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1 Vibrational modes and one dimensional lat-
tice

1.1 Lagrangian and Hamiltonian

Let us consider the elastic vibrations of a cubic cristal. The solution is simple
when the waves describing the vibrations propagate in the x, y or 2z direction
because entire planes of atoms oscillate.

For example for a two dimensional cristal, let us consider a wave propa-
gating as k = X. Then one has a longitudinal wave when

u; = Xexp [i(kx; — wt)] (1.1)

where u; is the displacement of the j atom, x; = ja being a the lattice size.
One has a transverse wave when

u; = yexp [i(kr; — wt)] (1.2)

In the first case the displacement of the j atom u; is in the « direction while
in the second case is in the y direction. In both cases the problem is reduced
to a one dimensional case. Therefore for simplicity we will consider a one
dimensional lattice.

Let us consider a one dimensional chain, containing N atoms with spacing
a, bound by an elastic force with elastic constant C'. Let m be the mass of
the atoms and x; = ia, i = 1,... N, the rest (equilibrium) position of the
atoms and z; the position at the time ¢. Then the displacement with respect
to the equilibrium position is

u; =, — x; (1.3)
For the study we will assume boundary periodic conditions

UN+1 = Uy (14)

The potential of the chain is given by

V- %C[(ul C Pt (m—ug)t ] = 2O (i —wia)? (1)



the kinetic energy
N
m .
o) § 3 (1.6)
i=1

Then the Lagrangian for the one-dimensional lattice is given by

Zu - —C’Z — ui1)? (1.7)

The Lagrangian describes the small oscillations of the atoms with respect
to the equilibrium. Higher order terms, cubic or quartic in wu;, could be
introduced. For simplicity we limit ourselves to (1.7).

Let us now consider the Euler equations

ddL  OL

— = =1...N 1.8
or
miu; = 8u1 = ——22 —Ug+1 - i,j+1)
= —C(UZ — ui+1) + C(Ui,1 — ul)
= —C(2u; — Uiy — Uiy1)
= =) Vyu;, i,j=1...N (1.9)
J
with
‘/ij = 0(25” - 6i,j+1 - (51'71',1), Z,j = 1 e N (110)

This is a finite difference differential equation, which can be solved by a
discrete Fourier transform,

u;(t) = Aexp (ixj) exp (—iwyt) +cc, j=1...N (1.11)
By substituting (1.11) in eq.(1.9), we get

m [Aexp (ixj) exp (—iw,t) + cc] (—wi) = —C[2Aexp (ix]) exp (—iwyt) + cc]

ClAexp (ix(j — 1)) exp (—iw,t) + ¢

ClAexp (ix(j + 1)) exp (—iwyt) + cc
(1.12)

+
+



and therefore

C C
w>2<:2%(1—cosx) :4Esin2§ (1.13)

or assuming positive frequency

C
wX:2\/E|sin§| (1.14)

By imposing the condition (1.4) we get

exp [ix(N + 1)] = exp (ix) (1.15)
implying )
exp(ixN) =1, y= %" (1.16)

with —N/2+1<n < N/2foreven N and —(N —1)/2 <n < (N —1)/2 for
odd N. In conclusion one has N proper modes. Since Yy is defined modulus
2w, n is defined modulus N. In fact if yx — x + 2mm, then

xN xN  2mmN
n= o + o n-+m (1.17)

We can rewrite the solution as

u;(t) = Aexp (ixj — iwyt) + cc
= Aexp (ikz; —iwyt) + cc

= Aexp (ikx; — iwpt) + cc (1.18)
with 9
X ™
=24 ="_"_" 1.19
a Na ( )
and

C ™
o =21/ —|sin — 1.20
w m|smN| ( )

Note that all atoms oscillate with the same frequency w,,. The group velocity
dw [C ™
Vg = % = EGCOS W (].21)
Furthermore the condition (1.19) gives
2
nA =n— = Na (1.22)

k
or the total length must contain an integer number of wave lengths.
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1.2 Expansion in eigenmodes and quantization

Since the ugn) are a set of orthonormal and complete functions, the general
solution can be written in terms of the normal modes, defined as

u;(t) ~ ugn) exp (—iwyt) + cc (1.23)
1 2mn
(n) ‘ .
u;’ = \/Nexp (1 N 7) (1.24)
Let us show that (1.24) are a set of orthonormal functions, or
S = 129

and satisfy the completeness relation

> @) (W) =6 (1.26)

n

For © = j or n = m the properties are obvious while the orthogonality
(completeness) condition follows from the fact that by inserting eq.(1.23) in
the equations of motion (1.9), we get

" = mw?6ul (1.27)

which means that the normal modes u§") are eigenvectors of the matrix Vj;

with eigenvalues mw?. Eigenvectors corresponding to distinct eigenvalues are
orthogonal.

The general solution is therefore

u;(t) = Z Anu§") exp (—iwyt) + c.c., (1.28)

with A,, complex or with a different normalization and notation (w, — wg)

h
u;(t) = E \/ Do aku§~k) exp (—iwxt) + c.c. (1.29)
f




where we recall that wy = 2,/C/msin(ka/2) with k = 27n/Na. The mo-

mentum is given by

oL /
p;(t) = Er =mu,(t) =m g Wkaku —iwy,) exp (—iwgt) + c.c.
j

(1.30)

The Hamiltonian is
H=-L+)Y ip=T+V (1.31)
J
Let us now invert the relations in order to obtain aj in terms of the coordi-
nates and momenta. Let us consider

_ _ & ( MO
u;(0) = ¢;(0) = Ek:,/mwk(akuj’“uak (ui)) (1.32)

Z \/W (k:) —an (ugk))*) (1.33)

By multiplying by (uj /))* and summing over j we get

S () q;(0) =

/ Y 1.34
s+ ) (134)

1 [mwph

> ) pi(0) = 2/ T (aw — %) (1:35)

, 1
ar = () () G a5 (0) iy i (0) (1.36)

We can now quantize the theory by requiring the standard commutation
relations

from which

(9, p;] = ihdj, [ai, q5] = [pi, pj] = 0 (1.37)
By using eq.(1.36) and eq. (1.37), we get

ay, al,] = O, [ag, aw] = [al,al,] =0 (1.38)

5



Since the Hamiltonian does not depend explicitly on ¢t we can quantize at
t=20

1 1
H(t=0)= o> 5j0)+5 > Via(0)g;(0) (1.39)
j Lj
where 92y
Vi = e C(2015 — d1j—1 — O j+1) (1.40)

By substituting in the Hamiltonian p;(0) and ¢;(0) we get
1
H= 3 ; hwi(alag + aral) (1.41)

In fact we have

XA = g Yy T

2m LA V2 V2

(@ — i (W) e - a ()
h
— _Z Z Z \ WEA/ W [5]4;7_]@’ (akak’ + CLLCLL)
kK

_6k,k’ (akaz, + CLLCLk/)]

h
= -7 Zwk(aka_k —agal — ala, +alal,)  (1.42)
k

Furthermore we have

1 h ! !
— Viiq(0)q;(0) = = Vi;
5 lzj: qul( )QJ( ) 9 lz; Ly zk:zk’: V2mwy, v/ 2mwy

(arel® + af (u™)) (apul) + ap (W)

[5k7_k/(akak/ + CLLGL,) -+ 5k7k/(akaz, + azak/)]

h
= 1 Z wi(aga_g + akaL + aLak + aLaT_k) (1.43)
k



where use has been made egs. (1.27) and of the orthonormality of the ug-k).
Then the Hamiltonian is given by

h 1
H= B zk:wk(azak + akaL) = zk: hwk(azak + 5) (1.44)

The Hamiltonian is then the sum of N armonic oscillator Hamiltonians. The
Hilbert space is built starting from the fundamental state (in quantum field
theory this state is called the vacuum) |0 >= 10 > . ---|0 > such that

min

a,l0 >=0, Vk (1.45)

Remember k = 2mn/Na with (for example for even N)
TS

2m(—& +1) 2
kmin == 2 5 kmaz = 1.46
Na Na ( )
The state
at]o > (1.47)

eigenvector of the Hamiltonian with energy wy represents a possible quantum
excitation of the lattice and it is called phonon. The generic state is given
by
(all)N’“ (aiz)NkZ

Nia! VNl
In conclusion the energy of an atom lattice is quantized. The phonon does not
carry physical momentum however interacts with particles such as photons
or neutrons as if it had a momentum k.

0 > (1.48)

1.3 Continuum limit

The continuum limit of the oscillator lattice is obtained by taking the limit
N — oo or a — 0 considering the length L = aN finite.

In this limit x; = ja — =z, k = x/a is the wave vector.

ui(t) = 2} — x; — u(t, x) (1.49)

Yt 7%, u'(t, ) (1.50)
a



where

Ju(t, x)
"(t,z) = 7 1.51
' (t,2) = 2% (151)
The Lagrangian (1.7), in the continuum limit, becomes
_— | N
_ \2 2
m e 1 s (u; — i)
— 2 7 i+1
= %;aul—iCCL ; s
u [t 1 L
— —/ dr a(t, z)* — —K/ dz ' (t, z)? (1.52)
2 Jo 2 Jo
or
g K 2 1
L:/ dx L, L= Eu(t,:c) - éKu’(t,ar:)2 (1.53)
0

where we have introduced the linear density ;1 = m/a and the comprimibility
modulus K = Ca. L is called Lagrangian density. Then the equations of
motion (1.9) become the D’Alembert equation in one dimension

§ (wit1 —w;) — (Ui — ui—1)

gt = Klir% 5 = Ku" (1.54)
a— a
where u” = 9%u/0x?. The velocity is given by
K
i
In fact in the continuum limit we have
K k
wp = 4/? sinQ(g) — vk? (1.56)

The expansion becomes

h .
u(t,z) = Z 2uwkaaku§k)exp(—zwkt)+c.c.
k

h
= Zk: 2kaLak exp (—i(wit — kz;)) + c.c.

h .
— ; \/ 2ukaak exp (—i(wit — kz)) + c.c. (1.57)
8




where the sum is extended over
k=—=— (1.58)
withn =0,+1,4+2- ..
The total energy associated to the field is

H:/MH (1.59)

where the Hamiltonian density is given by

1 1

T — T2t "2
H=Tu—L 2,uH + 2K(u) (1.60)

where or
II = 90 (1.61)

The quantization of the system is obtained by requiring the commutation
relations at equal times

[u(t,z),11(t,y)] = ihd(x — y) (1.62)

[u(t7x)’u<t7y)] = [H(twr)’n(tay)] =0 (163>

which imply for the operators ay, aL

(ak, af,] = O (1.64)
lar, ap] = [al,al,] =0 (1.65)

The total Hamiltonian, using the expansion (1.57), becomes

1

HZEZMM@%+§) (1.66)

Since the operator a};ak is definite positive, a state with minimum energy

|0 > exists, defined by
a0 >=0, Vk (1.67)



This state corresponds to the fundamental state or of minimum energy. The
generic state of the Hilbert space is built as a linear combination of the states
(Fock states)

(af)™ (afy)™

Vgl V! B

The total energy of this state is the sum of the energy wy; of the single
quantum excitations

(|0 >) (1.68)

FE = Npi Wi 1.69
2 (1.69)

2 Lagrangian field theory

2.1 Action and Euler equations for a continuous sys-
tem

In general the action for a continuous system is given by:

ty
S:/ ﬁ/d%ﬁ (2.1)
ti V

where £ is the Lagrangian density with
L=L [qu(ta X)7 Q.SA(t X)v azQSA(t? X)] ’ Z)] = 1a 27 3 (22)

da(t,x), A=1...qare qfields and 9;f = 0f/0x'. For Lagrangians depend-
ing on higher derivatives see [1] (Ostrogadski method).

The Action Principle requires the stationarity of the action for any vari-
ation d¢4 such that

dpalov =0, 6¢aly, = dgali, =0 (2.3)
Therefore (from now on the sum over equal indices is implied) we obtain
oL oc _ . oL
0=05 = /dtdgx =004 + ——004 + ——00;
90,071 " 05,001 0,0,

oL 0 oL oL
= dtdPr(— — — == — 9, )
/ = Opa  0tdp, ' 3aj¢A) b4

10



0,0L oL
3 — — . ——
+ [ 50 + 0,55 06)
oL 0 oL oL
= dtdPe(=— — =— — 0, 4]
[ g~ g~ O
(2.4)
which implies the Euler equations
0 oL oL oL
ot 0P a Jaaj¢,4 Opa (2:5)

It is easy, using (2.5), to get eqgs.(1.54) from the Lagrangian given in eq.
(1.53)

In the relativistic case the Lagrangian

L= L(Ppa(z),0,04(x)) (2.6)
where = 0,1,2,3 and the Euler equations (2.5) become
g oL 0L (27)

Ozt O,pa  Oda
The sum over p is again understood.

Example. Schrodinger field. The Lagrangian for the Schrodinger
field is given by (assuming i = 1):

1, - . 1
L= — * o P vV — V¥ 2.8
ST = 7) = 5 VUV = VY (23)
Using this Lagrangian in (2.5), one can derive the Schrédinger equations for

1 and Y*.

3 Quantization of the Klein-Gordon field

3.1 Quantization of the Klein-Gordon field in 1D

Let us consider the Klein-Gordon'! real field in 1D, = € [0, L], obtained from
the continuous string Lagrangian, eq.(1.53), assuming ¢ = 1, K = 1 and

'The equation in 3D was proposed indipendently by O. Klein, W. Gordon, V. Fock
and E. Schrédinger in 1926
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adding a quadratic mass term. We assume the light velocity ¢ = 1 and
h=1.

R N ST R
L= <¢ &% — m2¢ ) (3.9)
From the Euler equations we get
0? 0? 9
- =0 3.10

The solutions are, using the expansion (1.57) with u =1, wy = Ej

ot.r) =34/ 2ElkL lapexp (—i( Bt — ko)) + he]  (3.11)

with k = 2mn/L, n=0,4+1,£2... and

E, = VE?>+m? (3.12)
The momentum density is given by
me 26 ¢ (3.13)
99
The Hamiltonian is defined
H = /dw’H (3.14)
with .
H =16~ L= [0 + ¢ +m?’] (3.15)

In order to quantize the theory we promote ¢ and II to self adjoint oper-
ators satisfying “equal time” commutation relations

[o(t, 2), 11(t, y)] = i0(x — y) (3.16)
[0, ), ¢(t, y)] = [I(¢, ), TI(t, y)] = O (3.17)

We can now compute the commutation relations between the operators ay
and az. Before let us show that

o = \/%_Ek /0 d exp (i( Eut — k) [Erds + id) (3.18)

12



In fact we have:

\/%—Ek / drexp (i( Byt — kx)) [Ek Z \/ 2E1,€/L [ap exp (—i(Ept — K'x))

+al, exp (i( Byt — K'z))]

/
+Z,/2Ek, Eylaw exp (—i(Ept — K'x))

—ak, exp (i((Ept — k x))]]

- I/ / =B+ B exp (i(B = Bt = (k = 1)a)

—|—(E;C — Ek/)ak, exp( ((Ey, + Ep)t — (k+ K)x))

= — E Fr 1O 1 (E. — Bt
2;\/m[( kT k)ak k,k exp(z( k k) )
+(Ek — Ek/)a};,ék,_k/ exp (Z(Ek + Ek/)t>]
= ag (3.19)

where use has been made of

7| dwexolite— ol = 5, (3.20)

Using (3.18) and (3.16)-(3.17), we have

la, CLL] = O
lar, ar] = [a],al,] =0 (3.21)

Using the expansion for ¢, given in eq.(3.11), and the commutation relations,

we get
1
o) (3.22)

H = ZEk(aLak + 5
k

The generic state of the Hilbert space is built as a linear combination of
the states (Fock states)

(all)nkl (GLQ)HM
NG e (10 >) (3.23)



and contains ny; particles with energy Fyi, nie particles with energy Ejo...
The fundamental state |0 > is such that

axl0 >=0, Vk (3.24)

The state |0 > is called also the vacuum state because no particles are present.
Note that the vacuum expectation value of the Hamiltonian is infinite:

1
<OJH|0 >= 5 %:Ek (3.25)

However this is not a problem since usually one measures differences of en-
ergies between states.

