Fig. (2.1). Si puo perd ottenere un caso piu’
generale e cioe il caso in cui gli assi di S’ sono paralleli a quelli di S, ma ¥ &
orientata in modo generico.

Basta per questo decomporre il vettore di posizione 7’ del punto gener-
ico P nel sistema S’ in una parte parallela ed in una perpendicolare a .
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Si comprende come la parte perpendicolare rimanga invariata, cosi come le
coordinate y e z restavano invariate nella (2.16), mentre la parte parallela si
tarsformera in modo analogo alla z delle (2.16). In questo modo si ottiene la
trasformazione

(3.2)

t= Alt— 7).

Se poi gli assi di S’ sono ruotati rispetto a S, allora occorre preventiva-

mente ruotare gli assi di S in modo da portarli ad essere paralleli a quelli di
S’. Ma questo caso non lo discuteremo.

{f’z 7+ 70y = D& 1),

Si puo anche verificare, con un po’ di calcoli, che si ha

C2t1t2 - (fl . fg)— = CQtllt/Z — (fll . fg), (33)

dove T e tq, Ty e ty sono le coordinate di due eventi arbitrari.

Questa relazione ¢ molto importante, come vedremo nel seguito, infatti
si puo dimostrare che le trasformazioni di Lorentz nella loro forma pitd gen-
erale, che comprende anche il caso delle inversioni spaziali e dell’inversione
temporale, sono le pit generali trasformazioni che lasciano invariata questa
forma quadratica.

3.2 Contrazione delle lunghezze e dilatazione
dei tempi

Possiamo ora ricavare alcune conseguenze della legge di trasformazione di
Lorentz (2.16), che riguardano il confronto di misure effettuate nei due sistemi
di riferimento S ed 5’.

Considereremo le due situazioni: a) un regolo a riposo in S” disposto par-
allelamente all’asse delle 2’ e b) un orologio, opportunamente sincronizzato
come gia spiegato, posto a riposo in S’ su di punto dell’asse delle ' con
ascissa .

a) Gli estremi del regolo in S" abbiano le coordinate 2 e z, rispettiva-
mente. La lunghezza del regolo misurata in S’ & percio data da
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[°=ay — af. (3.4)

Questa la chiameremo la lunghezza a riposo o semplicemente la lunghezza
del regolo.

Ponendoci in S, € naturale definire come lunghezza del regolo | = x5 — x4,
dove le misure dei due estremi x1, x5 sono effettuate allo stesso istante t; =
ty = t. Usando allora le (2.16), si ha

¥y = v(xy —ot),
zhy = (2 — i), (3.5)

che, risolte in z1 e x5, forniscono quelle che possono essere interpretate come
le equazioni di moto degli estremi del regolo in S, in quanto ) e ), sono due
numeri fissi:

_ 1./
Ty = vt + S,

1,/
To = v+ =x,.
2 +,\/2

Quindi la lunghezza del regolo 1 in S e:

1
=129 — 2 = §(x/2 — ), (3.9)
cioe
(e} U2
1=ry1- 2, (3.10)

che e indipendente da t. Questa e la ben nota espressione della contrazione
delle lunghezze.

E’ chiaro dalla derivazione che se il regolo fosse stato perpendicolare alla
velocita ¥, la sua lunghezza sarebbe rimasta invariata. Quindi, se si considera
un corpo esteso di volume V| misurato in S e di volume V° se misurato in
S’, avremo la seguente relazione
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V2
V:VO ].—g, (3].].)

dove la contrazione del corpo avviene nella direzione del moto.

b) Supponiamo ora di avere un orologio 7" posto sull’asse delle 2’ a dis-
tanza x) dall’origine. Questo orologio, nel suo movimento solidale con S’
lungo 'asse delle z va a coincidere momentaneamente con due orologi fissi in
S, Ty e T;. Supponiamo che 7" segni il tempo t| quando coincide con T7, il
quale a sua volta segni il proprio tempo t;. Quando poi 7" coincide con T5
supponiamo che segni il tempo t, mentre T5 segnera il tempo 5.

Le trasformazioni di Lorentz inverse (2.18) ci dicono allora quali relazioni
passano tra questi tempi:

tl - V(tll + Ux/1/02>7 (3 12)
ty = (ty +vry/c?),
dove la posizione in x) ¢ restata invariata.
Sottraendo membro a membro si ottiene
/ / UQ 1/2 /
At =ty =t =7(t; = 1) = (1= 5)" At (3.13)

La (3.13) ¢ l'espressione della dilatazione dei tempi. Il termine a fattore
¢ adesso invertito rispetto al caso delle lunghezze (3.10).

La (3.13) ¢ applicabile al caso di un orologio sincronizzato come & stato
discusso in sezione (2.1) in un sistema di riferimento S, che si pone in moto
rispetto a questo sistema con velocita 4. Avremo che 'intervallo infinitesimo
di tempo dr segnato da questo orologio e legato a quello di un orologio a
riposo in S dato da dt dalla relazione

dr = (1 —u?/c*)Y2dt. (3.14)

Si assume che questa relazione sia valida per un moto arbitrario, con @
data dalla velocita istantanea dell’orologio. Quindi si assume che ’acceler-
azione dell’orologio relativa ad un sistema inerziale non abbia influenza sul
suo ritmo.

Il tempo 7 cosi definito si chiama tempo proprio.

Notare che, per il modo nel quale e stato definito, il tempo proprio ¢ un
invariante. Infatti si tratta di una misura eseguita in determinato sistema
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di riferimento, quello di riposo dell’orologio. Non ha percio senso parlare
di proprieta di trasformazione! Sara la sua relazione con il tempo misurato
da un orologio fisso in un sistema inerziale a cambiare se si cambia sistema
inerziale.

3.3 La legge di composizione delle velocita

Un’altra proprieta importante delle trasformazioni di Lorentz ¢ la legge di
composizione delle velocita. Questa, nel caso particolare delle trasformazioni
(2.16), si puo ottenere differenziando le (2.16) stesse

dz’ = ~y(dx — vdt),

dy = dy,
oo (3.15)
dz =dz,
dt' = ~(dt — ),
dalle quali, ponendo 4 = ‘Cll—f el = fl—f, si ha subito
/ — Ugz—v
Up = 10T
/ _ Uz
Y. T aa-TgEy

che si riducono a quelle Galileiane nel limite ¢ — oo.

Notare che questa legge di composizione delle velocita non contraddice il
fatto che la velocita della luce sia la velocita limite. Infatti si verifica che se
si pone, per esempio, u, = c e u, = u, = 0 si ha v, = c.

In modo analogo possiamo anche ricavare ’analoga formula per la trasfor-
mazione (3.2):

i = v , 3.17
y(1 - ) (347
dove
1
O ——— (3.18)
11—z



L’equazione 77 fornisce la velocita @' osservata in un riferimento inerziale
SPT™e in moto con velocita costante v rispetto al sisiema S, nel quale la
velocita ¢ @. Inoltre si riduce a 4’ = @ — ¥ nel limite ¢ — oo.