3.2 Quantization of Klein-Gordon field in 3D

The action for the Klein-Gordon field in three spatial dimensions is obtained
by generalizing the previous section

ty 1 /.
S= / dt / Prs (8~ (Vo) — m?e?) (3.26)
t; 1% 2
where V' = L3. This action can be written also in the covariant form
1
S = / d4x§ (0,00"p — m*¢?) (3.27)
Vi

where Vj is now a space-time volume, d*z is the space time volume element
and u = 0,1,2,3. The sum over the repeated indices u is understood. Assum-
ing the mass as fundamental dimension, the dimension of the Klein-Gordon
field ar M* so that the action is dimensionless. From the Euler equations we
get the differential equations

2
(8—2 ~V2+m*p=0 (3.28)
ot
or in covariant form
(00, +m*)p = (O +m?)¢p =0 (3.29)

14



This equation is the simplest relativistic estension of the Schrodinger equa-
tion, obtained by replacing the relativistic mass condition

(B} —k*—m?) =0 (3.30)
with the differential equation (3.28) obtained by substituting the classical
variables E} and k by the operators

Er — i%, k —» —iV (3.31)

As we will see the quantization of this field theory describe a many boson
relativistic theory.

To quantize this theory, we postulate equal time commutation relations
between the operators ¢ and II are

[6(t, %), T1(t,y)] = id°(z — y) (3.32)
[¢(tvx)v¢(t7Y)] = [H(t7x)’H(taY>] =0 (333>

The field expansion is now

otx) =3 /ﬁ[ak exp (—i(Ext — k- %)) + h.c] (3.34)

with the dispersion relation of a relativistic particle
Ex = VKkZ+m? (3.35)

and 5
Ji = ”L” i=1,2,3,n;=0,+1,42, ... (3.36)

The inversion relation for the operators ay is now

Qay

= ﬁ /V d*zexp (i(Ext — k - x))[Epd + Z¢] (3.37)

and the commutations relations are trivial generalization of egs.(3.21).

The Hamiltonian is
1 .
H= / M = / d3$§[¢2 + (V) + m*¢*] (3.38)

15



and, using the field expansion (3.34), it turns out to be

1
H=>" Eyalo+ 5) (3.39)
k

The Hilbert space is built as in the previous section, with suitable gener-
alizations. For instance the state with ny particles with energy E} is given
by

(a3)"™

V!
As we will see in the following these particles have momentum k and spin 0
(bosons).

0 > (3.40)

Let us finally note that when working in R?, the expansion becomes a
Fourier transform

é(z) = (2;)3 - / &k \/;Tk [a(k)e—ikf’erh.c. (3.41)

where now x and k denote, using the covariant notations, the fourvectors
and
kr =k'2° —k-x=FEit —k-x (3.42)

3.3 Noether Theorem

Let us now prove the Noether theorem (1918)%. The theorem states that to
every continuous transformation for which the action is invariant (0.5 = 0),
there corresponds a definite function which is time conserved. This function
or the corresponding operator, after quantization, is the generator of the
corresponding infinitesimal transformation.

Let us consider a generic action (we use natural units, h = ¢ = 1)

Sy = / d*wL(pa,0,04), A=1,---q, (3.43)
\%4

2Emmy Noether, 1882-1935
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where V' is a space-time volume and ¢4(z), A =1,---q, denote a field with ¢
components.We are going to consider both an infinitesimal variation of form
of the fields and of the space-time coordinates

o —> ba=bds+0ba, v =1 =x+0x

In general the total variation of a function is defined as

Af =f(a) = flz) = (@) = fa) + f(2") = f(z)

To first order we get

Af~6f+g5m
ox

where we have defined the local variation

of = f'(x) = f(x)

Let us suppose that the action is invariant under (3.44)

where

with

Sy = / d'a'L () = Sy
L) = L (), 0,64(x")) = L(x) + AL(x)

AL(x) = L'(a')— L(2")+ L(z") = L(x)

oL oL oL
T = T M
55004+ 5 5o 00,64 + 50

with 0¢4 and 00,04 the local variations

004 = ¢y(x) — Pa()

The variation of the action can be written as

(5SV:/ d4:r’£’(x')—/d4:v£(:v)
/ v

17
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or

58y = / L) + / AL - /V diz ()

N /V d4x£(x)|aa—i/]+ /V B AL(z) — /V il (x)
N / iz L(@) (1 + O,0a") — /V L)

/ a2 2L 5, + 0L 5aM¢A+a—£5x~]

agbA 88M¢A
L oL oL
/ d [a¢ aﬂ(aaﬂgbA)]égbA
/ d'zd, | oL Spa + LIz (3.53)
"00,,¢ 4

In the previous equations the Jacobian has been computed to first order in
A as

det(] + A) = exp[lndet(1 + A)] = exp[Trin(l + A)] ~ exp[TrA] ~ 1 + TrA

(3.54)
with
Al = 0,0x" (3.55)
Using the Euler equations of motion in (3.53), we obtain
oL
) dpa + LoxH] =0 3.56
| dtsonlg o+ Lo (3.36)
By considering the global variation
Aga = &A(ﬁl) — pa(x) (3.57)
we have
Apy~ o+ 6ugb,45x“ (3.58)

In term of the global variation A¢ 4 we get

oL
00,04

/ d*z0),]| oL App+ LOzH — dz” Oyda] =0 (3.59)

"00,04

18



and since the variations are arbitrary

oL oL
T v
88M¢AA¢A + Loz" — dx Do

0.l 9,64] = 0 (3.60)

Let us now study the consequences of the Noether theorem in some ex-
amples.

Space-time Translations Let us consider an infinitesimal space time
translation
oxt = ¢ (3.61)

Under this transformation the fields are invariant

Apy =0 (3.62)
From eq.(3.60) we get
oL
0, |Le" —€” 0,04] =0 3.63
N[ € € 88;1,¢A ¢A] ( )
Being € arbitrary we get
0,T" =0 (3.64)
where o
™ = 0"oa— gL 3.65
90,01 Pa—g (3.65)

By integrating over d®z the p = 0 component of T*, we get four invariants
corresponding to the total four-momentum of the field

P = / 2T (3.66)

In particular for v = 0 we recover the Hamiltonian. For v = i, we get the
spatial momentum associated to the field

Pl = / d%%aim (3.67)
A
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For example, in the case of the Klein-Gordon field,

oL .
0 ¢ (3.68)

and, using the field expansion (3.34), we obtain
P = / P*rgd'¢ = Kalax (3.69)
K

In conclusion each quantum of the Klein-Gordon field contributes to the total
momentum of the field with its momentum k.

Lorentz Transformations Let us then consider an infinitesimal Lorentz
transformation

AL =61 e, (3.70)

The matrix condition
Agh =g (3.71)

implies that the tensor ¢*” is antisymmetric,
M = —et (3.72)
Let as assume that under the Lorentz transformation the fields transform as
A = =5 Hnems (3.73)
Let us consider some examples. For the Klein-Gordon field we have
¢'(2') = p(z(2')) (3.74)

or the field is a scalar field. For vector fields, like the four potential A*(x),we
have

A2y = AP A (z(2)) (3.75)
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By substituting (3.73) in (3.60), we obtain

oL 1 oL

- ZPU o L e o o ay
! M= G0y ga 3 ABCee O T L0 = M ag s 000l
oL 1 oL
= - Y o Le o 1o i 0
W= 56,0 2 Ao 08 T Lo 07 = 6ot 55 0704]
oL 1 .
- ,u[ 86(? 2 AB6p0¢B Epax Tp,u]
“w
oL 1 1 . :
= 0,— 88¢ 22’;3 €poPB — 2EPU(I TP — xPTM)]
“w
(3.76)
or
0, MH?7 =0 (3.77)
with or
MHIPT = P TOH — g7 TPH — 30,0 SE0B (3.78)
"
In conclusion we can built the six invariants
MP? :/deMOpU (379)

MY are the angular momentum components or the generators of the O(3)
rotations, while M are the generators of the Lorentz transformations.

Internal transformations In this case only the field transforms, dx = 0,
A¢ = §¢. Therefore from eq. (3.60), we get

oL
8“80,%“"‘ =0 (3.80)

As an example let us consider the gauge transformations for the Schrédinger
Lagrangian

L= (60— 60)— 5 V6'Vo-Veo (3.81)
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The Lagrangian is invariant under the internal transformation

¢ — exp(ia)p (3.82)

where « is a real number. Therefore for infinitesimal transformation

Ad ~ iad (3.83)
The Noether theorem implies
0 oL oL
v os A ] = .
(iag * Fgag)20+ (9= ) =0 (350
bt oc i, oL i
i i
OL _tye 9L _ 1 3.85
L R (3.55)
oL 1 ., oL 1
6~ ™ e~ am (3:50)
and substituting in (3.84), we get
O (—46) + O~ + —00k0T)| =0 (3.87)
o M om om " B '
or
L (—4%6) + O~ 5= 046" + 5—00,6") = 0 (3.88)
ot M om t om’ T '

In conclusion, we obtain the continuity equation

?

0 26— g =
S(670) + V(45— (V)6 — 5-6V6") = 0 (3.80)

4 Quantization of the electromagnetic field

4.1 Lagrangian and Hamiltonian

Let us start by writing the Lagrangian of the electromagnetic field (we work
in the Heaviside-Lorentz system?):

1 1 | 1
L=—-F,F"=—"F,F% - _F,.FY9 = _(E* — B? 4.1
4 H 2 0 4 J 2( ) ( )

3In this electromagnetic system o = €2 /4rwhc = €% /47 in natural units
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where

Fr =9t AY — 9V A* (4.2)
In particular, in eq.(4.1) we have used F*% = —F’ and F = —¢;;; B*. From
this Lagrangian we can derive the Euler equations

oL oL

= =9, | — 4.3

0A, (880A,)) (43)

Now

oL 0L OF,,
= — _Foe 1.4
00,4,  OF,, 00,4, (4.4)

and therefore we get the free equations of motion
0,F°" =0 (4.5)
In presence of an interaction with a corrent j*, the Lagrangian becomes
Lin =L+ Ly (4.6)
L;=—j,A" (4.7)

and the Euler equations of motion become the Maxwell equations in presence
of the current j#
0,F°° = j* (4.8)

To quantize the system, let us first compute the Hamiltonian. Let define the
momentum density as

oL
In,=— 4.9
= )
Using the eq. (4.4), we get
II, = —Fp, (4.10)
Therefore the zero component Il = 0 and
I, = —Fy = —E' = A" + 9;A° (4.11)
The Hamiltonian density Ny
H=ILA"—- L (4.12)
and the Hamiltonian
1
H= / d*rH = 5 / d*x(I1* + B?) — / d*x11;0; A (4.13)
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The last term can be integrated by parts, neglecting the boundary terms,
— / P20, A = / d*xO,1;AY = 0 (4.14)
where use has been done of
V-E=0 (4.15)
The Lagrangian (4.1) is invariant under gauge transformations
Al — AR+ OFy (4.16)

where x is an arbitrary scalar function. In order to show that the Lagrangian
is invariant, it is sufficient to observe that

Fr s W 4 1Yy — Y0y = FM (4.17)

We can use this arbitrariness to perform the quantization of the electro-
magnetic field in different gauges, choosing a condition on the field A*. Here
we choose the Coulomb gauge?

V-A=0 (4.18)

In this gauge §
V-E=0=09A"+AA" = AA° (4.19)

In conclusion, eq.(4.15) implies A° = 0. The gauge
V-A=0, A°=0 (4.20)

is called radiation gauge. Working in this gauge we loose manifest covariance.
The advantage is that we work with the two independent degrees of freedom,
as we will see when expanding the field in normal modes. A° and IT° will not
be quantized and the field A is transverse, due to eq.(4.20).

We can now expand the field in normal modes in a finite volume V'
2T

1 —ikx

k a=12

4The quantization can be performed also in the Lorenz gauge. See for example [15].
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where
kr =k2° —k-x (4.22)

and k° = w;, = |k|. The polarization vectors € are orthonormal and trans-
verse to k. For simplicity we assume real polarization vectors.

€€ =0 € k=0 (4.23)

Furthermore €f and k/|k| are a complete basis or

k'kI
Z e 4 = § (4.24)
k2
a=1,2
The Hamiltonian is
1
H = §/d3x[ﬂ2 +(V x A)?] (4.25)
where .
II=A (4.26)

The quantization® is obtained by requiring the commutation relations
lag, apf] = 67 Gy e (4.27)
[ag,al)] = [at, alf] = 0 (4.28)

By substituting in the Hamiltonian the expansion in normal modes (4.21)

we get
ot o, 1
H = g E wi(aTad + 2) (4.29)

k a=1.2

Proof:

5The first attempt of quantization of the electromagnetic field was performed by M.
Born, W. Heisenberg and P. Jordan in 1926. Then in 1927 Dirac published the paper on
The quantum theory of the emission and absorption of radiation. The idea of the second
quantization was also proposed by Jordan, in 1927, while the expression was coined by
Dirac. The general theory of quantum fields through the method of canonical quantization
was presented in W. Heisenberg and W. Pauli in 1929.
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Let us first consider

. 1 )
A(z) = Z (—iwy,)ex[afe”** — h.c)] (4.30)
k a=12V 2V
and
1 .
VxAlr)=)_ (ik) % €[age ™ — h.c] (4.31)
k a=12V 2V

and compute

. 1 .
dPr(A)? = /d?’x ————(—iwp )€l [ate ™™ — h.c.
[ i) XY il |

1 i o1 o —ikle
Z Z m(—zwk/)ek,[ak,e Mr _ h.cl

k! o/'=1,2

S 3D 3D B BEN=rE

k a=12 k' o'=12
{ [aﬁaﬁ:5k7_k/ exp [-Z((Uk + wk/)t] + hC] —

[aﬁaﬁﬁék,k/ exp [—i(wy — wp)t] + h.c.} }

1 / / .
= —= W€y - €7 [aﬁa‘_‘k exp (—2iwt) + h.c.]
2 k,a,’
- 1 Z w ea-ea/[aaaa/T+hc}
2 2~ k€K * €k | Qi €

1 , , »
- T3 Z WreEp - €% [aﬁafk exp (—2iwyt) + h.c.]

/
k,a,a

1 o a
+ 3 kéa W [akakT + h.c.]
(4.32)

where we have used eq.(4.23). Furthermore we get

/d%(V x A)? = /d%z > ﬁ(ik x €)[ale™** — h.c)]

k a=1.2
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where we have used

a=12 K o'=1,2
{ [aﬁaﬁ,ék _w exp [—i(wy + wi )] + h.c.} —
[akak, Ok exp [—i(wy, — wi)t] + h.c.} }

1 1 , :
! _{ C(kx €l - (k X €%)) [aﬁaﬁ,dk,,k/ exp [—2iwyt] + h.c.| —

(k x €) - (k x €) [aﬁaﬁﬁéhk/ + h.c.} }

1
3 Z WEER - € k[aka 1 €xp (—2iwyt) —l—h.c.]

k,a,a’

1 a
5 Z Wi [aﬁakT + h.c.}
k,a

(4.33)

(k x €) - (k x €)) = k%€l - €, (4.34)

(kx€) - (kxe)=Kke e =,k (4.35)

Summing eq. (4.32)

and eq. (4.33), we obtain
1 3
H = 5 PPz[A% + (V x A)?
= —Zwk[akak +hc}
= Zwk altaf + (4.36)

Using the Noether theorem we can build the energy momentum tensor

)

oL oL

1Y = 676 AP = ﬁa AR = 11,0, AF = Ako, A* (4.37)
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Therefore the momentum of the field is
Pi= / BT = — / >z A9, A (4.38)

By substituting the expression in normal modes (4.21), we obtain

P=>"> ki a) (4.39)

k a=12

This expression allows us to associate to the photon state aﬁT|0 > the mo-
mentum k and therefore the mass of the photon is zero

m? =w; —k*=0 (4.40)

Note that the usual expression of the Poynting vector is equivalent to
(4.37), since

/d%(E x B)! = —/dgxeijkAjEkZmalAm
_ / B A0 AT (548, — (I < m)]
— _/d%(AmaiAm — Al A;)
_ / Pz Amo,Am (4.41)

where in the last step we have eliminated a term by integrating by parts and
taking into account the Coulomb gauge condition.

The Hilbert space is built by many photons states

My ns Mg,z - -+ > (4.42)
with
<a;f<1 Oél)nkba1 <a;r<2 ozz)nk%a2
Ny ars Nko.ag - -+ = : . .10 > 4.43
| k1,15 Tk a0 /—nkl,al! /—nk2’a2! | ( )
with
axo|0 >=0, Vo, k (4.44)
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In conclusion, neglecting the vacuum energy, the total energy and the total
momentum of the electromagnetic field are the sum of single photon contri-
butions of energy w; and momentum k.

H\nkl’al,nkrzm L. >= E Wk; Mk 0 | k1,005 ko ,an + -+ = (445)

i

P‘nkl’al,nk%o@ D E kinki,ai

7

Nky,015 Mkoyan - -+ > (446)

The photon is characterized by the momentum k and by the polarization
«. From the two one photon states

af 110 >, af ,[0 > (4.47)

we can define the circular polarization states

1 :
4[%[@11,1 F idaf,][0 > (4.48)

These two states are eigenvectors of the helicity operator, the projection of
the spin of the photon along the photon flight direction), with eigenvalues
+1 (see for example [2, 17]) . In conclusion the photon has spin one but only
states with helicity 1 are allowed. This is related to the fact that the photon
is massless and it is a consequence of the theory of Poincaré representations.

Using the expansion (4.21) and the commutation relations (4.28) we can
compute the commutation relations between the canonical operators field
and momentum density:

Altz), V(Y] = > Y > Y mm( g ) €€

k a=12 k' o'=12

[aﬁe‘i(”"'t_k'x) + h.c. aﬁ:e_i(“k’t_k/'y) — h.c.]

- Zeﬁleﬁ][lk(x Y) + h.cl]

2V o
= LV Z 51‘7 Zk (X_y) _|_ hC]
k
- Z (69 — kzkﬂ (x~y)
k
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= i[0Y6%(x —y) + 0%’ ] (4.49)

Ar|x —y|

where we have used eq.(4.24) and introduced the distribution [V?]7163(z —y).
Since

VZE(x —y) =8 (x —y) (4.50)

with X
Ex-y)= e — (4.51)
[V 0%z —y) = —m (4.52)

Proceeding in similar way we can show that

[A'(t, @), A(t, y)] = [IT'(t, =), TP (t,y)] = 0 (4.53)

The three A operators are not independent, since we are quantizing in
the Coulomb gauge. As a consequence the commutator (4.49) between the
field and the momentum density is not canonical (see [3]).

4.2 Casimir effect

The Casimir effect is the macroscopic manifestation of the vacuum fluctua-
tions of the quantized electromagnetic field:

1 3 2 2 1
<O]§/dx[E +B?)|0 >:§zk:wk (4.54)

H. Casimir (1909-2000), a dutch physicist, wrote the paper on this effect
in 1948. This effect was experimentally detected in 1958 by Spaarnay and
checked with percent accuracy by Lamoreaux (1998).

We will show that the vacuum energy (4.54) generates an actractive force
between the faces of metallic plates at a distance d, such that the force for
surface unit
F(d)  hc

JEE T

f(d) = (4.55)
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Let us consider two metallic squared parallel plates at distance d inside
a the cubic box of volume L3. Let us assume that the conducting plates are
orthogonal to the z axis. The electric field in the vacuum is solution of the
Maxwell equation with the boundary condition that the tangential field Eg
has to vanish on the conducting wall (z = 0, d).

Therefore the tangential field behaves as

Ey ~ sin(k,z) (4.56)
with nr
k, = — withn=1,2... (4.57)
The energy is
nmw
Wk = \/kg + k2 + (7)2 (4.58)
with e
kyy = %, Ngy = —00,...00 (4.59)

So the total vacuum energy is

vy =22 Y w (4.60)

where the 2 comes from the polarization sum. Let us define k = (/k2 + k;
so that kdk = wydwy = wdw where

W=/ K+ (%W)Q (4.61)

and pass to the continuum (the plaque lenght L — 00):
= [ &’k
d) = L? —
v Z/ 2

L2 oo o0 2
= kdk/ dow
(2)2 Z/o o 7

n=1

_ L i/m dww? (4.62)

2m n=1 Jnm/d
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The integral is divergent; there are several ways to regularize the energy to
get finite physical results. The result does not depend on the chosen regular-
ization (see for example [4]). Let us consider, by introducing a convergence
factor exp(—ew), the following expression

L& [
Uld,e) = — / dww?e™
27; nm/d
L d* &~ [
= _ﬁ / dwe™
2m de* “— )y

L2 2 0 e—emr/d

L? d% 11 1

S e S R } 4.63
27 de? [e<1—e*“/d ) (4.63)

The energy for surface unit is given by

Ulde) 1 & [1 1

S ey G 1 4.64
L? 2m de? Le <1 — e—me/d )} ( )

To evaluate the limit for ¢ — 0 we need the following series

tn_l

1 o0
= > B, . (4.65)
n=0

where B, are the Bernouilli numbers (By = 1,B; = —1/2, By, = 1/6, B3 =
0, By = —1/30). The Bernouilli numbers can be evaluated by expanding in
Taylor series

- _Zez - nf% BnZ—T (4.66)
Therefore we obtain
5 = sl S
= il B+ B~ B~ B 0]
(4.67)
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Neglecting terms that do not contribute for ¢ — 0 we get

U(d, 6) B(]d 1 B47T2
= 3— —(1+ B)—
L? m2ed (1+ 1)71'63 + 2443
&
= Cyd+ Cy+ pa (4.68)
In conclusion we have the (5 finite term which gives the correct result
0 U(d,e) 72
d) = —— = — 4.69
J(d) od L? 240d* ( )

but still two divergent terms, Cy, C; when € — 0. The second C; does not
contribute to the force, so we can put C; = 0. The second can be treated
with a trick, which consists in introducing two additional external plates at
distance 2D so that we end with three condensators. The total energy for
surface unit is now

U(daDa 6) _ 02 02
T s 2[CO(D d/2)+m]+00d+$
1 2
Then
00U, Dye) 30 1
and taking the limit D — oo
. 7’
A f(d, D) = —o g (4.72)

We have obtained the result in the system of natural units. The di-
mensions of the force for unit surface f are L=*. In the cgs units we have
[f] = ML7'T~2. On the other hand

[hc] = ML*T? (4.73)

Therefore to get the right dimensions in the cgs system, we have to multiply
by hc
F 7% he

A- aa @)
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For d = 10pm, we obtain a tiny force

F
7 = —1.3 % 10 dyne/cm® (4.75)

The gravitational force for unit area of two plates of m = 1g and L =
lem at a distance of 10um is comparable. However at smaller distances the
Casimir force becomes dominant.

5 Hamiltonian for a system of non relativistic
charged particles interacting through the
electromagnetic field

In this chapter we consider several processes of interaction between matter
and the electromagnetic field, like emission and absorption of photons by
atoms, the scattering of photons over atoms and the emission of light by
charged particles (Cherenkov effect®). In order to compute these processes,
we need to consider a system of non relativistic charged particles interacting
through the electromagnetic field.

The Lagrangian for a system of N non relativistic particles with mass m,.
and charge e, in interaction between themselves through the electromagnetic
field is given by

L= Z[ Mo e Ao(t. &) +edo(t)- Alt&)] + [daL ()

where &,(t) denotes the position of the r-th particle at time ¢ and

L= %(E2 — B?) (5.2)

Let us perform the Lagrange transform. Defining
oL

r = MyGr + €r t7 r

p 9%, 3 A(t,€,)

I, = ae = —F' = 9;Ag + A (5.3)
0A

6P. Cherenkov (1904-1990), Nobel prize in Physics in 1958
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the Hamiltonian is

H= Zpr .( /deH.A(t,x) —L (5.4)

We obtain (from now on &, = £,.(t), pr = p,(1))
1
H = szr(pr A(L€,)) +Zeert£T
+ / d*x 2(E2+B2) / d* 210, Ao (t, X)

= Z 2; (pr t Sr +ZGTA0 t 57"

T

+ / i (E2 + B2+ / BT Aot ) (5.5)
where we have integrated by parts. On the other hand

So
1

(pr — e, A(t, &) + Zeer (t, &)

x
I
-]
1

<

+
\

=

&

N | —

(E°+B%) - e / BPré(x — &) Ay (L, x)

—_

(pr — e, A(t,€.))* + /dgx%(Ez + B?)

)
= 3
3

(pr - erA<t7 £r)>2

]

[(A(t,x)? + (VAo (t,x))? 4+ 2A(t,x) - VAy(t,x) + (V x A(t,x))?]

—_

(pr - erA<t7 £r>)2

]

o
8

DN | —

+

=M MM
8
DO | —

[(A(t,x)* = (V2Ao(t, %) Ao(t, %)) + (V x A(t,x))’]
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1

— — e, A(t,€))?
; o (Pr = erA(€)))
1 .
[ PR+ 3 endlx - €)Au(tx) + (7 x At
1 1 ere
= r TA t; r 2 —
Z2mr(p € ( £)) 24 ‘gr 5|
|
[ oA+ (7 x A
(5.7)
where we have used _ .
Aoty =3 — = 5.8
o601 =2 g, e >
In conclusion the Hamiltonian is given by
H = Hutom + Hpga +V (59)
where
p;
Hatom - Z: er + V;:oul (51())
is the atomic Hamiltonian with
1 €€
Veow = = _ 5.11
: 2;47r|gr—gs| (5-11)
and
e’
Vo= —Z—pr t€r+z A(t€))

V' is the interaction between the charged particles and the electromagnetic
field. H,,q denotes the Hamiltonian of the electromagnetic field.

Then we perform the first quantization of the atomic system and the
quantization of the electromagnetic field by using the standard commutation
relations:

(&, pl) = @6V (5.13)
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[AY(t, x), A (t,y)] =i |6Y0%(x — y) + OOV (5.14)

drlx —y|
or remembering the expansion in normal modes by using the creation and
annihilation operator commutators (4.27),(4.28).

We are now able to compute emission and absortion from an atom by
considering the perturbation theory that we recall in the following section
and the interaction Hamiltonian given in eq.(5.12). Notice that the general
form has a first term linear in af and aﬁT, which can describe processes of
emission and absorption of one photon. The second which is bilinear and
describes processes where the number of photons can change of two or zero
photons.

Other processes could be studied like Thomson, Rayleigh, Raman scat-
tering, photoelectric effect, bremstrahlung;..

6 Scattering theory

6.1 S matrix

As we have seen as we progress from the discussion of the previous section
of the free fields and particles to the more realistic case of field and particles
in interaction, it is much more difficult to find exact solutions to the prob-
lem. In these cases, like radiative transitions in atoms, processes of quantum
electrodynamics, the solutions can be found only perturbatively, that is by
expanding in power of the interaction strength. In electrodynamics the ex-
pansion parameter is the fine structure constant o = e?/4m ~ 1/137, which is
sufficiently small to make succesfull the perturbation series. In the theory of
strong interactions, Quantum ChromoDynamics (QCD), the corresponding
parameter ag ~ 0.1 and therefore the expansion is more problematic.

To develop the perturbative methods it is first convenient to introduce
the interaction (or Dirac) representation. Let us start by recalling the
Schrodinger equation and representation

16(0) >5= HIo(1) > (6.1)
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If H does not depend explicitly on the time, we can build the evolution
operator '
Us(t, tg) = e Ht-t0) (6.2)
such that
|9(t) >s= Us(t, to)|¢(to) >s (6.3)
The operator Ug is unitary, UgUs =1.
In the Heisenberg representation operators and states coincide, at t = ¢,
with the corresponding operators and states of the Schrédinger representa-

tion. For general ¢, if O° denotes the operator in the Schrodinger represen-
tation, the corresponding operator in the Heisenberg representation is

o = Ulo%Uy (6.4)
and satisfies p
a g H
zdtO =[O, H] (6.5)

Let us now assume that the Hamiltonian is given by
H=Hy,+ H; (6.6)

where H, is the Hamiltonian in absence of the interaction and Hj is the
interaction Hamiltonian. For example in the radiation matter interaction

HI = - Z _pr t €r 2 (67>

T

Let us define the vectors in the interaction representation as

[6(t) >1= U3lo(t) >s (6.8)
with ‘
UO — e—lH()t (69)
and the operators as
o' = Ul0°U, (6.10)
The operators satisfy the equation
Lot _ (O, Hy] (6.11)
dt , 110 .
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while the states p
iggﬁ%ﬂ >r=Hi(t)|o(t) >, (6.12)

where HI(t) is given by
Hi(t) = U HU, (6.13)

and represents the Hamiltonian in the interaction representation. In fact

P10 21 = 1S ULI6() >s= ~HoUN6) >s +U(Hy + H)I6(0) >s
- UgH1’¢(t> >5= H]I|¢(t) >r (6.14)

Therefore when the interaction is switched off, the state vector remain con-
stant in time. Let us now study the evolution operator in the interaction
representation, defining

19(t) >1=Ur(t, to)|9(to) >1 (6.15)

with Us(tg,to) = I. Using the equation (6.14), we obtain

d
i%Ul(t, to) = HiU(,to) (6.16)

One of the advantages of the interaction representation is that, when
the interaction is turned off, the vectors are constant in time. Usually the
interaction is localized in time and one assumes that in the far past and in
the far future the states are eigenstates of Hj.

So let us assume that, at the time ¢t = t; = —o0, the state is described by
the vector
|p(—o0) >=|i >= tlim lp(t) > (6.17)
——00

which is an eigenstate of the Hy Hamiltonian. The S matrix is defined as

’¢(+OO) >= tli}no}j ‘¢(t> >1= lim U[(t,t0)|¢(t0) >= S’¢(—OO) >

t—00,tpg——00
(6.18)
or

S=  lim Ut t) (6.19)

t—00,tp——00
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For any final state |f >, eigenstate of Hy, one considers the matrix ele-
ment

< flo(+00) >= Sy, (6.20)
The solution of eq.(6.16) can be obtained in iterative way
t t t1
Uy(t) = T — z/ HI(t1)dt1 + (—1)2/ H{(tl)dtl/ Hi(t)dts ... (6.21)
to to to

The series of the S matrix is given by the so-called Dyson series

S

i(—i)”/idtl /:)dtQ.../tn1 dt,H} (L) Hf (ts) ... Hi(t,) (6.22)

n=0 -

In general [H](t;), H} (t;)] # 0. Note also that the integrals are time ordered,
t >t >ty .

"We can rewrite (6.22) as

S — i(_i)ni'/"" it /Oo dtg.../oo A T(H ()T () .. L (6)  (6.23)

n=0

with
T(H{(t1)) = Hi (t1) (6.24)

T(H{(t1)H] (t2)) = 0(t, — t2) H{ (t1) H] (t2) + 0(t2 — t1) H] (t2) H (t1) (6.25)

and so on.
Let us check for example the second order term, by considering

t t t t1
/dtl/ dt, T(HL(t)HL(ty)) = /dtl/ dty Hi (t)Hi (t2)
to to to to

t t
+ / dty / dtoHY (to)Hi(t1) (6.26)
to t1

The integral for the left-hand side is over the square (tg,t) X (to,t). In the first integral
of right-hand side is over the triangle white (¢; > t2) while the second term is integrated
over the triangle (t2 > t1). However

t t t to
/dtl/ dto HE(t2)HE(t1) /dtQ/ dty HE(to)HE(t1)
to t1 to to

t t1
/ dt, / dtoHY (t)H (t2) (6.27)
to to
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One usually defines the transition matrix 7T’
Sfi = 5fi - 27TZ(5(Ef - E,)Tfl (630)
and a perturbative series for S and T
Spi=0p+ 50 480 4 (6.31)
1 2
Ty=T% +T +... (6.32)

The relation with the evolution operator in the Schrodinger representation
is given by ' .
Up(t,to) = e otUg(t, ty)e Hoto (6.33)

The S matrix is unitary
STS =1 (6.34)

This is equivalent to the requirement of the conservation of probability.

D <ilSTf >< fISli >=1 (6.35)
f

In the application to scattering problems it is convenient sometime to turn
on and off the interaction adiabatically to avoid problems with the oscillatory
behaviour at ¢ — £o00. This is obtained by replacing the Hamiltonian with

H; — He ! (6.36)

so that

t tl t tl
/ dt, / dtsT(HE (t)HE (1)) = 2 / dt, / dto Hi(t1)HE (t) (6.28)
to to to to

Dyson series can be written in a covariant form
1
S = Z(—i)”ﬁ/d‘lxl/d4x2.../d%nT(’Hf(xl)Hf(xg)...’Hf(:cn)) (6.29)
n=0 ’

The only source of non covariance of eq.(6.29) comes from the presence of the T ordering.
However t; —to > 0 is a property which remains true in every Lorentz frame when (x4 71’2)2
is time-like while for space-like distances (z; — x2)? < 0 [H(x1), H(z2)] = 0 and so the
ordering is not relevant.
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so that the interaction acts for a time approximately of order 2/e. Then at
the end of the calculations, after all the integrations have been performed,
we take the limit € — 0.