3.4 Effetto Doppler relativistico e aberrazione
della luce

Per ottenere le formule relativistiche dell’effetto Doppler € necessario stu-
diare prima la legge di trasformazione delle caratteristiche di un’onda, cioe
determinare la versione relativistica delle formule (1.18), (1.20) e (1.21).
Consideriamo ancora un’onda monocromatica nel sistema inerziale S
n-T

W(Z,t) = Acos [w(t — —)], (3.19)

w
dove ora la velocita dell’onda w e generica e non solo quella di un’onda e.m.,
cioe ¢ e valgono le (1.12) con w al posto di c.

Esattamente lo stesso ragionamento usato in sezione (1.2) dimostra l'in-
varianza della fase di quest’onda, dove pero questa volta la trasformazione e
una trasformazione di Lorentz, cioe

X n-T

) = wit——), (3.20)

dove le grandezze con 'apice sono misurate nel sistema S’, che al solito si
muove rispetto a S di moto rettilineo uniforme con velocita .

Se si considera la trasformazione di Lorentz (2.18) e si identificano i
coefficienti di 2’ e t/; si ha

NG
= wy(l— 2, 3.21
o =1 = ) (321)
per cio che riguarda i coefficienti di ¢’ e
%V(nx - 1();_12“) = Z,J,_//n;n
“n, =yt (3.22)
. = o,

per cio che riguarda i coefficienti di 2/, ¢’ e 2’ rispettivamente.
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Tenuto conto che v & parallela all’asse delle x, la prima di queste equazioni
si puo riscrivere

n-v
"= 1——). 3.23
W =l - ) (323)

Se poi si sceglie I'asse delle y nel piano formato dall’asse delle x e 77 e
ponendo

i = cos ai + sin aj, (3.24)

si ha che le altre equazioni si riducono a

w vw W’ /
Ly(cosa — %) = = cosa
w7 &) = cosa, (3.25)
w 3 . w 3 /
< gin = 2sina’.
w w
Dividendo membro a membro queste due equazioni, si ha
sin «v
tang' = ————— (3.26)

Y(cosa — %)’

L’equazione (3.23) si riduce alla corrispondente equazione non relativis-
tica (1.18) nel limite ¢ — oco. Essa rende conto dell’effetto Doppler relativis-
tico. Infatti, se in S’ ¢’¢ un osservatore e in S una sorgente, per esempio
di luce con frequenza v = w/27, la sorgente si allontana dall’osservatore con
velocita costante v. Allora ’osservatore osserva una radiazione con frequenza
V' =w'/2m, data da

n-v

—). (3.27)

Vi =vy(1 -

Per quanto riguarda I’aberrazione della luce abbiamo gia osservato che cio
che conta non ¢ la velocita di fase, cioe la velocita w che compare nella (3.19),
ma la velocita di gruppo. Abbiamo anche visto che la velocita di gruppo si
trasforma come la velocita di una particella nel caso non relativistico. Si
puo dimostrare che cio vale anche nel caso relativistico, per cui dobbiamo le
equazioni (3.16) piuttosto che I'equazione (3.26).

Dalle (3.16), prendendo @ e quindi @’ nel piano (z,y), e chiamando con 6
e 0 gli angoli che u e @' formano con l'asse delle z, si ha

/ /! __ ucosf—v
Uu Cose - 1_'ch2059 ’
c
u'sing = usin 6 <328>
,y(livucc;sQ) )
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e, dividendo membro a membro

sin 0
=, 2
tan 0 cos6— 1) (3.29)

Questa formula rende conto dell’aberrazione della luce se, come nel caso
della (1.38), si opera la sostituzione (1.39)

0—0+m 0 —0+m, (3.30)
dove adesso 6 e 6 sono gli angoli come in figura (1.3).

Si ottiene allora

sin 6
tanf = —————. 31
an (cos 0+ 0) (3.31)

Si vede che questa formula differisce da quella non relativistica (1.38) per
il fattore v, cioe per termini del secondo ordine in v/c.
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Capitolo 4

Meccanica relativistica

4.1 Quadriforza e dinamica relativistica.

La relazione (3.3), che vale per i due eventi (t1;z1,y1, 21), (t2; Z2,Ys, 22) vale
naturalmente per I'evento generico (¢; x,y, 2)
At? — (22 +y* + 2%) = invariante. (4.1)

Da questa e dalla (3.3) si ricava

62(t2 — 151)2 — (o — x1)2 + (yo — y1)2 + (20 — 21)2] = invariante. (4.2)

Questa forma e invariante non solo per trasformazioni di Lorentz, ma
anche per traslazioni temporali e spaziali, cioe tali che

T—v =0+ad, t—t =t+a° (4.3)

L’insieme delle trasformazioni di Lorentz (omogenee) e delle traslazioni
temporali e spaziali viene chiamato gruppo di Poincaré, perche in effetti
formano un gruppo, o anche gruppo di Lorentz inomogeneo.

La (4.2) puo anche essere scritta nell’infinitesimo:

Adt* — (da* + dy® + dz*) = invariante. (4.4)

Notare che il tempo proprio infinitesimo d7 si puo scrivere nella forma
seguente
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cdr = (dt* — di*)Y?, (4.5)

che mette bene in evidenza il carattere invariante del tempo proprio.

Si puo introdurre la notazione z° = ct, 2! = x, 2% = y, 23 = 2, col che

dz®? — [(dz)? + (dy?)* + (d2*)?] = (da°)? — Z(daﬁi)2 = invariante, (4.6)

%

dove 1 = 1,2, 3.
A questo punto conviene introdurre una metrica 7,, con u,v =0,1,2,3
tale che la forma invariante si scriva semplicemente

Z Nupdetdx” = invariante, (4.7)
M?

dove poi si usa omettere il simbolo di sommatoria, intendendo che gli indici
in alto sono sommati con indici in basso.

Nupdetdz” = invariante. (4.8)

In definitiva possiamo dire che le trasformazioni di Poincaré lasciano
invariante la forma quadratica (4.8).

Si puo anche dimostrare che viceversa le trasformazioni che lasciano in-
variante la forma quadratica (4.8) sono trasformazioni di Poincaré (aggiun-
gendo le riflessioni spaziali e temporali) e, nel caso omogeneo, trasformazioni
di Lorentz. La dimostrazione ¢ un po’ complicata e la ometteremo.

A questo punto abbiamo completamente caratterizato le trasformazioni
di Lorentz (e di Poincaré) come quelle trasformazioni che lasciano invariante
I’elemento di linea ds

ds® = n,,dxtdx”, (4.9)

dove la metrica n ha la forma di una matrice 4x4 diagonale

(4.10)

o O O
o O = O
OPl—‘OO
_ o O O
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Notare che, a dispetto del fatto che nella (4.9) compare al quadrato,
I'elemento ds? pud essere negativo o nullo.

Nel caso che ds? sia positivo, nullo o negativo si dice che ¢ di tipo tempo,
luce o spazio rispettivamente (time-like, light-like o space-like). I corrispon-
denti eventi a distanza infinitesima si dicono a distanza di tipo tempo, di
tipo luce o spazio rispettivamente.

Una metrica che definisce un elemento di linea, come nella (4.9), deter-
mina completamente la geometria dello spazio. Lo spazio cosi determina-
to si dice pseudoriemanniano (riemanniano se ’elemento di linea ¢ sempre
positivo).