To first order

to——o0,t—00

t
—2mid(Ey — B)T}) = S =~ lim / dt' < flHi > (6.37)
to

Recalling we have

fi to——o00,t—00

t
—2mid(Ey — E)T}) = —i  lim / dt’ < fle'o Hyem ot | >
to

oo

= —7 lim / dt < f’elHot’e*\f\t/VeﬂHot’|2~ >

=0t J_
oo ) , ,

= —7 lim / dt' U Es—Et o—lelt” - FIV]i >

e—0t 00

1 1 1
oy o)
f 7 +Z€

+ind(E; — E;)

1
P JWVIE> g =g =) =3

= — < f|V]i>[Pv

E;—E;
—P

vEEm ind(E; — E;)]

= —2mié(Ey — E;) < f|[V]i > (6.38)
where we have used, see Appendix 77,
1
- - _p
E,—E vic = B —E,

+ird(Ey — E) (6.39)

The same result can be obtained without the adiabatic approximation but
working with distributions.

In conclusion
T4 =< fIV]i > (6.40)

where < f|V|i > is calculated in the Schrodinger representation (at t = 0).

The second order result is given by

@ < fIVIn >< n|V]i >
TR =)

6.41

n
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where |n > denotes the general state.
We have (defining 7 = t; — t3))

o0 t1
—2mid(Ey — BT, = (—i)® < f| / dt, / dt HY (4 H ()]0 >

o0 t1
= —/ dt1/ dtQGZEftl

< f|H0€—iH0t16+iH0t2 H[lZ > e—iEitQ

[e’s) t1
- _ § / dtl / dt26iEft1€—iEit26—iEn(t1 —t2)
n —00 —0o0

< flHln >< n|H;|i >

- _ Z /Oo dtl /Oo dTeithe—iEnTeiEi(T—tl)
n —00 0
< f|Hi|n >< n|H;|i >
= =) < flVln><n|V]i > 2n6(Ef — E;)

/OO dTei(EifEn)T
0

1
= Z < fIlVin ><n|V|i > 27

i(E; — E, + ie)
(6.42)

where use has been made of the Fourier transforms in the distribution space
(see Appendix B)

1 /+OO 0(x) Ly 1 li 1 (6.43)
— z)ePdr = — im y .
V2T Jo 1\ 27 €20 p + 1€

1 & - 1
i dre?’ = ——
\ 21 /_oo V2T

For the proof with the adiabatic factor, see for example [5].

d(p) (6.44)

6.2 Fermi golden rule

Let us now compute the transition probability by considering the squared
modulus of the S matrix element. Proceeding in this way one gets a diver-
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gence, generated by 6(0):
216(Ep — E;)210(Ey — E)|Thi|* ~ 47°5(0)5(Ey — E;)|Tyi|? (6.45)

The previous step can be made more rigorous by considering the § distribu-
tion as a limit of distributions associated to functions.

It is possible to obtain a finite result, by considering a transition probabil-
ity per time unit, assuming that the perturbation acts for a finite time 7" and

then taking the limit 7" — oco. Let us consider the following representation
of &

T/2
o2n0(E; — E;) = lim dte' =Bt (6.46)
So we have
Pi T 1 T/2 ) T/2 )
lim (1) = lim —/ dte!Fr=Edt Jim dteEr—EDt T, |2
T—o0 T T—o0 T —T/2 T—o0 —T/2

T mdt =B ons(Ey — E;)| Tyl
o TEEOT —T/2 © m f ‘ fi

= 218(E; — E)|Ty|? (6.47)

In general, when computing the rate of transition in a final state, one adds
also a factor taking into account the density of final states or phase space
d¢;. In other words we compute the transition rate times the number of final
states

dwy; = 210(Ey — E)|Tri*dg; (6.48)
Eq.6.48 is the Fermi® golden rule. For example, when in the final state we
have a particle with momentum k

3
d’ky
(2m)?
To compute the cross section, defined as the transition rate in a group

of final states for one scattering center and unit incident flux, we need to
calculate

dpy = V3 (6.49)

90
where ® is the flux of incoming particles.

do (6.50)

8E. Fermi, (1901-1954) Nobel prize in Physics in 1938 "for his demonstrations of the
existence of new radioactive elements produced by neutron irradiation, and for his related
discovery of nuclear reactions brought about by slow neutrons”
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7 Radiation processes of first order: emission
and absorption of a single photon

We are now ready to compute the emission and the absorption of a photon
by an atom. Let us first consider the decay of an atom which emits a photon
of momentum k and polarization «. The initial state is

i >=|A4;.. . nka...>=[A>Q]...nkq...> (7.1)
and the final state
lf>= A% nka+1...>= A >®|...nga+1...> (7.2)

where |A(A") > denotes the initial (final) atom state. We have to compute
the matrix element

Vfi:<A/;..-nka‘l—l...|‘/1|A;...nk7a...> (73)

where V] is given in Eq.(5.12). In the coordinate space the initial (final) state
is described by the wave function

Yaan (&) =< &, - EnA(A") > (7.4)

To first order in the perturbation theory we have (neglecting proton con-
tribution with respect to electron one and denoting the electron masses by
m)

TO = —ONT A a4 1. b A0 E) A g >
fi mZ b e+ 1o pr s A0, &) A5

—— Z Z \/ka' Mo+ 1. Py € [al exp (iK - &) + h.c]

r ko
‘A nka...>

_ / o -1,/
= =YY = m < A'lp, - € exp (—ik' - £)|A > SaoSicsoy/Maar T 1

r ko

_ __Z \/nka A,|p7‘ erXp (—Zk 57,)‘14 >

2Vwk

_ —%Z—% / A0 (€)€d - (—iV,) (exp (—ik - &, )1a(€,))

(7.5)
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If the transitions are in the visible region, k! ~ 1000 Angstrom, then
k&, << 1since & ~ 1 Angstrom. So, in the dipole approximation, exp (—ik - £,.) ~
1

Y

+1
T(l) — _3 Nk,a < A/ o x| A >
fi m 2Vwk ; ’p tEk)|

Nk« + 1 @
-y m@k2:<AM*wM> (7.6)

where v, is the velocity operator.

Let us now compute the probability of emitting photons of momentum
in the interval k, k 4+ dk and polarization «

Vd3k
. = 218(E; — E)|TV?
dwfl 7T(S( f Z)‘ ) ’ (271')3
2
€ a .
= 2o (a + 1)) D < Al eg(exp (—ik - &))|A >
Vd3k
§(Ef — B)——
d3k 62 / @ . 2
= W(nk,a + 1)2—wk| D < Alv, - ei(exp (—ik - £,))]A > |

X(S(EA/ + wp — EA)
aem / o . 2
= (Nka + 1)wrdwidS?| g < Allv, - e (exp (—ik - &,.))|A > |

2T
XO(Eq + wip — Ea)
(7.7)
We can now integrate over w;, obtaining the probability of emitting a photon
in the solid angle df?
dwp;  a

m «@ - 2
0 = oo wk(mea + DI D < Alv, - ei(exp (—ik-&))A> [P (78)

r

where now wyp = E4 — F 4. In the dipole approximation

> < Ay, eglexp(—ik-ENA> P ~ | <Ay, e]A> [
D
~|< A’|;-eﬁ|A> 2(7.9)
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where we have introduced the dipole operator

D=e¢) & (7.10)

Using .
D= Z'[1¥atoma D] (711)
we get .
Dya =i < A'l[Hatom, D]|A >= i(Ear — Ea)Dara (7.12)
Therefore we have
dwe Qe 1 o
dé = o Wi (Mo + DI=Daa- exl” (7.13)
with ]
“Dua= [0 (6) 3 6vale) (7.14)

The result is zero also when there is no initial radiation field, ny o, = 0. This is
the new result which emerges at the quantum level, the so-called spontaneous
emission.

When ny , = 0, and we do not observe the polarization of the photon, we
can perform some more analytical step:

dw % Qem,
Z dg_; = o (.U3 | DA’A €k2 (715)
Since
1 «a ai o 1 ¥ j kzk 1
Z |EDA’A'€1<|2 ZDA/AD%’AE € = _QDA/ADQ'A@M—I{_QJ) = §|DIJ4'/A‘2
(7.16)

In conclusion
dwy; _ Qem 3

ds? _27T

|DA,A|2 (7.17)

«

By integrating over all the solid angle, we obtain the life-time 7 for the
transition A — A’ which is defined by

dwy; Ozem 4 4,1
/dQZ — = oo 2|DAfA! (4m—5m) = Swi I Daal (7.18)

TAA
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To get the total life time one has to sum over all the possible states in which
the atomic state can decay:

1 1
- = (7.19)
TA Py TAA
In the cgs system the eq. (7.18) becomes
1 4,1 ,
; B §wk c2e2 |DA’A| (720)

To get an extimate of the life time for the 2p to 1s transition for the hydrogen
atom, assuming wy, ~ 10 sec™!, D/e ~ 0.5 x 107% cm, we get 7 ~ 107 sec.

8 Interaction of the light with the matter

8.1 Scattering Thomson, Rayleigh, Raman

Let us now consider the scattering of the light (photons) by atomic electrons,
neglecting the scattering by the protons since interaction Hamiltonian, given
in egs. (6.6) and (6.7), is inversely proportional to m,.. In particular we will
compute the scattering of a photon of momentum k; and polarization a; by
an electron bound in a given atom. For simplicity we consider just an atom
with one electron. The result can be easily generalized to N electrons. The
initial state is

A > ®|ky,a > (8.1)

while the final state is
|A/ > ®|k2,&2 > (82)

where ko and sy are the momentum and the polarization of the final state
photon, |A(A’) > denote the initial (final) electron state. In conclusion in
the process the number of photons does not change An = 0. Since the
Hamiltonian V; can describe only An = +1 process, we have to go to the
next order in the expansion, that is to order (e?). The Hamiltonian V5 can
describe An = 0 process, since

Vo ~ (ag + ag)(af + ap') (8.3)
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The general amplitude to order e? is given by

‘/1fn‘/1nz
T 8.4
+ZE E, + e (8.4)

where the sum is over all possible intermediate states [n >= |N > ®|...nxq... >,

E, = Eyx + ... denotes the energy of the intermediate state. Let us first
consider the case when the energy of the incoming photon is much larger
than the level splitting of the atoms. In this case one can neglect the second
term of eq.(8.4) and one recovers the classical result of the scattering of the
light by a free electron (Thomson® scattering). Substituting in V, we get

e ’ 1 . )
Vo=— € - €1 ale™E 4+ h.e)(ale™® €+ he) (8.6
2 m g{; kZ;, k k' \/W\/W( k )( k ) ( )

The terms contributing to the final result are akak, and ap'ag. The final
result is

2
1 A
TO = ()p= St < geitaa g s
i = Wi = e fagy mme < Al |
62 €& « 1 * i(k1—ko)-
= Db gr e [ (T () (8.7)

T ok ke 2V JWr, Wk,
where we have introduced the wave function of the electron in the state
A(A"), Yaan(§).

The generalization to N electrons is:

2
73 _ € o €22 /H 43 . i(k1—k2)-€, ]
= e e gy mz EY (&) M) (8.8)

If the dipole approximation can be used, we get

2

_ € 1
m KRV o W,

9J.J. Thomson, 1856-1940, Nobel prize in Physics in 1906 for the discovery of the
electron

T(2) (‘/2) 6AA’ (89)
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Using the Fermi golden rule we get the probability of scattering per unit time

64 a1 a2\2 V 3
T2y G e) gyt ke (8.10)

dw = 276 (wk, — Wk,)

Finally the cross section is obtained by dividing by the incoming flux ® =
pv = 1/V being the photon velocity equal to one in natural units,

dw e?

aq a2\21.2
do = E = 5(0%1 — ka)(Wle : Eki) k2dk2ko2 (811)
By integrating over wy, = ko
/ do = rj(ep! - e22)*dS, (8.12)
ka2

where rq is the classical radius of the electron

62

~ 28 fm=28x10""cm (8.13)

o =
4dm

If we do not know the initial polarization and we do not measure the final
polarization, we average over the initial polarization and we sum over the
final ones

2
= Z do = %0(1 + cos? 0)ded cos 0 (8.14)

where 6 is the angle between k; and k. In fact we have

i 1.J
1 Ealieaziealjeagj _ 1 Eozliquj(é” _ klkl)
2 k1 k2 k1 kg - 2 k1 k1 ) k2
1,02 al 1
i1.J ig.J
1 kik kikd

= 50— k—%)(@j - k_%)

1 A
— —[3—1—1+(k1k2)2]

2
- %[1 + (k; - ky)?] (8.15)

By integrating over the angles, we obtain the total Thomson cross section

o=—7; (8.16)



Using the numerical value of ry we get o = 6.6 x 10~*cm?

We can now proceed to compute the cross section in the general case
deriving the so called Kramers Heisenberg formula (1925). The possible
intermediate states contributing to the second order part of the amplitudes

are
|N > ®|O >, |N > ®|]€1,0./1;]€2,0{2 > (817)

that is |V > times the vacuum states and the two photon state. The result
for the amplitude is

(VD) arn (V) na (Vi an(V)na
(V) 44 ! 8.18
2f+ZEA+wkl EN+16+EA—wk2—EN+i€] ( )

where .
(V)arn = e < Alp -2 5N > (8.19)
ko
e 1
(VY )na = < Nlp - greé)A > (8.20)
k1
1
(Vi) = = T < Alp - gle™¢N > (8.21)
k1
1 .
(Vi )na = EW < Nlp-eze ™84 > (8.22)
ko
and (V3)y; is given in eq.(8.7). In the dipole approximation we get
1
T3 = o fu 8.23
fi 2 O Wk, fA A ( )
with
2 2 <Alp- g5 |N >< Nlp- g |A>

e
a1 (o) [
faa=—el edan+ — E
m K ke m? N[ Ey+wy, — En+ e

<Alp-gl|N><Nlp-e2|A>

8.24
EA — Wgy — EN + i€ ] ( )
To obtain the cross section we divide by the flux:
do 1 V1
=2m6(E By —wiy)—5——|faal’k3dks——=+ (825
0 T0(EA + wg, — Ex wk2)4v2wklwk2‘fAA‘ 2 2(27?)3 % ( )
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By integrating over ko, we obtain

do _ cﬁ|ff“’f‘|2
) wy, Ar

(8.26)

The case A’ = A wy, = wy, correspond to the elastic case (Rayleigh!'® scatter-
ing) while the inelastic case, A’ # A wy, # wy,, corresponds to the Raman!!
effect.

Note that when the energy of the initial photon wy, = En — Eg4, the
amplitude as given in eq.(8.24) diverges and consequently the cross section
becomes infinite. Since the cross section is a measurable quantity, this means
that the calculation to second order becomes inadequate and higher orders
become relevant.

What is happening is that we have assumed the intermediate states N
as stable, neglecting their life time due to the instability for the spontaneous
emission. If the probability of finding an electron in a generic energy level
E decreases for spontaneous emission as

exp (—%) — exp (=T'xt) (8.27)

where 7y (I'y) is the life time (width) of the state N, the corresponding
amplitude behaves as

exp (—I'nt/2) (8.28)
This is equivalent to a time evolution of the state as
r
exp [~i(Ey — ZTN)t] (8.29)

In conclusion in presence of a resonant process, when wy, ~ Ey — E4 we can

replace
1 1

%
Ea+wy, — En EA+Wk1—EN+iFTN

so that the cross section, close to the resonance, assumes the classic Lorentz
form

(8.30)

2 2
do © = 1l (8.31)

dQ |EA+wk1—EN+iFTN|2 (EA+wk1—EN)2+%

10J.W.S.Rayleigh (1842-1919), Nobel prize in Physics in 1904 for discovery of Argon
1 C.V. Raman (1888-1970), Nobel prize in Physics in 1930 ”for his work on the scattering
of light and for the discovery of the effect named after him”
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8.2 Calculation of the total width

In order to compute the total width, we start considering the total shift in
the energy of the bound state to order O(e?):

< n|Hilm ><n|Hm >

AE, =<n|H/n >+ 5 —E. (8.32)
m#n
where
In >=|N > ®[0 > (8.33)

is a pure atom state, no photons are present. The interaction Hamiltonian is

H =Vi+V; (8.34)
with
Vi —SpAE0), Vi= (A 0)? (3.35)
1 — mp ) ) 2 — 2m ) .
Assuming H; normal ordered
<n|Hin >=<n|V4n >=0 (8.36)

and only the second term of eq. (8.32) is different from zero

AE, — Z < n|Vilm >< m|Vi|n >

T (8.37)

m#n
Therefore since |[n >= |N > ®|0 > the only intermediate state allowed is
m >=|M > @|lxa > (8.38)
and the result is given by the amplitude for the spontaneous emission
(< N|l@ < ODVA(IM > @1y o >) = TRETHm™ (8.39)

where we can use the result of the spontaneous emission (7.8) for ng, = 0
for one electron or

spont.emiss. € 1 o )
TR = e < Nlp-eexp (—ik- M >

e 1

B 2
m 4/ 2chk| MN|
53
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So we get

e? 1 [trn]?
AE, = —
QmQVEO;%:WkEN_EM_Wk
= 62 / d3]€ 1 ’tMN‘
2m? (27T)3 Wk EN—EM — Wk

(8.41)

On the other hand using (7.8) for spontaneous emission for atoms with a
single electron, we have

dw « .
V) < Nip- ebfexp (—ik- €M >

o 2

T rm? Wi[tarn|
(8.42)

where WE = EN — EM
In conclusion we can rewrite AEy as
1 & 1 dwNM

AFE, = — d 8.43
27’(’%/0 wkEN—EM—wk df ( )

where d“Zg)M is the probability of spontaneous emission of a photon of fre-
quency wj which assumes any value from zero to infinity.

The integral (8.45) has a pole for wy, = Ex — Ej. Let us replace the
denominator with Exy — E)j; — wy + i€, so we have to compute

1 o 1 dwNM
AE, = — d : 8.44
27‘(‘%:/0 C{}kEN—EM—aJ;mLze ds2 ( )

Using (C.6) we have

1 o 1 Y dwy p
AE,=—> [P - Ex—Ey—
n o ;[ ’U/O dwk EN — EM ~ o Z’/T/O dwkd( N M wk)] a0

(8.45)
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By taking the imaginary part

1 > dw
mAB] = =g 3 [ daledly - B -l g
- ——zdwwi
- dQ WE=— EN EM
1
— il (8.46)

where 'y is the total width of the state N due to spontaneous emission.
Therefore the time evolution is now

wN(t) — e*i(E}\H’Re[AEN]f%FN)tz/}N(O) —_ 67i(EN+Re[AEN])t€7%FNth(0) (847)
and the probability decreases as
(v () = e ¥ ehn (0) [ (8.48)

The real part of AEy gives the shift in the energy of the bound state corre-
sponding to the Lamb shift. The integral

1 dU)NM
P A4
27’(’Z U/ de EN—EM—wk] ds? <8 9>

is divergent and a special procedure of renormalization of the mass of the
electron is necessary [20, 17].

9 Cherenkov effect

In 1934, while Pavel Cherenkov (1904-1990) was studying, under the super-
vision of Sergei Vavilov at the Physical Institute of the USSR Academy of
Science, the luminescence of liquids of uranyl salt under irradiation of gamma
rays from radium, he discovered a new bleu glow. Vavilov suggested that the
effect could be due to bremstrahlung of electrons that were knocked out by
the gamma rays of the radium. However the correct explanation, which is
not bremstrahlung, was given by Tamm and Frank'? (1937): they considered

121 M. Franck, I.E. Tamm, Nobel prize in Physics in 1958 with Cherenkov
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the field of a point like charged particle moving in a medium uniformly and
rectilinearly and show that if the velocity v of the particle is higher than the
velocity of the light in the medium ¢/n, the particle emits a radiation in a

cone of angle # such that
c

cosf = — 9.1
— (9.1)

Let us first consider when a free charged particle of momentum p, traveling

in a medium of index n, can emit a photon of momentum k. From the

conservation of the momentum we get

=+ k)" (9.2)
or
(p)? =m® = (p—k)> =m® = 20"k, + i — K (9-3)
We conclude that
1
2pu — p k) = w? — K2 = (= — 1)k (9.4)
n
Then L )
n —_—
‘k=F— k2 9.5
or
El n?2-1k
cos) = ——+ —
pn 2n? p
1 n?—-1 w
= 9.6
nv + 2n  myv (96)

The final relativistic formula for the Cherenkov angle is

1 n?—1
cosf = — |1+ ST 1 —? (9.7)
m

nv
where we have used 2 = m~y, p = myv.

Since the Cherenkov light in the water is in the visible light corresponding
to 400-700 nm~ or 107! eV~! the ratio k/m ~ 107%, we can neglect the
second term of eq.(9.7), therefore the angle is approximately

1
cosf) = — (9.8)

nv
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This result implies

1

— <1 9.9

— (9.9)
or v > 1/n. So in the vacuum this process is forbidden, since v cannot be
greater the 1, (the light velocity ¢ = 1 in natural unit). However in a medium

v can be greater than 1/n and the process is allowed.

In conclusion a charged particle, which travels at a velocity that exceeds
¢/n, can emit a photon. The refractive index of the water between 400-700
nm is in the range 1.33-1.34. So the critical velocity in the water is v ~ 0.75.

This effect has been used to build detectors for charged particles. Today
the largest Cherenkov detector is the Super-Kamiokande detector, which
contains 50000 tons of water, 11200 photomultipliers, and is located in Japan.
This experiment has discovered neutrino oscillations. The Cherenkov light
is emitted in a cone around the direction of a charged particle. The photo-
multiplier tubes of the tank detect this Cherenkov light and give information
of the quantity of the detected light and the timing of the detection. They
give information also on the energy, direction, interaction point and type of
the charged particle.

We will derive the Cherenkov emission of a charged particle by consid-
ering the quantized electromagnetic field in a medium. For the total energy
associated to the electromagnetic field see [6, 7]. In order to get the standard
form for the Hamiltonian in terms of creation and annihilation operators

H= Z Z wi(afTad + %) (9.10)

k a=1.2
we need to include the refraction index in the expansion [6, 7]

2

o —ikz i
Z Z n\/2V—w€k l[age™ 4+ h.c], k =i (9.11)

k a=1,2

where now £ = wy, = k/n and n = n(wy). To calculate the probability that
an electron emits Cherenkov radiation, for simplicity of the calculations we
will consider the non relativistic approximation for the electron. The initial
state is

i) = |p) ®10) (9.12)
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where |p) represent a non relativistic electron state of momentum p and |0)
the state with no photons. The final state is

1£) =1p") ® [lka) (9.13)

where |1y o) represent the Cherenkov photon. Let us compute

VfZ:<f|V|Z> = <p|®<1koc| Z Z n\/mek’[

k! o'=1,2
_ "(__ B « 1 —ik-x
- <p|< em eknm )|p>
ep/'eﬁ 1 —ik-x
= —-—— e
— 2Vwk<p| )|p)
e /_ea
- _L(gp,_wko
nm/2V wy ’
ep-€x

=ik
nm+/2V wy ptkop0

where we have used the non relativistic wave functions

1 .
< zlp >= —=eP* (9.15)

NG

Then one can compute the transition rate that an electron of momentum p
emits a photon of momentum k times the number of final states. Passing to
the continuum, we get

% &y Vv
(2m)3 " (2m)?

dw = 210(E; — E;)|Vyl|? d*k

epfﬁ 2(27T)3 3 (0! V 3 7 3
L e e R A s L e
e p N o 30 <3
= o S RV =P Ey = By) (916)

Integrating over d3p’

e p 1
dw = ——| =€ d*ké(E,y - E
/p, v n2wy, mek‘ (2m)3 (Ep + w )

e P
~ P e ES(v -k —
nzwk m k‘ (271')3 (’U wk)
62 | SD
= @|E6k| nwidwyd cos 0dpd (v - k — wy,) (9.17)
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where we have used
oF

Ep/ = Epfk ~ Ep - % . k (918)
However 1 1
d(v-k—wg) = Eé(cos& - %) (9.19)

Therefore we get, where using the non relativistic relation for the momentum
b,

2 1 1
/p, dw = #]v-eﬁﬁnwkdwkdcos 9d¢ﬁ(5(C089 — %)
= e Pdddd cos B 5(cosf — 9.20
= 87T2]'v-ek| wrded cos - (cos —%) (9.20)

Summing over the polarization and finally integrating over ¢ and 6

2 1 1
/ Z/ o= / Z e—gvzvjemea”—é(cos 0 — —)duwy,
¢,cos0  Jp ¢,cos0 ", 81 v nv

e . KR 1 1
B /Qa$9§%5”1”<5j“ )y 0(cost — )
e? 1
= U )t
1
= Ow(l_n%Q)dwk (9.21)

This result, that we have obtained using a non relativistic approach, co-
incides with the calculation performed using as initial and final states the
electron described by the Dirac field and the Hamiltonian interaction given
by eq.(10.112) of next Section, in the limit wy/E, << 1.

The energy loss of the electron per unit lenght of the trajectory is

dE  1dE Wmaz ] 1 Wmazx 1
dr v dt /0 Uow( n2v2)wk K a/o ( n2v2)wk k
(9.22)

The integral is cutoff by wiaz,

—1)2
o<~ W D2my

9.23
n?2—1 w ( )

as we obtain by requiring cos < 1 from eq.(9.7).
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10 The Dirac field

10.1 The Dirac equation: classical theory

Let us now consider the classical theory of the Dirac equation (1928), which

describes relativistic particles with spin % Let us first write the following
first order differential equation:

0

z% = [a- (—iV) + m]y(x) (10.1)

where o', 8 are four hermitian matrices n x n and v a vector of dimension
N o . a o
n. By iterating i5; we obtain

()
ot?

o (—iV) + Bm]*
—ia'd" + Bm|[—icd & + Bmp
—a'd? ' —i(a'B 4 Bat)O'm 4 BPmP

[
= |
[
[ %(o/dj +a?a)0'd —i(a'B + Ba')O'm + BPm*

(10.2)
By requiring the validity of Klein Gordon equation one gets
adlod +alat =269, o'f+Pat =0, fZ=1 (10.3)
or
o, 0], = 69, (3], =0, 2 =1, (10.4)

where [A, Bl = AB + BA is the anti-commutator. The minimal dimension
n of the matrices where the previous relations hold is four. In the Dirac-Pauli
representation they are represented as

ﬁ=<(1) _01) az(g g) (10.5)

The equation can be rewritten in the form

(179, — m)(z) = 0 (10.6)
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where

W'=8, 4= Bd (10.7)
are Dirac 4 x 4 matrices satisfying
[V, ]+ = 29" (10.8)
and
P = 40yHA° (10.9)

In the Dirac-Pauli representation

7°=<é _01) 7:(_00 ‘6’) (10.10)

Therefore 1(x) is a four component wave function. Usually the components
are indicated by ¢, (x), a = 1,2,3,4.

10.2 Lorentz and parity transformation

Let us now assume that the Dirac equation be valid in any inertial frame.
Then in the S’ system, where 2’ = Ax, assuming the relativity principle,
Dirac equation must have the same form

(i, —m)yY'(z') = 0 (10.11)

In order to reproduce the Klein-Gordon condition the matrices v* must
satisfy the same algebra as the matrices v*. By requiring also the same
hermiticity condition (10.9), neglecting a unitary transformation, we can
always identify v# = .

Assuming that

V(@) = S(A)Y(z) = S(A)(A™'2) (10.12)
we can prove that, if for an infinitesimal transformation we write A as
A~ gt e (10.13)
then ‘
S(A) ~1— iawe”l’ (10.14)



with .
7

5 s ] (10.15)

Opy =
with 0, = —0,,.

In fact from the Dirac equation in the S system, we get
0 = (i7", —m)) S~ (A)Y'(a))
. ax/l/ / —1 / /
= (G- m) s we)
= (iy"A%,0, —m)) STHAW/ (2')

(10.16)
where 0/, = af,u. By multiplying by S(A) to the left, we get
(iS(A)y"S~H(A)AY, 0, —m)) ¢’ (') = 0 (10.17)
Comparing with the Dirac equation in the S’ system we get
S(A)SH M)A, =+ (10.18)
or
STHA)YS(A) =AY A4* (10.19)

For the infinitesimal transformation (10.13) and assuming (10.14) to first
order in e” we get

[0 W] = =2i(gpu 2 — Grv7p) (10.20)
The unique solution to eq.(10.20) is given by

l

Op) = 2 [P)/pa 7)\] (1021>
This can be verified by noticing that
1 1
T = 5l + 5 nl

1

= 5Dl +9m
1

= ;O-p)\ + [P (1022)
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Then

[UpA7 ,}/V] = Z.b/p’}/)n ’YV] = 27/7 [7x\7 ’Yl/]-ﬁ- - Z.h/m ’71/]4—7)\
= _2i<gp1/y}\ - gAVVP) (102?))

For a finite transformation the solution for S(A) is obtained by exponentia-
tion of eq.(10.14):

S(A) = exp(—iawe“”) (10.24)

S(A) is the representation of the Lorentz transformation A on the space of
the wave functions 1. The six matrices o, are the generators of the Lorentz
transformations. In particular oy; are the three generators of the Lorentz
boosts and o;; are the three generators of the 3D-rotations. Using the Dirac
Pauli representation for the gamma matrices

0o __ 1 0 k 0 O'k

ok 0
045 = €ijk ( 0 k) (1026)

o

we have

Let us now prove that 11y = 117%) is a scalar under Lorentz transforma-
tion. In fact from eq.(10.12)

Pt — pTS(A)T (10.27)
and B B B
b = PIS(A)° = 97 S(A) Ty = 9STH(A) (10.28)
where in the last term we have used the property (10.9). Therefore
v = PSTHA)S(A) =y (10.29)

In analogous way we can prove that 1)yt transforms as a fourvector. In
fact

Uyt = pSTHANS (M) = Ay (10.30)

where use has been made of (10.19).
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Finally we can also prove that yo*“4) transform as a tensor:

ot ih — A PP (10.31)

Example Let us consider a generic z-axis rotation. The 4x 4 matrix
representing the z-axis rotation of an angle 6 is given by

1 0 0 0
0 cosf sinf O
ft. = 0 —sinf cosf 0 (10.32)
0 0 0 1
For infinitesimal 6 we get
1 0 0 0
0 1 6 0
Ron |y g 1 ol =lite (10.33)
0 0 01
or
0 0 0 O
0O 0 1 0
wo_
=01y _1 oo (10.34)
0O 0 0 O
From eq.(10.24) we obtain
S(R.) = exp(—iawew/) - exp(—%alzelz) - exp(%&alg) (10.35)
with
- _1[ | =i _. (0 ol 0 o*\ (o 0
12—271772—7172— ol 0 o2 0/) VLo o3
(10.36)

In conclusion under a z-rotation of an angle 6 the spinor ¢ transforms as

Y =Y = exp {%9 (Ug)()/2 039/2)] V= (eXp(igUB/Q) eXp(i303/2)) v
(10.37)

and 015/2 is the corresponding generator.
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Let us now study the parity transformation
X — —X (10.38)

which is assumed to be a symmetry of the Dirac equation. The parity trans-
formation acts on the fourdimensional space as

1

-1
" = Pha¥, P! =

;) (10.39)
~1

The transformation of the spinor field under the parity transformation is
obtained by requiring the invariance of the Dirac equation under parity and
it is given by

U(x) = ¢(2)) = S(P)() (10.40)

with S(P) such that

STHPY’S(P) =~°, STHP)Y'S(P) = —' (10.41)

In this way we obtain:

(i7°9p — iv'0; — m)yp(x) = 0
—p (i7°0 +iv'0, — m)STH(P)Y/(2') = 0 (10.42)

By multiplying by S(P) and using (10.41) we obtain
(iy° 0y — i7" 0, — m)y' (z') = 0 (10.43)
The solution of eq.(10.41) is given by
S(P)=~"np (10.44)

with |np| = 1.

It is easy to check that under the parity transformation

P — (10.45)
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Using the matrix 75 defined as'
v =i’y (10.46)
with the properties

W= =1, sl =0 (10.47)

we can consider the expression

sy (10.48)

Under the Lorentz transformation

Pyst) — st (10.49)
However under the parity transformation
5t — — Py (10.50)

In conclusion while 1) is a scalar, the 1)y5¢ bilinear is a pseudo-scalar.
In analogous way one can prove that

VY5V (10.51)

is an axial-four-vector.

Note that the 16 matrices (1,7s, Vu, Y5Yu, Ouw) are a basis for the 4 by 4
hermitian matrices.