Nel caso che si tratti del moto di una particella materiale si avra ds? > 0,

perche si ha ds = /1 — z—jdt, dove % < 1, cioe il tempo proprio d7 ¢ ben

definito poché la radice e reale.
Con queste notazioni, le trasformazioni di Poincaré si scrivono

ot — ' = A Y + at, (4.11)

dove A & la matrice che esprime la trasformazione di Lorentz e le a* sono
costanti.

Nel caso della trasformazione particolare utilizzata in sezione (2.1.3), cioe
nel caso di asse paralleli, ovvero in assenza di rotazione, e con la velocita del
sistema S’ rispetto a S parallela all’asse delle z, si ha

v —yv/ec 0 0

po | /e v 00
A%, | c 700 (112)

0 0 01

Una grandezza che si trasforma secondo la legge (4.11) si chiama
quadrivettore.

Con le notazioni della (4.11), la condizione che la trasformazione di Lorentz
lasci invariante I’elemento di linea (4.9) ¢ data da

AF aAV BNy = MNag, (413>

che si ottiene per sostituzione della (4.11) nella (4.9), scritta per z'.
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Come abbiamo detto, le trasformazioni di Lorentz lasciano invariate le
equazioni di Maxwell, per cui queste ultime soddisfano al principio di rel-
ativita di Einstein. La contropartita e¢ che le equazioni della dinamica di
Newton non soddisfano piu il principio di relativita, se non nel limite di
velocita piccole rispetto alla velocita della luce. Possiamo allora modificare
queste ultime in modo che lo soddisfino.

Supponiamo che una particella materiale si muova in un campo di forze
a velocita relativistica, per cui non sia possibile applicare ad essa la secon-
da legge della dinamica. Supponiamo pero di saper calcolare la forza in un
riferimento in cui la particella sia momentaneamente ferma. Possiamo allora
effetuare una trasformazione di Lorentz in modo da portarci in tale riferimen-
to e determinare cosi il moto della particella. L’idea e cioe quella di utilizzare
le trasformazioni di Lorentz per porci in una situazione in possiamo applicare
la dinamica di Newton. Ora noi sappiamo come si trasformano le velocita
e da cio possiamo determinare la legge di trasformazione dell’accelerazione.
Vediamo subito pero che questa legge sara alquanto complicata (basta dare
uno sguardo alle (3.16) per rendersene conto.

Allo scopo di semplificare la trattazione, possiamo sfruttare il fatto che
il tempo proprio d7 ¢ un invariante e che si riduce a dt se la particella ¢ a
riposo.

Allora, invece di studiare il comportamento sotto trasformazione di Lorentz
dell’accelerazione possiamo studiare la grandezza

Azt

dr?’
che, data appunto l'invarianza di dr, si trasforma come x*; € cioe un quadriv-
ettore

(4.14)

delu dez/
= A", , 4.15
dr? dr? ( )
essendo A costante in 7.
Poniamo allora
Azt
ff=m T (4.16)

dove f e la forza relativistica, che, per quanto detto sopra, si trasforma
secondo la legge
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f/ﬂ = A" nya (417)

cioe f e un quadrivettore.

Ora la f* si puo calcolare osservando che, se la particella ¢ momentanea-
mente ferma, 'intervallo di tempo proprio dr coincide con dt. Ne segue che,
poiche x° = ct, la sua derivata seconda rispetto a t e nulla e quindi, dalla
(4.16) con = 0, si ha

fo=0, (4.18)
inoltre
. R
P =m— 4.19

per cui f: ﬁ, cioe fé la forza di Newton.

Se ora la particella ha velocita ¢ invece che zero, bastera effettuare una
trasformazione di Lorentz tale che, nel nuovo riferimento, la particella abbia
velocita v. Evidentemente questo riferimento dovra avere velocita —u rispet-
to a quello in cui la particella ¢ a riposo. Se indichiamo con A(¥) questa
trasformazione, avremo che la f# sara data da

fr= A" R (4.20)

dove ricordiamo che F° = 0.

Possiamo leggere la A(v) dalle (3.2) (con la seconda di queste equazioni
scritta per 2° = ct, ponendo le componenti di f# al posto di quelle di 7’ e ¢t/
e quelle di F¥ al posto di quelle di Z e ct. Inoltre andra posto v — —v. In
questo modo si ottiene

= Fail(y-1)E0 4 1ype
{f +0l(y = 1) + o F) (4.21)

fo= qlFe+ &8

c

dove pero F° = 0. In definitiva, tenendo conto che dalla prima di queste
equazioni segue

—

7 f=@F),

si ha
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fo = ”Y( -Cﬁ) _ (17-;). (4.22)
Inserendo queste espressioni nella (4.16) si ha la generalizzazone della sec-
onda legge della dinamica di Newton, espressa come un sistema di equazioni
differenziali in 7. Se si risolvono e si determinano le z* in termini di 7, si
puo poi eliminare 7 a favore di t e ottenere le consuete equazioni orarie per
Z. Va pero tenuto conto della definizione di 7, cioe della (4.5), che ci dice
che 7 non e una variabile indipendente. Osserviamo pero che se si soddisfa la
(4.5) all’istante iniziale, poiche la sua derivata in 7 €, come ora verificheremo,
nulla, allora questa condizione sara sempre soddisfatta.
Verifichiamo che la derivata in 7 della (4.5) e zero. Riscriviamo la (4.5)
nella forma

{fz Ftily—1)80,

cdr = [ndatda’])"?, (4.23)
e ancora, quadrando
dx* dx”
P =y 4.24
= dr drt ( )
Se ora si deriva in 7
dz”
0=2n,f"—. 4.25

Come abbiamo detto, se questa espressione ¢ zero indipendentemente
allora, se la (4.24) e soddisfatta inizialmente, lo ¢ sempre. Ora si verifica
esplicitamente che 'espressione a secondo mebro della (4.25) ¢ zero.

Si ha infatti

dz” dx° d’ dct d’
m — o s _ fo " i
nmxf dr 7700f dr + nzzf dr f dr dr’
e, tenendo conto della relazione tra 7 e ¢ (3.14), che implica
d d
— == 4.26
dr ~ ar (4.26)

e, usando la (4.22), si ottiene la (4.25).
Abbiamo visto che, nella forma (4.16), la seconda legge della dinamica si
trasforma da un riferimento inerziale ad un altro con la legge
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d>z”
dr?’
dove A ¢ la trasformazione di Lorentz che trasforma le coordinate di un
riferimento in quelle di un altro, vedi le (4.11).

A,u,ufl/ = mA/J,l/ (427)

La legge (4.16) garantisce che la stessa forma della seconda legge della di-
namica valga anche nel nuovo riferimento. L’utilita del formalismo vettoriale
(quadri-vettoriale) risiede principalmente in questo fatto.

Si usa definire una forza fN con

f=7In, (4.28)
e f viene chiamata forza di Minkowski.
In termini di fy si ha
w_ (Yim. T £
f _(E(U'fN)uny% (429>
e, tenuto conto della (4.26), 'equazione di moto si scrive (vedi piu sotto)

dp -
- 4.
dt In (4.30)

In pratica si puo usare quest’ultima equazione come equazione del moto.
Per esempio, nel caso del moto uniformemente accelerato, si potra porre
f =mg, dove g & 'accelerazione.