10.3 Wave plane solutions of the Dirac equation

Let us now look for solutions of the Dirac equation of the form

Y(xr) = e Pu(p), positive energy
Y(r) = ePv(p), negative energy (10.52)

13An alternative form for 5 is 75 = iewpa'y“'y”’yp’y”, with €p123 = +1. This form is

useful to show that 1y51) trasforms as a pseudoscalar, using S~ (A)y5S(A) = (det A)ys =

75, under proper Lorentz transformation and S~!(P)v5S(P) = 707570 = —75 under parity.
0 1

In the Dirac-Pauli representation v5 = 10
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where
pr=pt—p-x=Ft—p-x (10.53)

with
E=+\/p?+m? (10.54)

By substituting egs.(10.52) in the Dirac equation, we get:

(p —m)u(p) =0, (p+m)v(p)=0 (10.55)
Going into the rest frame p* = (m,0), eqs.(10.55) become

(7" — Du(0) =0, (v*+1)v(0)=0 (10.56)

In the Dirac-Pauli representation, where 7° is given by (10.25) the solutions
are

ul(O) = R UQ(()) = y U1(0> = y UQ(O) ==

o OO
o O = O
o= O O
_— o O O

(10.57)
Note that we have two positive energy and two negative energy independent
solutions. u; 2 and vy o are eigenvectors of the generator of rotations along
the z axis (see egs. (10.35) and (10.37),

o 1 (d* 0
7—5(0 03) (10.58)

corresponding to eigenvalues +1/2. Therefore we expect that these solutions
represent spin 1/2 particles.

The solutions to a generic frame can be obtained by boosting these so-
lutions from the rest frame with a Lorentz transformation with velocity
v = p/E (see [2]). However it is simpler to observe that

(p—m)p+m) = YpA'p,—m’

1
= 50" leppy —m* =p* = m? =0 (10.59)

where use has been made of (10.8). Therefore we have
ur(p) ~ (P +m)u,(0), vr(p) ~ (p—m)v,(0), r=1,2 (10.60)

67



By requiring the normalization

U, (P)us(P) = Ors, Tp(P)Vs(P) = —0rs (10.61)

we get (see Appendix G.1)

p+m —p+m
u(p) = ———u,(0), v.(p) = ———=0,(0), r=1,2
() 2m(E + m) © () 2m(E + m) ©
(10.62)
We have also the orthogonality condition
u,(P)vs(p) = 0, ¥,:(p)us(p) =0 (10.63)
and the completeness condition
> [tra(P)trs(P) = vra(P)0rs(P)] = 0o, @, f=1,2,3,4 (10.64)
Now the complete set
—e ", (p), =", (p) (10.65)
—e Py, (p), —=ev, .
Ni% VA
can be used to expand the general solution of the Dirac equation
— ﬂ —ipT * ipT 1
() XP: \ 7 plr(Plur(p)e™™ + di(p)ur(p)e™] (10.66)

with b,.(p), d:(p) complex functions that after quantization of the spinor field
1) become operators. Notice that we have also (see Appendix G.1)

ul (p)us(p) = gérs = v/ (p)vs(p) (10.67)

ul(p)v(—p) = v'(p)u(-p) =0 (10.68)
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10.4 Lagrangian of the Dirac field

The Dirac equation given in eq.(10.6) can be derived from the Lagrangian
density B R
L =1(x)[i0 — m](x) (10.69)

Varying the action with respect to 1, we obtain the Dirac equation. Assum-
ing the mass as fundamental dimension, the dimension of the Dirac field are
M?3/? so that the action is dimensionless. The interaction of the relativis-
tic electron with the electromagnetic field is obtained by using the minimal
substitution

E—>E—eA’ p—op—cA (10.70)
or in the covariant form
p' = pt—eAr (10.71)
and
10F — 0" — eA* (10.72)

where A* is the four potential of the electromagnetic field. The Lagrangian
describing the Dirac field interacting with the electromagnetic field is there-
fore

L= (2)]id — eA — mly(x) (10.73)

and the corresponding Dirac equation is

[i0 — eA —m]ip(z) =0 (10.74)

10.5 Non relativistic limit of the Dirac equation

Let us now consider the non relativistic limit of the Dirac equation in an
external field. Starting from (10.74) and multiplying by 7o we get

Zazg_(tx) = [a- (—iV — eA) + fm + eAp|y(x) (10.75)

Let us now look for solutions with positive energy of the following form

(x) = exp (—iEt) (igg) (10.76)
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where ¢, x are two component spinors depending on & and

E=m+T (10.77)
We obtain 5 ( 40)o
B m+e +o-mx
“”*T)(X)—<a-w¢+?—m+er>X> (10.78)

with 7 = —iV — eA (7' = —id; — eA") or

(eAg—T)p+o-7x = 0
oo+ (—2m+edy—T)x = 0 (10.79)

By considering the non relativistic limit, Ay, T << m, from the second

equation of (10.79) we get
o-To
= 10.80
X 2m ( )

By substituting (10.80) in the first equation of (10.79) we obtain

1
T = (2—0' o+ eAy)d (10.81)
m
Using
o-mwm-o-m = oonn = 5([01, ol + [o", o) nind = depotninl +
— %eijkak[ﬂi, 7] 4 w?
1 . ,

= —§eeijkak(8iAJ — ajAZ) + 7'('2

= —eeijkakﬁiAj + ’7'l'2

= —co-B+7? (10.82)

where we have used [—id;, f(x)] = [—i0;, #']0f /0! = —idf /Oxt. We get

1, e
B 1, e
1
= (%ﬂ2 — - B+edy)d (10.83)
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where S denotes the electron spin and g the magnetic momentum of the

electron

(&
=28 10.84
p=g (10.84)

In conclusion Dirac equation predicts the magnetic field the gyromagnetic

factor of the electron
Je = 2 (1085)

Its experimental value is different from 2 at the per mil level [18]

e — 2
g = 1159.65218076 + 0.00000027 x 10~° (10.86)

By studying the next order in the non relativistic expansion of the Dirac
equation and assuming for A° the Coulomb potential for the Hydrogen atom,
one can get the fine structure terms, see [17]: the relativistic correction

p4

e 10.87
- ( )
the Darwin term .
— V%4 10.88
8m?2 0 ( )
and the spin-orbit term
e ldo
——85.L 10.89
2m? r dr ( )

The exact solution of the Dirac equation and the relativistic form of the
energy levels for the Hydrogen atom can be found for instance in [2].

10.6 Quantization of the Dirac field

The Dirac equation given in eq.(10.6) can be derived from the Lagrangian
density (10.69) by minimizing the action with respect to ¢. The conjugate
momenta are given by

To(x) = oL _ il To(r) = a—f =0 (10.90)

O 0.
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The Hamiltonian is given by
H= /d%% (10.91)
with
H = n(@)b(z) + 7(2)d(z) — £ = P(a)[~iy/d; + mlp(z)  (10.92)

When computing the Hamiltonian, using the field expansion (10.66), we
have £ = 0 and therefore the Hamiltonian is simply given by

H=i / Bt (x)(x) (10.93)

Therefore substituting in the Hamiltonian the expansion (10.66) we obtain

H = 3 Jf pr t —ipx
d xZ”VE [b( +d.(p)vl(p)e "]

D B (9 s (B — () ()
= Y s (el ) (e)

— du(P)dl (Pl (P)us(P) ) Iy
+ (d(P)by (B0 (s (B')e 2" = B (p)dl (')l (B}, (B') e )6, |

(10.94)
and using the orthogonality properties of the spinors, eq.(10.67) and eq.(10.68),
H =Y "E[bl(p)b.(p) — d,(p)d!(p)] (10.95)
pr
If we now would assume commutation relations
[b-(p), bL(D)] = [d: (P), dL(P')] = 0rs0p,pr (10.96)
the Hamiltonian could be rewritten, apart an infinite term, as
H= ZE bl (p —d'(p)d,(p)] (10.97)
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This Hamiltonian is unbounded from below and therefore the theory does not
admit a stable minimum. However, if we assume anticommutation relations

[b:(p). b(P")]+ = [d,(P), dL(P")]+ = 6rs0p,p (10.98)

and all other anticommutators vanishing, the expression for H is, apart an
infinite term,

H =" E[bi(p)b.(p) + d}(p)d.(p)] (10.99)

which is now definite positive and admits a minimum state |0 > with zero
energy. The state |0 > is defined by the conditions

b ()]0 >= d,(p)[0 >= 0 (10.100)

Dirac quantized theory describes two types of particles: one can build one
particle states as
bi(p)|0 >, and dl(p)|0 > (10.101)

To distinguish these two types of particles we can consider additional
operators commuting with H. Since the theory is invariant under gauge
transformations

Y — e, Yl — el (10.102)
we can build the corresponding Noether current (see eq.(3.80))
oL - oL
H = A A = 10.103
"= 5a,0 0 waa,ﬂp ( )
which turns out to be B
J" = (@) () (10.104)

This current can also be identified by introducing in the Dirac Lagrangian
the interaction with the electromagnetic field by means of the minimal sub-
sitution ¢0,, — 10, — eA, as done in Section 10.4.

Let us compute the total charge as

Q- / Prjd = / Bt () () (10.105)
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By substituting the expansion (10.66) in ) we obtain, again neglecting an
infinite term,

Q= Z [bf(p — d(p)d,(p)] (10.106)

Therefore the two types of partlcles have opposite charges. In conclusion the
Dirac equation describes the electron and its antiparticle the positron. This
particle was discovered in 1932 by the american physicist Carl Anderson who
received the Nobel prize in Physics in 1936. This discovery had been made
earlier by P. Blackett'* and G. Occhialini'® who however did not immediately
publish their results. Dirac was awarded of the Nobel in 1933 together with
Schrodinger “for the discovery of new productive forms of atomic theory”.

Quantization of a field theory with anticommutators implies Fermi Pauli
statistics: the two particle state is antisymmetric under the exchange of the
two particles

Al

0 >= —b! 0> (10.107)

pl,r p25 P2,s plr

Furthermore since [bl, .]* = 0 it is impossible to build a state with two elec-

trons with the same quantum numbers.

Using the invariance of the action under translation and Lorentz trans-
formations we can also consider the total spatial momentum

p_ / PV — Z Db (p)b,(p) + d! (p)d. ()] (10.108)
and the angular momentum:
M — / Bt (@)[x x (—iV)](z) + / dez/JT(x)%aw(x) (10.109)
where o a 4 by 4 matrix given by

o= (‘g g) (10.110)

The two terms represent the angular momentum and the spin term for 1/2
particles.

1Patrick Blackett, 1897-1974
15Giuseppe Occhialini,1907-1993
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Finally let us note that using the anticommutation relations (10.98) and
the expansion (10.66), one can derive the canonical anticommutation rela-
tions

w}(tvx)v H(tJY)]—l- = 253<$ - y)? [1/)(25,X), ¢(f7}’)]+ = [H(t,X), H(t7Y)]+ =0
(10.111)

10.7 Coulomb scattering of electrons

As an application of Quantum Field Theory, let us now consider the scatter-
ing of a relativistic electron by a classical Coulomb potential generated by
a point charge —Ze > (0. The Hamiltonian interaction density is given by,
using eq.(10.73),

Hy = —L; = ep(2)y,(z) A () (10.112)
with 7
At (z) = (—F’;,o) (10.113)

Let us consider, as initial state, an electron with four-momentum p and

polarization r
e(p, ) >= bi(p)[0 > (10.114)

and, as a final state, an electron with four-momentum p’ and polarization s
le(p,5) >=bl(p)]|0 > (10.115)
and consider the matrix element
Vii = <e(p,s)|Hle(p,r) >
= [ < el ed@n v) A olelpr) >

_ 6\/5 \/E / d*we” PP (p')y u, (p) A’ (x)(10.116)

where we have used the spinor expansion (10.66) and the anticommutation
relations (10.98).

By introducing the transfer momentum
q=p—-p (10.117)
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we can rewrite Vy; as

Y s N SASPR

(10.118)

where we have introduced the Fourier transform of the Coulomb potential

A%(x)
A%q) = /d%eiq"‘Ao(x)

Its explicit form is

Ze
Aq) = T

Using the Fermi rule the cross section is then given by

Vdip' 1
do = 2w8(Ey — E,)|Vpil?
e e
where p
|y
@ p—
EV

is the incident flux. We obtain

w7 L )

17 =0y = B oy DIE

or

do m?Z%e! Py s (P u (p) |

- = 5(Ep/—Ep)

ds2 (2m)? plEyq’t

- N\ A0 2
— 5(Ep’ o Ep)4m2Z2Oé2 |u5(p )’y u’?“(p)| dEp/

q4

where we have used
|p/| = |p|7 Ep = Ep’

and
o2
o= —
47
By integrating over dE,, we get
dr o ) )
d) q*
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(10.120)

(10.121)

(10.122)

(10.123)

(10.124)

(10.125)

(10.126)

(10.127)



If we do not know the initial polarization and we do not measure the final
electron polarization, we average over the initial spin, assuming equal a priori
probability to different initial polarization states, and sum over the final spin

Ao unpol 9.9 ol |as(p')7 u(p)|?
o =1Am*Z% EZ . (10.128)

The polarization sums can be reduced to traces as we are going to see.
Let us consider

= Z Ura(P) Vs ttss (P sy (P') 15 trs (P)
r,8,a,08,7,0

p+m p+m
= %45(2—)67775(W)5a
2m 2m

)
P 2 / 2
_ P 2popy +m (10.129)

m2

pP+m opt+m
= Tr(y° 7’

where use have been made of the definition of positive energy projectors
(G.22) and of (see (G.34))

Tr[y°9#9°"] = —4g" + 8% g™ (10.130)
Triy*+"+*] =0 (10.131)
The numerator of Eq. (10.129) can be written as
—p-0 +2popy+m’ = —E,E,+p -p+2E,E, +m’
= E,E +p -p+m?
= E2+p°cosf+m’ (10.132)

where 6 is the scattering angle. By substituting in eq.(10.128), we obtain the
final result for the differential unpolarized scattering cross section

do o’ Z?

— = —E2—|— 2cos @ +m?

dQunpol 8p Sin g( P P )
o’ Z?

0
= —— = (1 —-v’sin®= 10.133
4E2vH sin4g( M 2) ( )
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where we have used
2 o . o0
q” = 4p“sin 3 (10.134)

The cross section given by eq.(10.133) is the Mott cross section. For
v << 1 the formula reduces to the Rutherford scattering.

10.8 Higgs decay width to fermions

As a second application of the perturbative approach of Quantum Field
Theory we consider the decay rate of the Higgs'® in electron and positron,
H — ete. The Higgs is a spin zero particle, present in the spectrum of
the Standard Model (SM) of electroweak interactions and responsible for the
mechanism of generating the masses of the quarks u, d, ¢, s, t, b, of the leptons
€, i, T, Ve, Uy, vy and of the gauge fields W=, Z. The experimentally measured
Higgs mass is my ~ 125.1 GeV [18].

Quarks and leptons have spin 1/2 and therefore can be described by Dirac
fields. The Higgs is not a stable particle and decays in various channels. His
main decay is in the quark channel bb where b denotes the antiparticle of the
quark b. The branching ratio in the bb channel is defined as

['(H — bb)

B(H — bb) = =
I‘H

(10.135)

where [')¢" is the total width of the Higgs, which, within the SM, is predicted
to be I'g" = 4.2 MeV. The branching ratio in the bb channel is approximately
58 %[18], corresponding to I'(H — bb) = 2.44 MeV.

However this channel has a large background from strong interactions.
The relevant decay channels for Higgs discovery are

vy, WYW =, ZZ, 7477, bb (10.136)

In the following we compute the H — ete” width and then with a suitable
rescaling the H — bb width.

6P, Higgs (1929-), Nobel prize in Physics in 2013
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The Higgs interaction with the spin 1/2 particles (quarks and leptons) is
decribed by an Hamiltonian (see for example [14])

H; = / d*xHz (10.137)

with

Hr = —Ap(2)P(2)i(x) (10.138)
where ¢(z) is the scalar field which describes the Higgs and ¢(z) the Dirac
field describing the fermion. The interaction coupling is
m m
v " 246 GeV
where m is the mass of the field ¢). The coupling constant A is dimensionless.
In fact, assuming the mass as fundamental dimension, the dimensions of the
scalar field are M, the dimensions of the fermion field M?3/? and since

Hy=—L; (10.140)

(10.139)

the dimensions of the Lagrangian are M* so that the action is dimensionless.
In eq. (10.139) the parameter v ~ 246 GeV is related to the energy scale (the
inverse of the range) of the weak interactions, G;l/ ?. The Fermi constant

G is related to v by
1

V202
The masses of the three gauge bosons W*, Z which mediate the weak in-
teractions are of the order of v. In particular my, = 80.379 £+ 0.012 GeV,
myz = 91.1876 £+ 0.0021 GeV [18].

For the electron, m, ~ 0.5 MeV, A ~ 1079, therefore the decay H — e*e~
is very small. However in the case of the p, m, = 105.6 MeV ~200 m,
and the decay rate is larger; LHC has already some evidence for the decay
H — ptp~ [19]. For the calculation of the decay widths we will consider
the fields quantized in a box of volume V. Therefore we have the following
expansions

1 —ikx
o(r) = zk:m(ake M 1 h.e)

v) = Y/ ETV[br(k)ur(k)eikw+di(k)w(k)eikz]

Gp = (10.141)

(10.142)
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where we recall that
kx = Ept —k-x (10.143)

and Fy = vk% + m? where m denotes the corresponding mass of the boson
or of the fermion.

The initial state is therefore a Higgs with momentum p
i) = al|0) (10.144)

while the final state is a positron with momentum and k; and an electron
with momentum ks,

|f) = df, (ki)b], (k2)[0) (10.145)

where 71,79 are the spin labels. The vacuum is the direct product of the
vacua of the two Fock spaces

|0) = [0)y ® |0)y (10.146)

We have, evaluating the Hamiltonian density at t = 0,

Sl = N5 By \/m (Pl xg, (1), (ki) (10.147)

and

Vi :/ w(f|Hi) ’/Ek Ek o, Vur2 (k2)vr, (K1)V0p k41

(10.148)

Using the golden rule, we can compute the probability that the Higgs
of momentum p decays in a positron of momentum k; and an electron of
momentum ks

d? k1 d3k2
@n? (2n)

= @2)'0N(P; — PYVAY (s | ?
'8Py = PVX( o [ T

Bk . Pk
o (K2) v, (k1)|*V
|, (ka) vy, ( 1)’ (27)3 " (2m)3
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where passing to the continuum we have used
(Vipiatks)” = (21)°8%(p — by — ko)V (10.150)

Py ; are the final and initial total four-momentum. In order to compute the
total width T'(H — eTe™), we can now integrate over k; and ko

/d 1 )\2/d3kd3k54(k+k—) e
YT one 2 R DA oA N
[y, (k2)vr, (ko) |
1 A2 m2
= — | #k5(Ey, + By, — B,) ——5—
(2m)? 2 / (B + B~ B)pp
|y, (ka)or, (k)| (10.151)

and sum over ry and rs.

I'(H—ete”) = Z/k . dwy;
1,R2

1 )\2 m2
= — | &@k6(E E. —E)——¢%
(27)2 2 / 10(Ey + B, — Ep) Ey By E,
Z Ur, (K1) tr, (ko) tr, (ko) vr, (k1)
7172
1 N2 m2
= — | &k6(E E., —E)——¢%
(27)2 2/ 10(Er, + B, p)EklEk2Ep
1 ~ ~
= Tr((ki — me) (ko + me)]
/\2 ]{?1 . ]{?2 — m2
= — | &@®k0(E E. — E)——=———<(10.152
87T2 1 ( k1 + k2 p) Ekl Ek2Ep ( )

In the previous equations we have used

Z Uy, (K1), (K2)tr, (ko) vy, (k1) = Z Ur (k1) 0rya (ki) Z Urya (K2)Ur,5(k2)

rir2 T1 T2

= —Tr(A_A) (10.153)

where Ay = ﬁ(:l:fc + me) are the positive (negative) energy solution pro-
jectors. We have also used

Tr(y"y") = 4g"™, Tr(v*) =0, Tr(I) =4 (10.154)
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Usually one computes the decay rate in the rest frame of the decaying
particle. Therefore

p=(mu,0), k= (Ey, ki), k2= (Ey,, —ki) (10.155)
with
Ekzl = Ekg = \/mg + k% (10156)
We have
ki - ky = 2k3 +m? (10.157)

Substituting in the width, after integration over d{2 we get

)\2 o] /{4
I'H —»e"e) = mHW/o dklmé(mH—Zwkf—kmg)

1 e

= 4 / dk k4(5(m — 2\/k2 + mQ)
m3H7T 0 M H ! €

= il / dk k:35(k — —1 \/mQH — 4m?)
m2H7r 0 1M ! 2 €

A2 4m?
— gmH(1 — m—;)?’/? (10.158)
H

where in the last equation we have used the property
1
=4
|/ (o)

where zg is a zero of f(x) of order one. Using mpy ~ 125 GeV and m, ~
0.5 MeV we get

o(f()) (x — o) (10.159)

[(H—ete)~21x107" GeV=21x 1072 eV (10.160)

For the quark bottom (m, = 4.2 GeV) we obtain, taking into account a
factor three from the sum over the three colors of the bottom quark (the
color gauge interaction which is responsible of the strong force is based on
the SU(3) group and the b quark is a triplet of SU(3))

T(H — bb) ~ 3(%)%(}1 s eteT) ~ 4.3 MeV (10.161)
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This result is only approximate because one needs to take into account also
QCD and electroweak corrections to I'(H — bb). This channel is the main de-
cay channel of the Higgs however it is not the cleanest because of QCD back-
ground. The main discovery channels at LHC were vy, ZZ* and WTW~*
where the * denotes a wvirtual particle [18]. For example, when considering
H — Z7 since myg < 2myz only one Z particle can be real. The second Z is
only a virtual intermediate state decaying in two particles which are detected
in the detectors ATLAS and CMS of LHC.

10.9 The decay width for the process u= — e .y,

The decay = — e~ v, is due to the weak interactions and can be explained
by the Fermi interaction'” between the Dirac fields representing the muon,
the electron and the two neutrinos.The effective Hamiltonian density is given
by a current-current interaction

_Gr
V2

where the electronic and the muonic currents are
J2 =N L= )., Ty =N (L= 15)1, (10.163)

The Fermi constant G can be derived, as we will see, by the experimental
value of the decay width and turns out to be Gp = 1.16 x 107° GeV 2.
Remember that each fermion field ¢ describes both particle and antiparticles

p(a) = P (z) + 9 (2) (10.164)

where 1)) denote the positive and negative energy part of the spinor.

Hy (JI*Jn + h.c) (10.162)

The initial state is a muon with given momentum and spin
1™ (Ds ) >= |1~ Dy 7) > ®[0 >o- ®]0 >, ®[0 >, (10.165)
and the final state is

levu Ve >= |0 >, ®le_(pe,Te) > R|Vu(Py,,Tv,) > B|Ve(pp.,75.) > (10.166)

1"The theory was proposed by Fermi in 1934

83



Each fermion field can be expanded as

() = % Z Z \/% br(p)ur(p)e™™ + d](p)ur(p)e™]  (10.167)

One can verify that

1 my,
5 (@) | (P ) >= T\ E —Lu,, (pp)e” P[0 > (10.168)
o
(T — 1 Me 1 iPeT
e(pe;re) () (2) = N &t (Pe)e < 0| (10.169)
and similarly for 7. and v,,.
_ _ 1 my, P
< Ve(poe, o) | (W) () = T\ B, Ve ()T < 0) (10.170)
(T 1 ml’u zpl,
< V(P )| (W0,)) () = TV E, L (Py )P <0 (10.171)
where
0 >=1{0>, ®[0 >, ®|0>,, ®0>, (10.172)

The relevant term of the interaction (10.162) is

Iin?

¥l (1— 75)71701%@%%(1 — V5)%u,
YL = 95)9 0t Ty (1 = ) + . (10.173)

Therefore we obtain, by considering the interaction Hamiltonian density at

t=0,

< fIHwli >

Gr
— < euul/,3|JT JMp >

\/_

M ”M puﬂ+pye+pe Pu :v| 0
v2 -

ul, (Pe) 101 (L = %5)vr,, (Pr )0, (puu)vw (1 = 75)ur, (Pu)

Vu puu+pue+pe Pu) x‘ 0_
v2 =

u"’ne pC 7)\ ]‘ - 75 UTVE (pVe uruu (pV,u,)/y (1 - 75)u7’u, (pu)

84



and finally

Vi = /d% < flHwli >

G my [me [my, My, 1
= T E B Y 0 e )

iy, ( pe WL =), (Po,)ir,,, (Pr, )7 (1 = 75) i, (P1)

/ / / my,
Mfz _#_53 puu +pue +pe p,u)

(10.174)

where

Myi =y, (P (1= 15)0n, (Do) in, (1, )7 (1= 75, (p)  (10.175)

Let us now compute the decay rate, using the Fermi golden rule and averaging
over the initial spin and summing over the final spin

dw = —ZQTI‘5 (E; — E)|Mpi|? |—1/ ,/ ,/ V”|2
T 'rf

(27T) 3

0 v 17 e d e d 17 d v

7 (Pv, + Do, + De — >(27r) p(%) pe(%) Do,
(10.176)

Therefore the final result can be written as
44 mu @ pf mpy 1
dw = (27)'6*(Py — P)EM P E 2 > Myl (10.177)
T T'f
with (see Appendix H)
1

1
5 O Ml = 64G3 (- po)(pr - p) - (10.178)

. My, 2My, 2my,2m,

This can be rewritten as

d3p 1
dw = (2m)*6*(Py — P)Hfmﬁ <M >? (10.179)
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with
< M >*=64G%(pu - pi.)(pu, - Pe) (10.180)

The total width is computed in the rest frame of the muon

pu = (my,0) (10.181)

In this frame we have
(P - Do) = My By, (10.182)

Furthermore from
(Pu = P2.)* = (Du, +1c)° (10.183)

neglecting neutrino and electron masses we get
1
(P - pe) ~ 5, = my B, (10.184)

and therefore )

m
TME,;E (my, — 2E;5,) (10.185)
The first integration over p,, is trivial and we obtain

1 d3pl7 d3pe
ar = e §(m, — E,
/pu 16(27)°m, E;. E.E,, (my,

< M >~ 64G%

—E,, —E.) <M >* (10.186)

e

"

with < M >? given in (10.185). In the u rest frame we have p, = 0,
Pv, = —Pu. — Pe- Then from

E,, = ’pvu| = |[pv. + Pe| (10.187)
we get
B, = \/E% + B2 + 2B, B, cos6 (10.188)
Also we have
d*py, = B2 dE;, sin0dodg (10.189)

To perform the integral over # we can transform from 6 to

w=E,, = \/E2 + E? + 2, E. cosf (10.190)
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So

E;, E,.sin0df
du = — =2 SR (10.191)
E,,
and we get
/ dl’ /dE M >2 3 ! /u(ws“)d 6(my,—E E.)
= 7e < > Per o~ 1o UMy, — Lig, —U—Lle
Pve Py 16(27T)4mME3 u(cos =—1) g
(10.192)
Let us discuss the extrema of the integration
u(cos® = 1) = |E;, + E.| (10.193)
u(cosf = —1) = |E;, — E.| (10.194)
So the integral is different from zero when
|E,je _E6| <u:mM_Ege —Ee < |E175+Ee| (10195)
which are equivalent to
By, — B| + By, + B, < % <E, +E, (10.196)
This implies
m
E;, < 7“ < E, +E, (10.197)
when F; > E, and
E. < % < By, + E. (10.198)
when E;, < E.. Therefore the extrema are
M g <p, <™ (10.199)
2 2
By integrating over dEj,
%
/dF - / dE, <M > dpo—t
g Pel6(2r)im, B2
d®p. m, 2FE
= 2Gh—= (= - == 10.200
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Then we can integrate over pe.

2G?2 M2 m, 2F
r=_—L£ E.E? | si e
(27T>4m#/0 dE, 6/Qsm@ole( 5 3 Ydg
The final result is

GEm?,

Pl = e ven) = 35 5

The decay time is given by

- 3 x 2673

T, = —
p 5 (12
m: Gt

(10.201)

(10.202)

(10.203)

Using the experimental determination'® 7, ~ 2.2 x 10 %sec and m, ~ 105.7

MeV, one can extract the value of the Fermi constant

Gr=1.16 x 107°GeV 2

(10.204)

18From [18] T, = (2.1969811 =+ 0.0000022 x 1079) sec, m,, = (105.6583745 + 0.0000024)
MeV . The first measurements of the yu life time were performed by F. Rasetti (1941),

7, = (1.5 £ 0.3 x 1079) sec, and B. Rossi (1943), 7, = (2.15 £ 0.07 x 1079) sec
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11 Superfluidity

In my recent studies on liquid helium
close to the absolute zero, I have succeeded in discovering a num-
ber of new phenomena. . . I am planning to publish part of this
work. . . but to do this I need theoretical help. In the Soviet
Union it is Landau who has the most perfect command of the the-
oretical field I need, but unfortunately he has been in custody for
a whole year. All this time I have been hoping that he would be
released because, frankly speaking, I am unable to believe that he
s a state criminal. . .7 P. Kapitza, letter to Molotov on April
6,1959
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11.1 Brief introduction to superfluids

There are two stable isotopes of the helium: the first He* was discovered
in 1871 in the solar spectrum, while the He® was discovered in 1939 at the

Berkeley cyclotron by Louis Alvarez!®.

The isotope He*, which has a nucleus composed of two protons and two
neutrons, is a boson (spin 0) while He® composed of two protons and one
neutron, is a fermion (spin 1/2). Both liquids have, at low temperatures, low
densities and apparently remain liquid down to absolute zero temperature
unless a high pressure is applied (25 atm for the He!). The density of the
He*, at T = 2.17 °K and p = 0.0497 atm, is

ps = 0.145 g/cm?® (11.1)

This property of not freezing comes from the extremely weak Van der
Walls forces between the atoms with respect to the quantum fluctuations.

The two liquids behave in different way because the Pauli principle keeps
He? fermions far each other. The He?*, below Ty =2.17 °K, enters in a new
phase, Hell, Fig. 1.

The first researcher, who liquified the Helium below the gas liquid tran-
sition at 4.2 °K, was Kamerlingh Onnes?® (1908), in the experiments leading
to discover superconductivity. Later in 1927, M. Wolfke and W.H. Keesom
discovered a new phase transition for the Helium at 2.17 °K, that manifested
itself in a discontinuity of the specific heat. After this observation, it took
ten years to understand that the new phase was a superfluid phase: the fluid
can flow without any friction and viscosity.

The transition line X is the separation between Hel and Hell phases, the
first a normal liquid, the second superfluid. In this phase the liquid is capable
of flowing through narrow capillaries without friction. Experiments to prove
superfluidity where first performed by Kapitza?! (1938) at the Institute of
Physical Problems in Moscow and indipendently by J.F. Allen and A.D.
Misener (1938) in Cambridge.

197, Alvarez 1911-1988, Nobel prize in Physics in 1968 for his contribution to particle
physics, in particular the bubble chamber

20H. Kamerlingh Onnes, 1853-1926, Nobel prize in Physics in 1913

21P L. Kapitza, 1894-1984, Nobel prize in Physics in 1978
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Figure 1: Phase diagram of superfluid He-4 (from J.C.Davis Group, Cornell)
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Figure 2: Specific heat (from Huang)
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It is natural to associate the A transition to the Bose Einstein condensa-
tion (London, 1938) modified by the molecular interactions. In fact, as we
will review in the following, the critical temperature for the condensation in
a non interacting gas of bosons is 3.14 °K, very close to T).

The He? also becomes superfluid but only at temperatures of the order
1073°K (1972, Lee, Osheroff and Richardson??): in this case pairs of fermions
condensate, a similar mechanism to the Cooper pairs for superconductors.
Recently, in 2005, the superfluidity has been observed in ultracold Fermi
gases (Ketterle?® et al) at very low temperature, 200 nK.

H? solidifies at higher temperature because of stronger interactions among
his molecules.

An additional property of the Helium is that at low temperature (7" <<
T,) the specific heat varies as T2, as shown in Fig. 2.

To explain such a behavior Landau®* (1941) suggested to interpret the
quantum states of the liquid as a phonon gas with the linear dispersion
relation

ex = hck (11.2)

where ¢ is the velocity of propagation of the sound in the fluid. The main
idea is that the body moving in the liquid excites sound waves which are
collective motions in the liquid. The liquid at low temperature must be
treated as a quantum liquid and its excitations are phonons as for the quan-
tum excitations of the vibrations of a crystal. A body moving in the helium
at low temperature does not loose energy transferring to single atoms but
excites collective quanta as phonons. The Helium dispersion relation curve
is measured by neutron scattering, see Fig. 3. Approximately one has

€r = hek, k << kg (11.3)
with ¢ = (239 +£5) m/s

2 (k — ko)?