4.2 Impulso ed energia

La forma (4.16) della seconda legge di Newton suggerisce la seguente definizione
dell’impulso

pr=mo—, (4.31)

in modo che la seconda legge si potra scrivere
dp"

. f (4.32)
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che conserva un’analogia con la forma di Newton. Notare che anche p* & un
quadrivettore.
Se si tien conto di

=2
dr = \/1 - St
c
si ha subito
{p -y (4.33)
p° = mcy.

Per piccole velocita si ha
- S 2
4 .
cp® =mc*+ 207+ 0(%).

Nella seconda equazione riconosciamo 1’espressione dell’energia di una
particella libera di massa m. In relativita si definisce

E = cp® = mc*y, (4.35)

come 'energia della particella, che comprende I'energia di riposo mc?.
La grandezza

T=FE—mc (4.36)
viene chiamata energia cinetica. Infatti, al primo ordine in v?/c? ¢ data da

T =m/2v°, (4.37)

come si vede dalla (4.34).
Se si elimina la velocita dalle equazioni (4.33) si trova

E = c\/p? + m2c?, (4.38)
che e la forma relativistica dell’energia in funzione dell’impulso. Questa puo
anche essere ottenuta dalla (4.31) e dalla (4.24), cioe

PP N = m2c?, (4.39)

che equivale alla (4.38) se si prende il ramo positivo della radice.
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Il caso di un raggio di luce si puo inquadrare nello schema sviluppato, con
delle modifiche importanti. Infatti, per un raggio di luce, si ha che ’elemento
di linea (4.9) € zero

2 _ 2 v
ds* =c*(1— §> =0, (4.40)
e quindi anche il tempo proprio (4.5).

L’espressione dell’impulso (4.31) avra allora senso solo se si fa tendere la

massa a zero, cioe, dalla (4.39)

(»°)* = (9)* = 0. (4.41)

E’ pero con la meccanica quantistica che si da un significato preciso alla
nozione di particella con massa zero nel caso della luce.

Consideriamo adesso n particelle che subiscono un processo tale che sia

conservato 'impulso totale P dato dalla somma degli impulsi delle particelle:

AP = P _ pl) — Z ) Z A1) _ (4.42)

dove k numera le particelle, 1559) sono gli impulsi iniziali e p '(f ) sono gli im-

pulsi finali. Notare che il numero di particelle finali potra essere in generale
diverso da quello iniziale, se vi sono processi di annichilazione o creazione di
particelle.

Questa conservazione dell’'impulso implica la conservazione delle energie.

Infatti, osserviamo innazitutto che, se 'impulso totale e conservato in
un riferimento, lo & anche in un’altro riferimento, poiche la conservazione
dipende solo dal fatto che il sistema e isolato e non dal riferimento in cui cio
si esprime.

Se ora indichiamo con un apice le stesse quantita determinate in un altro
riferimento inerziale, avremo

AP" = AYAPY. (4.43)
Ma per v = 1,2, 3, tenuto conto della (4.42), si ha

AP = APAP?, (4.44)

e, per = 1,2, 3 il primo membro ¢ zero, perché, come abbiamo osservato,
la conservazione dell’impulso si ha anche nel nuovo riferimento.
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Quindi

0=A,AP°, (4.45)
da cui AP° = 0, perche quanto sopra vale per una trasformazione di Lorentz
arbitraria. Questo dimostra che la conservazione dell’impulso implica quella
dell’energia.

Quanto detto va sotto il nome di conservazione del quadrimpulso:

P — sz('f)u — pp — sz(i)u- (4.46)
i=1 i=1

Questa legge di conservazione giustifica il nome di energia dato alla grandez-
za E in (4.35), poche ¢ una quantita conservata che si riduce all’energia
classica nel limite non relativistico, salvo ’aggiunta dell’energia di riposo.

Quanto alle proprieta di trasformazione queste si ricavano immediata-
mente dalla (4.31). Nel caso della trasformazione di Lorentz (2.16) si ha
(tenuto conto dei fattori c)

pgc = ’7(]9;3 - UE/62)7
(A
Py="Pw (4.47)
(A
pz - pZ?
B = f}/(E - Upw)7
mentre nel caso di un trasformazione con v generica, ma senza rotazione degli
assi, si ha come in (3.2)

7 — g Gly— 1D _ ~E/e2
{p P+ Uy — 1) — B/, (4.48)

E' = AE—(7-p)].

4.3 Sistema del centro di massa ed equivalen-
Za massa-energia

Consideriamo ancora un sistema di n particelle libere. Se (P, E) e (P, E')
sono l'impulso totale e I'energia totale del sistema in due sistemi di rifer-
imento inerziali S e S’; la loro relazione ¢ data dalle equazioni (4.47) e
(4.48).
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L’invariante (4.39) per questo sistema assume la forma
B~ P =()_E) -0 )= (4.49)
i=1 i=1

n 2 n
= (Z /PP + m1202> - cQ(Zﬁi)Q =
i=1 i=1
=c Z[\/ﬁf +m?c2\/ﬁ? +m3e? — Zﬁi - Dyl

i,j=1 ,j=1

Il valore minimo di questa espressione e

n

4 2

c E m;, per mn>1,
i=1

che ¢ positivo. Quindi l'invariante (4.39) ¢ definito positivo.

Il fatto che sia positivo ci permette di determinare un sistema di riferi-
mento particolare tale che P sia zero. Infatti, dalla legge di trasformazione
inversa della(4.48) per P, si vede che cid & possibile con una velocita relativa
di S’ rispetto a S data da

2 —
P
7= _CE ; (4.50)
infatti, ponendo P’ = 0, si ha
. 32P
v =
VE"

dove per E’ possiamo usare I'inversa della seconda equazione (4.48), E = vE’,
ottenendo la (4.50).

Il fatto che si possano applicare le formule (4.48) all'impulso totale e
all’energia totale risulta chiaro se si tien conto che la matrice A di trasfor-
mazione di Lorentz non dipende dall’indice di particella e quindi puo essere
posto a fattore comune della sommatoria sull’indice di particella.

Il fatto che U'invariante (4.39) sia positivo ci permette anche di affermare
che questa velocita & minore di c. Infatti da E2—c2P? > 0 segue che E > ¢|P|
e dalla (4.50) si ha che v/c < 1.
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Quindi questo sistema di riferimento esiste sempre per un sistema di
particelle (con massa). E’ il sistema del centro di massa del sistema.

Indichiamo con S° il sistema del centro di massa e con S un sistema di
riferimento generico. Allora, indicando con « la velocita di S°, identificato

con 5, rispetto a S e applicando le formule (4.48) con ¥ = —, si trova
B i
Ve (4.51)
E =nE°,

dove P e E sono I'impulso e I'energia nel sistema S e P°=0ekE° I'impulso
e I'energia nel sistema S° del centro di massa. Il fattore v ¢ naturalmente in
termini della velocita .

Abbiamo quindi mostrato che il sistema delle n particelle come insieme
si comporta come un’unica particella di impulso P e di energia F, che si
trasformano come I'impulso e I'energia di una singola particella.

Se si confrontano le (4.51) con le analoghe per una particella con massa
m, cioe le (4.33), si vede che ¢ naturale definire la massa totale del sistema
di particelle M come il rapporto tra il modulo dell’impulso e la velocita

E° FE
e T e
dove con M° abbiamo indicato E°/c?.

Notare che M° ¢ maggiore della somma delle masse delle singole particelle,
infatti per £° abbiamo

E° = i E* = icﬁmf@ + 552 > ¢? imi, (4.53)
i=1 i=1 i=1

=yM°, (4.52)

da cui

EO
Mo=—2>>"m,. (4.54)

In questa equazione il segno di uguale si ha solo se tutte le particelle
hanno impulso zero, cioe nel caso statico.
Con la definizione (4.52) le (4.51) si scrivono

P =~M°i
{ Rl (4.55)

E =~yM°c
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L’energia totale del sistema si potra definire con I’equazione
M°=E°/c* = m;i+T°/c, (4.56)
i=1

dove T° e 'energia cinetica nel sistema del centro di massa.

Dalla (4.56) segue un’importante conclusione e cio¢ che I'energia interna
del sistema contribuisce alla massa totale del sistema (salvo il caso particolare
statico).

Abbiamo visto cio nel caso di un sistema di particelle libere, in cui 'en-
ergia interna ¢ data solo dall’energia cinetica. Ma questa conclusione si puo
ottenere per ogni processo fisico, si puo cioe dimostrare che: ad ogni quantita
di energia AFE corrisponde una massa

AFE

Non daremo qui la dimostrazione di questo risultato, la dimostrazione si
puo trovare in [1], pagg.78-82, e una discussione nei suoi aspetti sperimentali
in [2], pagg.220-236.

4.4 Difetto di massa

Una applicazione particolarmente significativa dell’equivalenza massa-energia
e data dal difetto di massa dei nuclei atomici. Infatti, da quanto detto nella
sezione (4.3), ci possiamo aspettare che la massa di un nucleo atomico nel suo
stato fondamentale sia sempre minore della somma delle masse dei nucleoni
che lo costituiscono in modo tale che, per separare i costituenti, sia necessario
fornire energia, ovvero massa, al nucleo.

I1 difetto di massa si definisce allora come la differenza tra la somma delle
masse dei costituenti del nucleo e la massa nucleare effettiva, cioe

Am =Zmy,+ (A—2Z)m, — Mz a, (4.58)

dove m,, ¢ la massa del protone, m,, quella del nautrone, Mz 4 ¢ la massa
effettiva del nucleo, Z ¢ il numero atomico, cio il numero di protoni del
nucleo e A e il numero atomico, cioe il numero totale di protoni e neutroni.
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A approssima il peso del nucleo in unita di massa atomiche (u.m.a.), con la
massa del C''? fissata esattamente a 12 u.m.a..

Ci aspettiamo che questo difetto di massa sia tanto pitu grande quanto
piu il nucleo e stabile. Ad esso corrisponde un’energia secondo la relazione
(4.57) che puo essere interpretata come un’energia di legame (negativa). In
altre parole, per decomporre un nucleo nei suoi costituenti occorrera fornirgli
un’energia almeno uguale all’energia di legame

AE = Amc?, (4.59)

dove Am ¢ il difetto di massa.

L’equazione (4.58) fornisce un’energia di legame, che, misurata in MeV (1
Mev= 10° eV, dove un elettronvolt (eV) ¢ dato dall’energia che un elettrone
acquista passando attraverso la differenza di potenziale di 1 volt, ed ¢ uguale
a 1,602...1071? erg) ¢ data da

AE(MeV) = 931,494[Z - 1,0078250 + (A — Z) - 1,008665 — My 4]. (4.60)

In questa formula il numero a fattore e il fattore di conversione da unita
di massa atomiche a MeV.

Com’e noto, sia i processi di fusione nucleare, nei quali nuclei leggeri
si fondono in un nucleo piu pesante, che di fissione nucleare, nei quali un
nucleo si rompe in frammenti, sono basati sul difetto di massa. Questo e
possibile perche si puo vedere sperimentalmente che nei due casi indicati i
processi vanno nel senso che il difetto di massa del nucleo o dei nuclei iniziali
e minore di quello del nucleo o dei nuclei finali.

Per rendere chiaro ’argomento consideriamo per esempio la reazione
nucleare

'H 48 Li —3 He +} He, (4.61)

dove il primo termine della reazione ¢ un protone, il secondo un isotopo del
Litio, che ha l'isotopo piu abbondante con numero atomico 7, e I’Elio-3 che
e anch’esso un isotopo della forma usuale Elio-4.

Le masse di questi elementi espresse in unita di massa atomica (u.m.a.)
SOno
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massa del 1H =1,0078250,

” 7SLi =6,0151223,
v " 3He =3,0160293,
d " AHe =4,0026032.

(4.62)

N.b. Queste sono masse atomiche, che comprendono le masse degli elet-
troni. Pero nel calcolo del difetto di massa cio non influisce, poiche il loro
contributo si elide tra primo e secondo termine della reazione. I dati sono
ripresi da http://www2.bnl.gov/ton/ .

Se si calcolano i difetti di massa si ha

Amigp = 0,
Amgr; = 0,0343474 uwm.a. ~32 MeV,
Amzp, = 0,0082856 um.a.~7,72 MeV,
Amapg, = 0,0303766 uwm.a. ~28,3 MeV,
(4.63)

da cui si ha il difetto di massa complessivo

Ampy + Amp; — Amsg. — Amag, = —0,0043148 u.m.a., (4.64)

che ¢ negativo e quindi la reazione avviene con produzione di energia.

Lo stesso risultato si ottiene facendo il bilancio delle masse, poiché le
masse dei costituenti si elidono nella differenza tra il contributo del primo
membro della reazione e il secondo. Il risultato sara con il segno opposto:

my + mr; — mspge — mag, = +0,0043148 u.m.a. ~ 4,02 MeV. (4.65)

Nel grafico (4.1) e riportata l’energia di legame media per nucleone (cioe il
difetto di massa diviso il numero dei nucleoni) in funzione del numero atom-
ico. (L’immagine e ripresa da : cnx.prenhall.com/petrucci/medialib/media
portfolio/26.html )
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Binding energy per nucleon, MeV
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Capitolo 5

Elettrodinamica nel vuoto.

5.1 La corrente e la densita elettromagnetiche

Consideriamo un sistema di N particelle materiali puntiformi. L’ennesima
particella abbia posizione z,(t) in un dato sistema inerziale e carica e,,.

-

La densita di corrente J(Z,t) e di carica p(Z,t) sono date da

-

J@ 1) =5, end®(@ — Talt) 252, (5.1)
p(Z,t) =Y, end* (T — T, ().

(5:3)

Che queste siano le espressioni corrette si comprende tenendo presente
che per una singola particella si ha J = pv. Inoltre la carica totale si ottiene
integrando sul volume dove sono presenti le cariche la densita

e= /p(f, td*z = Zen. (5.4)

Questa carica somma delle cariche elettriche delle particelle e invariante
sotto trasformazione di Lorentz. Questo puo essere preso come un risul-
tato sperimentale. Per una discussione su questo punto vedi J.D.Jackson,
Classical Electrodynamics, 3 ed. 1998, pagg. 553-554.

Poniamo le due grandezze in una forma quadrivettoriale con
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- J
= = — 5.5
F=eog= (5.5)
e si vede che
. dh (1)
® = Z03 (T — 2, (t n )
J@) = 3 ead (@ at) T2 (56)

n

poiché, per p = 0, la derivata a secondo membro ¢ ¢, essendo x2(t) = ct.
Possiamo ora sostituire la (5.6) con

#(x) = / 4t e (z — (1)) dxgt(f/), (5.7)

dove I’argomento della §* & z# — x#(t') che, per =0, & c(t — t').

11 differenziale dt’, che si cancella, puo essere sostituito da un a misura
invariante d7 (puo essere per esempio il tempo proprio delle singole particelle,
nel qual caso U'integrale va posto dopo il simbolo di somma). Quindi

4 (x) = / dr Y endt(z — x,(t)) d”gfl>. (5.8)

Ora §*(z — x,(')) ¢ uno scalare, ovvero invariante. Infatti sotto trasfor-
mazione di Lorentz prende un fattore dato dal determinante della trasfor-
magzione, che e 1.

Che il determinante di una trasformazione di Lorentz sia 1 si puo vedere
dalla (4.13) prendendone il determinante. Poiche il determinante di un
prodotto e uguale al prodotto dei determinanti, il determinante di 7 essendo
uguale a —1, si ha che il quadrato del determinante di A ¢ 1. Se si consid-
erano trasformazioni proprie, cioe che non comprendono inversioni spaziali o
temporali, si ha che det(A) = 1.

Abbiamo visto che dz# /dr & un quadrivettore e e,, sono invarianti. Si puo
allora concludere che j* ¢ un quadrivettore.

Si verifica facilmente che vale

05" (x)
OxH
che e 'equazione di continuita della corrente e.m. in forma quadrivettoriale.
Si ha infatti

=0, (5.9)
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7_ 9 3 day, (t)
v J—;enaxié(ax To(t) =2, (5.10)

e la derivata rispetto a x’ si pud cambiare in derivata rispetto a z,(t). Si
riconosce cosi una derivata totale rispetto a t:

9, S/ o 0
__Zen(s (T — T, (1)) = —5 (7,1). (5.11)

La carica totale si ottiene integrando la componente temporale di j*

1
Q= - /d3xJ°(a:), (5.12)
che e costante nel tempo. Infatti si ha
d 5 0J°(x) 5 OJ'(Z,t)
20 = e S -7 1
dtQ /dx 5t /d:c Era (5.13)

dove ¢ sottintesa la somma su . L’ultimo integrale, tramite il teorema di
Stokes !, ¢ un integrale di superficie che si pud pensare estesa all’infinito,
dove la corrente e nulla. Quindi & zero.

Si potrebbe dimostrare che () e scalare di Lorentz come conseguenza del
fatto che j#* ¢ un quadrivettore, ma per questo rimandiamo a S.Weinberg,
citato in bibliografia, pag. 40-41.

5.2 La forma covariante delle equazioni di Maxwell.

Il risultato principale della sezione precedente ¢ I’aver mostrato che j# ¢ un
quadrivettore. Questo ¢ un ingrediente essenziale per determinare la forma
covariante delle equazioni di Maxwell.

Scriviamo le equazioni di Maxwell, nelle unita Heaviside-Lorentz (vedi
Appendice A.1)

Tl teorema di Stokes si pud applicare alla forma w = Jlda?dx3 + ciclic., il cui
differenziale ¢ dw = 0.J"/0z'd*x.
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a) VE =P
b) V-H =0,
. " (5.14)
c) V/\Lz —é%—?, )
d VANH =1j+128

Notare che '’equazione di continuita ¢ conseguenza di queste equazioni.
Infatti si puo ricavare prendendo la divergenza dell’equazione (d), tenendo
conto del fatto che la divergenza di un rotore e zero, e infine utilizzando
I'equazione (a).

Poniamo adesso

0O E, E, E.
E, 0 H., —H,
5 oH. o H | (5.15)

E. H, —H, 0

I E* oy fl=

Con un po di lavoro si puo verificare che le equazioni di Maxwell (a) e (d)
si possono scrivere un forma compatta

OFH
=7 5.16
oz I ( )
dove la quadri-corrente ¢ data da
J
mentre le equazioni (b) e (c) si scrivono
OF,
hoph L — () 5.18
c ox” ’ (5.18)

dove e#P* & il tensore di Ricci, invariante come 7, totalmente antisimmet-
rico e che vale 1 o -1 secondo che gli indici siano in un ordine che sia una
permutazione pari o dispari rispetto alla permutazione (0, 1,2, 3).

Il tensore

eMPAR (5.19)

si chiama tensore duale di F'.
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Abbiamo chiamato F' tensore; in effetti € un tensore antisimmetrico di
rango due. Cio si verifica dall’equazione (5.16), dove il secondo membro
sappiamo che e un quadrivettore e naturalmente z# e anche un quadrivet-
tore. Cio garantisce il carattere tensoriale di F', come si puo verificare anche
esplicitamente.

Quindi le equazioni di Maxwell sono adesso scritte in forma covariante.

Si puo inoltre verificare che ’equazione di moto per un carica ¢, che in
forma non covariante & data dall’equazione (4.30), si puo scrivere nella forma
covariante

dp"  q
— = =F" u", 5.20
dr c Y ( )

dove u ¢ la velocita della particella.
Le equazioni (5.16), (5.18) e (5.20) sono le equazioni dell’elettrodinamica.

5.3 Le proprieta di trasformazione dei campi.

Un tensore di rango 2 si trasforma sotto trasformazione di Lorentz con la
legge

FM = AP A g FOP. (5.21)

Nel caso del tensore F¥, definito da

F*, = Ft,, (5.22)
si ha la legge di trasformazione
F'", = AP A, PF . (5.23)

Da questa equazione si possono ricavare le proprieta di trasformazione
dei campi E ¢ H. 1 calcolo risulta piuttosto complicato. Un modo per
semplificarlo & quello di considerare il tensore F*, come il prodotto di due
vettori A*B, e applicare la legge di trasformazione dei vettori

V= ARV (5.24)
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v/,u = A,u Vvu- (525)

In questo modo, per una trasformazione di Lorentz senza rotazione, us-
ando la (3.2), si ha
E' =vE+5(5-E)Y1-9)+ 1@ H), (5.26)
A =~f + 5@ H)(1-7) - 2 A E),
dove E e H sono i campi misurati nel sistema S e E’ e H' sono i campi
misurati nel sistema S’, che si muove rispetto a S con velocita .
La trasformazione inversa si ottiene scambiando ' e H con E' e H e U
con —1.
Una semplice applicazione di queste proprieta di trasformazione si ha per
il calcolo dei campi prodotti da una carica g in moto rettilineo uniforme.
Se la carica si muove con velocita ¢ costante nel sistema di riferimento
S, possiamo considerare il sistema S’ nel quale la carica ¢ a riposo. In
quest’ultimo sistema esiste il solo campo elettrico Coulombiano

o
(5 = oo

dove 7 ¢ il vettore che congiunge la carica q e il punto P’ un cui si calcola il
campo nel sistema S’.

Questo vettore e la differenza dei due vettori di posizione, della carica e
del punto P’.

Se si applica la trasformazione inversa da S’ a S a questi campi, usando
le equazioni inverse delle (5.26), si ottiene

{E — Ly + L@ 7)1 - ),

H = _9oy@A7), (5.28)

4mer’3

dove il vettore 7 deve essere trasformato nel sistema S, cioe, se 7 ¢ il vettore
che congiunge la carica con il punto P in cui si calcolano i campi nel sistema
S, dove P ¢ il punto equivalente al punto P’; allora, dalle (3.2), si ha

P =4y — 1), (5.29)
v

la cui inversa non si ottiene con v — —v, ma si ha
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7)1 —
A Gl e (5.30)
v v
I campi si possono riscrivere
E =LyZ,
{ﬁ A (5.31)
- 4_71—07 73

dove 7’ & dato dalla (5.29).

I1 calcolo diretto, senza far uso delle proprieta di trasformazione dei campi,
e molto piu laborioso. Vedi, per esempio, C.Moller , §57.
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Capitolo 6

Spazio assoluto, principio di
Mach e principio di equivalenza

Newton riteneva che fosse necessario svincolare la definizione di spazio (e di
tempo), e quindi anche di velocita, di accelerazione ecc., da quello che lui
chiamava spazio relativo, definito in relazione a oggetti sensibili. Per questo
scopo introdusse la nozione di spazio assoluto.

Riportiamo qui il passo in cui Newton da queste definizioni (in una libera
traduzione):

“Sin qui ho dato le definizioni di quelle grandezze che sono meno note ed
ho spiegato il senso nel quale vorrei che fossero intese nel seguito.

Non definisco il tempo, lo spazio, il luogo e il moto poiché sono ben noti.

Solo devo osservare che il senso comune concepisce queste grandezze so-
lo in relazione a oggetti sensibili. Nascono da qui alcuni pregiudizi, per
rimuovere i quali sara conveniente distinguerle in assolute e relative, vere e
apparenti, matematiche e comuni.

I1. Lo spazio assoluto, nella sua natura, senza relazione con alcunché di
esterno, resta sempre simile a se stesso e immobile. Lo spazio relativo € una
qualche dimensione o misura mobile dello spazio assoluto, che i nostri sensi
determinano dalla sua posizione relativa ad altri corpi e che € comunemente
preso per spazio immobile, determinato dalla sua posizione rispetto alla terra.
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Lo spazio assoluto e quello relativo sono gli stessi in grandezza, ma non sono
)
sempre gll stessi numericamente.”

Ogni altro sistema di riferimento in moto rettilineo uniforme rispetto a
questo spazio assoluto sara ad esso equivalente e apparterra alla classe dei
sistemi inerziali. Come ¢ noto, le leggi della dinamica si formulano in un
riferimento inerziale.

Un sistema di riferimento che & inerziale con ottima approssimazione e
il riferimento delle stelle fisse, cioe il sistema di riferimento con 'origine nel
centro del sole e gli assi orientati secondo le stelle fisse.

Puo essere ulteriormente approssimato ad un sistema inerziale tenendo
conto del moto del sole rispetto al centro della nostra galassia e orientando
gli assi non secondo una particolare stella, ma secondo la media delle posizioni
di un numero via via crescente di stelle.

Mach sottopose a critica il concetto di spazio (e tempo) assoluto di New-
ton (Ernst Mach, “Die Mechanik in ihrer Entvicklung” , 1880, tradotto con
“The science of mechanics” , 1893).

Mach si chiede quali siano le cause delle forze inerziali che si manifestano
quando si mette in moto accelerato un corpo rispetto al sistema delle stelle
fisse e le individua nelle masse lontane, oltre che della terra e del sole. Questa
“influenza’” si manifesta solo quando vi € un’accelerazione rispetto al sistema
di riposo di queste masse (stelle fisse, appunto).

Questo e il cosiddetto principio di Mach, benché Mach non I’abbia mai
enunciato esplicitamente.

C’¢ un semplice esperimento (vedi, per esempio,S.Weinberg, “Gravitation
and Cosmology” , J.Wiley and Sons 1972, pag. 17) che chiarisce quanto Mach
intende dire. Se immaginate di essere in piedi all’esterno in una notte stella-
ta, con le braccia abbandonate lungo il corpo, osserverete che le stelle sono
praticamente immobili e le vostre braccia ferme. Se adesso fate una giravolta
su voi stessi le stelle gireranno sulla vostra testa e, contemporaneamente, le
vostre braccia si allontaneranno dal corpo.

Quindi un corpo libero (le vostre braccia) permane nel suo stato di quiete
nel sistema di riferimento delle stelle fisse. Il punto € che sembra un’incredi-
bile coincidenza che le vostre braccia e insieme le stelle fisse condividano lo
stesso sistema di riposo. Viene piuttosto naturale fare I'ipotesi che vi sia una
relazione tra le stelle fisse e le vostre braccia, nel senso che sono le masse delle
stelle che determinano il sistema di riferimento inerziale in cui vi e assenza
di forza centrifuga.
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Siamo di fronte ad una scelta: o ammettiamo con Newton che esiste uno
spazio assoluto, che definisce i sistemi di riferimento inerziali e rispetto al
quale accade (per caso?) che le stelle risultino a riposo, o ammettiamo con
Mach che 'accelerazione di un corpo dipenda dalle masse vicine e lontane.

In realta esiste una terza possibilita, quella del principio di equivalenza
di Einstein, che ora vogliamo discutere.

Cominciamo con l'osservare che, con il principio di relativita speciale per
tutte le leggi della fisica, perde di significato la nozione di spazio assoluto;
infatti, se tutti i riferimenti sono equivalenti, non ha senso sceglierne uno
come assoluto.

Una volta stabilito cio, Einstein propose una nuova interpretazione delle
forze fittizie in un sistema di riferimento accelerato: invece di considerarle
come l'espressione di una differenza tra le equazioni di moto nel sistema
accelerato e quelle del sistema inerziale, come si fa usualmente, considero i
due sistemi come completamente equivalenti, per cio che riguarda la forma
delle equazioni fondamentali.

Cioe, le forze “fittizie” diventano reali al pari delle altre forze. Saran-
no le masse distanti, che sono accelerate rispetto al nostro sistema non
inerziale, che determinano tali forze, e che quindi diventano speciali forze
gravitazionali.

L’idea che I'accelerazione delle masse distanti possa produrre un campo
gravitazionale, che non e percettibile in un riferimento inerziale, non e piu
artificiosa che, per esempio, del fatto che un sistema elettrostatico manifesti
un campo magnetico nullo nel sistema di riposo delle cariche, mentre man-
ifesta un campo magnetico diverso da zero in ogni sistema in cui le cariche
siano in moto con velocita costante.

Quindi, seguendo Einstein, va preso in considerazione anche l'effetto delle
masse lontane.

Soltanto se si lavora in un sistema di riferimento inerziale non sara nec-
essario tener conto delle masse distanti. In questo senso e solo in questo i
riferimenti inerziali si distinguono dagli altri.

In ogni caso si assume che tutti i sistemi di riferimento siano equivalen-
ti rispetto alla formulazione delle leggi fondamentali della fisica. Questo
principio si chiama principio di relativita generale.

I sistemi di riferimento inerziali sono allora quelli in cui le forze gravi-
tazionali, determinate dalla masse lontane o da quelle vicine, sono assenti.
Nel caso delle masse lontane cio e equivalente alla definizione usuale, nel caso
delle masse vicine, per esempio la terra, avremo che un riferimento inerziale
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sara quello in caduta libera, che quindi sara necessariamente locale, nel senso
che non potra essere esteso oltre una certa misura di spazio e tempo. E per
questo motivo che vengono anche chiamati sistemi in caduta libera o “free
falling” .

Questi sistemi in caduta libera sono determinati nella relativita di Ein-
stein dal campo gravitazionale locale che, a sua volta, ¢ determinato da tutta
la materia dell'universo, vicina e lontana. Tuttavia, una volta che si sia in
un riferimento inerziale, le leggi del moto non sono affette dalla presenza di
masse vicine, appunto per come sono definiti. Per esempio, la massa del sole
determina la caduta libera della terra, e quindi sulla terra, non possiamo de-
terminare il campo di gravita del sole. Questo e un fatto che ¢ stato verificato
sperimentalmente (R.H.Dicke, Ann.Phys., 26, 442 (1967)).

In modo analogo, se si € in un ascensore in caduta libera, non possiamo
sperimentare la gravita terrestre.

Quanto si e detto e possibile per l'identita tra massa gravitazionale e
massa inerziale, che fa si che sia possibile considerare le forza di gravita e le
forze inerziali della stessa natura.

A questo punto possiamo enunciare il principio di equivalenza di Einstein.

“in ogni punto dello spazio-tempo in un campo gravitazionale arbitrario
e possibile scegliere un sistema di coordinate “localmente inerziale” tale che,
in una regione sufficientemente piccola del punto in questione, le leggi del-
la natura prendano la stessa forma che hanno in un sistema di coordinate
cartesiane non accelerate in assenza di gravita.”

Aggiungiamo per chiarezza che la forma che le leggi della fisica hanno in
un sistema cartesiano non accelerato e in assenza di gravita e quella dettata
dalla relativita speciale.

Nella forma debole di questo principio al posto di “leggi della natura” vi
e ,“le leggi di moto di particelle in caduta libera” . La forma forte e quella
enunciata, che si riferisce a tutte le leggi della natura e non alle sole forze
meccaniche.

Detto in sintesi, questo principio stabilisce 1’equivalenza tra gravita e
inerzia.

Da quanto si e detto risulta la differenza rispetto al principio di Mach:
il principio di Mach afferma che I'inerzia qui sulla terra ¢ determinata dalle
masse lontane, tuttavia una massa vicina altera le equazioni del moto. Vicev-
ersa, il principio di equivalenza afferma che una massa vicina potra cambiare
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il riferimento inerziale, nel senso che questo riferimento diverra un determi-
nato riferimeno di caduta libera, ma, una volta che cio sia avvenuto, non vi
sara alcun altro effetto dovuto a questa massa.

Hughes et al.(V.W.Hughes, H.G.Robinson and V.Beltran-Lopez,
Phys.Rev.Letters, 4, 342 (1960)) hanno eseguito un esperimento che verifica
la seconda possibilita e quindi il principio di equivalenza di Einstein.
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Appendice A

Appendice sulle unita di
misura.

A.1 Equazioni di Maxwell
(tratto da J.D.Jackson, Classical electrodynamics)

Nel sistema SI (Systeme International d’Unités) le equazioni di Maxwell
si scrivono:

V-D =p
V-B =0
; ! A1)
P (
VAE :—a—?,

7 _ 7., 0D
VANH —J—FW,

dove, nel vuoto, si ha che D e B sono legati ai campi elettrico e magnetico
E e B da

D= EOE, B= uoﬁ, (A.2)
dove, nel sistema di misura SI ¢, e u, sono dati da

1
€o = 4—2107, o = 4m107". (A.3)
e

Inoltre I'espressione della forza di Lorentz per unita di carica si scrive
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F=E+#AB. (A.4)

In queste espressioni ¢ = 299792458 m /sec.

Ricordiamo che nel sistema SI le unita fondamentali sono: kilogrammo,
metro, secondo e ampere.

Le equazioni fondamentali per fissare un determinato sistema di unita di
misura sono le seguenti:
I’equazione di continuita

V-J+—=0 A5
la legge di Coulomb
aq'
la legge di Ampere
dF 1r
— = 2ky— A7
dl > (A7)
dove I e I’ sono due correnti e d la loro distanza, la legge di Biot e Savart
I
e la terza equazione di Maxwell
. 9B
VANE+ki—=0. (A.9)
ot
Le costanti ki, ko, o € k3 non sono indipendenti, k; e ks sono legati da
— =~ A.10
e (A.10)

Le equazioni di Maxwell con queste costanti si scrivono

V-E = A4rkyp,

V-B 0,

VAE = k28 (A-11)
- 3ot .

VAB =dnkyaJ + k2oL

k1 Ot
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Nel sistema SI si ha

1

dre,

— 1072, ky = Z—" —107, a=1, k=1  (A12)
T

ki

Nel sistema di Heaviside-Lorentz si ha

1 1 1
by = — ko — - ko = = A.13
1 A ) 2 A2 ) « C, 3 c ) ( )
e inoltre
€ =1, o =1, (A.14)
e quindi le equazioni di Maxwell si scrivono in questo sistema
V-E =p,
V-H =0,
N =—=C%
T _ 17, 10E
VAH =J+.:%.
In questo sistema la forza di Lorentz per unita di carica si scrive
— — 1 . —
F=FE+-vNH. (A.16)
c

Abbiamo riportato le equazioni di Maxwell in questo sitema perche e
quello spesso usato quando si discute di relativita. Infatti in questo sistema
risulta piu evidente il fattore c, ed e anche piu utile per porre queste equazioni
in una forma covariante.

A.2 Unita di energia

Per unita di energia abbiamo usato 1’eV, che e stato definito come 1’energia
acquistata da un elettrone nell’attraversare la differenza di potenziale di 1

Volt.
Tenuto conto che la carica di un eletrone ¢ data da

e =1,602- 10" "Coulomb, (A.17)
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si ha

leV = 1,602 - 10~ "Coulomb  Volt. (A.18)
Dato che 1Coulomb Volt = 1Joule = 10~ "erg, si ha

leV = 1,602 - 10~ erg. (A.19)

Le masse dei nucleoni sono date da

— 931,494 - 1,007276 = 938,272 MeV
{mp : ’ ’ °¥s (A.20)

m, = 931,494 -1,008666 = 939,565 MeV,

dove il fattore 931,494 ¢ il fattore di conversione da u.m.a. a MeV.
Notare che adesso la massa del protone ¢ inferiore alla massa data nella
(4.62), che ¢ quella dell’atomo di idrogeno | H.

X 3k 3k ok ok ok ok ok
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