Ek:A+ 2% P

k ~ ko (11.4)

22Nobel prize in Physics in 1978
2W. Ketterle, 1957- Nobel prize in Physics in 2001
241, Landau, 1908-1968, Nobel prize in Physics in 1962

92



and with A/kg = (8.65 + 0.04) °K, with kp the Boltzmann constant, ky =
(1.92 £ 0.01)10® em™, o/m = 0.16 + 0.01 with m the mass of the helium
atom. Therefore the dispersion relation is linear for small £ and has a local
minimum at k = k.

The nature of the excitations in the helium is studied by measuring the
change in energy and momentum in cold neutron scattering on Helium su-
perfluid (see for example, Palewsky et al, Physical Review 112, (1958), 11).
The reason is that cold neutrons have momentum close to the momentum of
the excitations (the energy of the neutron is ~ 50°K).

Making use of the conservation laws

Lo p2) =k (11.5)

pi — Py =hk (11.6)

where p;(s) are the momenta of the incoming (outgoing) neutron one can
obtain the spectrum of the excitations.

Let us now see how it is possible that an object can move in a superfluid
without loosing energy (Landau criterion for superfluidity). Let us consider
an object of mass M moving in a superfluid. The only way in which it can
loose energy is by emission of a phonon

P? (P - hk)? B _h2k2 P-kh

_ - 11.
oM oM oM M (11.7)
Therefore
ek hk 11.8
. = > .
(V- Kh=e+ 7 >c (11.8)
or
Wk >|V- k| >ck (11.9)
implying
V>e (11.10)

Therefore if V' < ¢ the process is prohibited. This explanation depends in
an essential way from the linear spectrum of the phonons. If the spectrum
of the excitations is quadratic the minimum threshold for loosing energy is
Zero.
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At energies around kg the object looses energy by emitting the so-called
rotons:

(V-ko)h = €, + QMO > e, (11.11)

or
Vkoh > |VkohcosO| > e, = A (11.12)

or
V> (11.13)

with v. = A/(hko) = 8.65 1.38 10723J/(1.055 10734 1.92 Js) x 107 cm ~ 58
m/s. The rotons are the elementary excitations associated to vortices in
the fluid. At low temperature the roton effects are negligible due to the
Boltzmann factor exp (—A/kgT). At the thermal equilibrium elementary
excitations have energies close to the minimum of € that is zero. In presence
of a purely phonon spectrum the critical velocity is ¢ = 239 m/sec, when
rotons are included the critical velocity drops to v. = 58 m/sec (observed in
He? under pressure).

For a general spectrum ¢, the condition is
V> & (11.14)
~ hk '
Therefore the critical velocity, defined as

V. = mm(e—k)

11.1
T (11.15)

for a free particle spectrum, €(p) = h?k?/2m is zero.

11.2 Bose Einstein condensation for an ideal gas

Since the He* atom contains six spin 1/2 particles which are bound in such
a way that the total spin is zero, we can consider an ideal gas consisting of
N bosons in a volume V. The partition function is given by (see. Appendix

D
Qp = keT' S log 1 — exp[B(—ep + )] (11.16)

P
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Fig. 1. Least squares spline fit to the neutron scattering data of Table I. The
experimental data of Table I are represented as crosses.

Figure 3: F(°K) versus k(angstrom™').

Experimental data and fit to the

neutron scattering data, From R.J. Donnelly, J.A. Donnelly and R.N. Hills,
Journal of Low temperature Physics, 44 1981 471
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where p is the chemical potential and where § = 1/kgT. Let us now recall
the average number of an ideal gas of N non interacting bosons, derived by
using the grand partition function,

oS} 1
Np=——= 11.17
T o g exp [B(ep — )] — 1 (1L.17)
and passing to the continuum
Vv 1
N:N+—/d3 11.18
L 3 IR ey ) (11.18)

where Ny is the number of bosons with p = 0.

At T = 0 all bosons occupy the state with p = 0 (Bose condensation).
At finite temperature, T' # 0, only a fraction Ny/N of bosons remain in the
state p = 0. For T' >> T, where T, is the critical temperature, there is no
condensate, Ny = 0, n = N/V requiring 1 < 0 because of the singularity for
i > 0. When T decreases, for fixed N/V, the absolute value of the chemical
potential increases until for temperatures sufficiently low reaches the value
of 0. The condensation starts when pu = 0

%:0 u=70 (11.19)
or
B Vv 3 1
N = 0+ﬁ dp—exp[&] —3
= %(kaBTc)?’/Qllﬂ /000 7 e 1_ 1d:(:
- AKggg/z(n (11.20)
where we have performed the substitution
v = \/#BTC (11.21)
and
Ae = 7732:; (11.22)



From this condition we can get the critical temperature

1 27h%*/m 127k /m Ny (11.23)

= Eslogma(UPF  kslC(3/2F V)

where g3/2(1) = ((3/2) ~ 2.6 with ¢ the Riemann function (see Appendix I).
Using the numerical values pges = 0.145 g/cm® = myaN/V with mpye =
4my,, m, = 4 x 1.67 x 107*"Kg, one can get N/V. Then inserting h =
1.0551073* J sec, the Boltzmann constant kg = 1.38 10722J/°K, ¢(3/2) =
2.61, we get T, = 3.14 °K. This temperature is very close to the critical
temperature of liquid Helium, T, = 2.17 °K, below which the helium becomes
superfluid.

For T' < T, p remains zero and using eq. (11.18), with u = 0 we get

N-N, /d3 1
1% B h3 exp [ep/kpT] — 1

1 mkpT\ >/ N [ T\*?
/\393/2 ( i > g3y2(1) = v (T) (11.24)

or
( ) (11.25)
or
_1—( ) (11.26)
and 32
No N T
— =—|1—-( = T <T, 11.2
T (T> <T. (11.27)

In conclusion below T, a fraction of particles occupy the state with p = 0.
Therefore for T' < T. we have a condensate with a macroscopic number of
particles in the same quantum state with p = 0. Bose Einstein condensation
provides only a qualitative description of superfluidity. For example the
specific heat of a non interacting boson gas vanishes as 7°/2 while the specific
heat of He* behaves as T°. Furthermore we have superfluidity only for zero
velocity of the atoms given that the spectrum is the free particle one, € =
p?/2m.
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11.3 Quantization of the Schrodinger field
The Schrodinger field ¢(x,t) satisfies the equation
0 V2
h—¢ = —h*— 11.28
! 8t¢ 2qu5 ( )
which can be derived from the following Lagrangian
- 1
L =ih¢*p — h*—Vo¢* -V (11.29)
2m
The corresponding Hamiltonian density is given by
| 2 1 *
H=I1¢p—-L=hr—V¢"-Vo (11.30)
2m

with IT = 9L/8¢ = ihi¢*. The commutation relations are

[p(x,1), I1(y,t)] = ihd*(x — ) (11.31)
[¢(x, 1), oy, t)] = [I(x,1),1I(y, )] = 0 (11.32)

or equivalently
[ak, ak/] = [alT(, alT(/] =0 [ak, CLL] = 6k,k’ (1133)

Using the general solution of the Schrodinger equation
1 )
p(x,t) = —= Y ellkxwrty (11.34)
7o
with wy, = hk?/2m, the Hamiltonian of the field is given by
H= /d%% = hwpalax (11.35)
Kk

As an application of the non relativistic field theory we will consider the
superfluidity theory.

Bogoliubov (1947) studied the fundamental state of a dilute gas of weakly
interacting bosons and their excitations using the second quantization of a
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many body system and assuming the following interaction Hamiltonian, see
9, 10]:
1
H; = 3 Z W(lk, — k'1|)aL,IaL/2aklak2 (11.36)
k1+k2=k/1+k/2
where hky, hks (hk], hk,) represent the momenta of incoming (outgoing)

bosons and hk] — hk; the transfer momentum. The function W (k) is the
Fourier transform of the four boson interaction

W(k) = / dir W (r)e’*r (11.37)

The dilute gas approximation justifies to consider only two boson scattering.

Bogoliubov was the first to prove the existence of the "phonons” as col-
lective excitations in the quantum liquid.

Before discussing the Bogoliubov approach let us first review how one can
describe the superfluidity phase by use of the general approach of Ginzburg?>-
Landau to phase transitions.

11.4 Ginzburg-Landau Model

The superfluidity phase transition can be derived within the Ginzburg-Landau
approach to phase transitions, assuming that the states of the system are de-
scribed by a scalar field which can be interpreted as the wave function of the
superfluid.

The Hamiltonian of the model (the free energy), which was proposed as
an effective description of field theory for phase transitions, is given by

H.pp = /d%%eff (11.38)

with -2
1

5 (VO (Vo) — polo + Sg(el0)? (11.39)

with p and g positive constants. In particular p < 0 for 7" > T, and passes

through zero at T..

Hepr =

25V.L. Ginzburg, 1916-2009, Nobel prize in Physics in 2003
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Therefore the potential can be identified as

V(9) = ~u'd + 5966 (11.40)

and is dominated for low density by the chemical potential and at large
density by the g term. The form of the potential is shown in Fig. 4. A
microscopic interpretation of the parameters p and g can be found in [10].
They can be related to the strength of the four boson interaction and to the
density of the condensate (see next Section).

Let us now assume that the chemical potential depends on the tempera-
ture, so that yu < 0 for T' > T,, T, being the critical temperature, and p > 0
for T" < T.. The potential, for " < T, has a maximum in |¢p| = 0 and a
minimum for

ty—
olfo) p (11.41)
or

o) = 6o exp (i1) \/g oxp (i), (11.42)

Let us notice that the Hamiltonian (11.39) is invariant under the trans-
formation

o(z) — o(z) exp (ia), « € [0,27) (11.43)

while the minimum state is not (¢g exp (1)) — ¢ exp [i(¢) + «)]). This phe-
nomenon is called Spontaneous Symmetry Breaking and it is used for describ-
ing phase transitions in different domains of physics.

The minimum is degenerate varying ¢» € [0,27). For simplicity let us
choose the minimum at ¢ = 0. The series of the field in normal modes can
be performed with respect to the new minimum in ¢q

¢(x) = do + o(x ¢o+z o (11.44)

k;éO

Notice that we are working in the Schrodinger representation: the operator
¢ is evaluated at t = 0.

100



04
0.3F
0.2f

01

Figure 4: The potential V' corresponding to eq.(11.40) as a function of |¢| =
Vote for T < T, (blue), T =T, (red) and T > T (green) for given values of
4 and g and in suitable units.

By substituting eq.(11.44) in the potential (11.40) one gets, by expanding
to second order in ¢
Vo= —u[dd+ d0(d+ ) + 6] + so[oh+ GG+ 5+ 2086+ ) + 263019
+0(¢°, 6")
= 9B [63+ oulb+ &) + 816] + g6k + Ladk(G+ &) + 96} + BN
+9030'0 + O(6°,6")
= 904 + S90k(6 + 3V + O 8

2

oL 5 3
=" + Eﬂ(éb +¢')? +0(¢°, 9" (11.45)

Let us now quantize the scalar field ¢, by requiring standard commutation
relations ay e aL. By substituting the normal mode series and integrating in
d3x the Hamiltonian density, one obtains

h2K>2 i
Hepp = Ku + 5 ) afai + G (aasc+ajal,)| + B (11.46)
k£0
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where

Eo = ——V + £ o> (11.47)
k;AO

In eq.(11.47), V denotes the space volume.

The Hamiltonian (11.46) is not diagonal in the basis of occupation num-
bers because of the bi-linear terms a e in a'. However it is possible to find
a transformation (Bogoliubov transformation, see Appendix K) from ak(aL)

to the operators Ay (Al), defined as

0 0
Ay = cosh(;k)ak + sinh(;k)aT_k (11.48)
with
tanh 6, = # (11.49)
TR
One has
[Ax, AL = bure (11.50)
Furthermore
Heff == Egew + Z 6(]{?)14;[(441( (1151)
k+£0
with p
Eg* = Eo— Y _ (k) smh2(5’“) (11.52)
k+£0
and

R2k2\° m R2k2\°
k) = — p? =/ —hk? 11.
(k) \/(M+ 2m ) a \/m * ( 2m ) (11.53)

The fundamental state is defined as
Axldg >=0 (11.54)

Starting from this new vacuum state one can build the new Fock space with
the operators AL. For example, the first excited state (or quasi-particle) is
given by

Alldo > (11.55)
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with energy

e(k) = \/ﬂiﬁk2 + (h2k2>2 (11.56)

m 2m
Therefore the spectrum is linear for small k& while for large k behaves as k2.

In conclusion the Ginzburg-Landau approach is able to explain the spec-
trum of the liquid helium at low k£ but does not reproduce the local minimum
due to the rotons.

The relation of the new vacuum |<;30 > with the Fock vacuum state |0 >
is given in Appendix J.

11.5 Bogoliubov approach

We are assuming the boson gas in a rarefied state or that the average distance
between the particles

N
d~ (7)1/3 >> 1 (11.57)

where 1y denotes the range of the interaction. Under this hypothesis we
can consider only two boson in two boson interactions and neglect scattering
involving more than four bosons.?® The Hamiltonian describing the two
boson in two boson interaction is the Bogoliubov Hamiltonian

1
Hy = 5 Z W(lk; — k/1|)a;r<,lali,2aklak2 (11.58)

ki+ko =k/1 +k’2

For T << T, all bosons tend to belong to the state & = 0, therefore
Ny ~ N, where N is the total number of bosons, and

N - N,

<< 1 11.59
N (11.59)

Since Ny ~ N >> 1 one can assume the operator ag to be c-number ag ~
ag) ~ v/Ny. So we consider the operators ay, and alT( small with respect to
ag and ag, expanding the interaction Hamiltonian keeping only the terms

26We have also a cutoff on the momentum p < %
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which are linear or bi-linear in Ny. In other words Bogoliubov separates the
condensate in the expansion of the field:

L( No+ Y axexpli(k - x)]) (11.60)

QZS ~
vV k£0

Let us first rewrite the interaction Hamiltonian by taking into account
the momentum conservation

1
H; = 3 Z W(lk, — k'1|)aL,laL1+k2_k,laklak2 (11.61)
Y

Let us first list all the cases where the indices are zero. One has four zero
indices for k; = ko = ki = 0. One has two zero indices when (we list also
the transfer momentum)

k=K, =0 k —k,=0
ki =ky=0  k—k,=-K
ko =k, =0 k -k, =k
ky=k; —k, =0 k;—Kk,=0
ki =k, —K, =0 k —k,=-K,
K=k +ko=0 k;—Kk =k (11.62)

Therefore neglecting all terms of order O(aj) and O(ay) we obtain

1
Hi = 5|W(0)(aja)’
+ W(0)ajag Z aLzak2 + apag Z I/I/(lf'l)CLL,laT_k,1
ko k)
+ alag Z I/V(kl)aquak1 + W (0)ajag Z aLakl
k1 kl
+ ahao Z W(ki)a;r(,l ay, + alal Z W(kl)a_klakl}
K, ki
1
= 3 [W(O)Ng + 2N S (W(0) + W (k))alax
k0
+ No Z W (k)(ala®, + aka_k)} (11.63)

k0
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Furthermore the number operator

N = az)ao + Z aLak (11.64)
Kk£0

so that neglecting order O(aj;.)

Ni ~N*=2N > alax (11.65)
k+£0

By substituting eq.(11.65) in eq.(11.63) we get
1 9 §
H = 5[W(O)N —|—2Nkzﬂ)W(k;)akak

+ NS W(k)(afal, + aka_k)} (11.66)
K20

The total Hamiltonian, obtained adding to H; the kinetic term, can be di-
agonalized as shown in Appendix K by the Bogoliubov transformation given
in eq.(K.3)

NW(k
tanh ), = WA )ﬁ%z (11.67)
NW (k) + T
The total Hamiltonian can be rewritten as
D (k) Al Ay (11.68)
k
with
h2k2]? )
e(k) = [NW(/{) + } — [NW (k)]
2m
h2k27? h2k:2
= NW(k 11.69
\/ | W (11.69)

With a suitable choice of W (k) one is able to reproduce not only the
phonon part of the spectrum but also the roton part.
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Finally, by comparison with the Ginzburg-Landau Hamiltonian, we ob-
tain the identification

w~ NW(0), g=W(0)V (11.70)
and so if we neglect the interaction, we recover u = 0, or the vanishing of the

1 parameter below the critical temperature in the free boson gas approach
to superfluidity.
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12 Superconductivity

12.1 BCS Hamiltonian

Let us now consider, as a second application of non relativistic quantum field
theory, the phenomenon of superconductivity. Superconductivity is charac-
terized by two main properties:

e In many metals, for example lead, tin, aluminium, cadmium, niobium...
below a critical temperature T, ~ few °K, resistivity drops to zero
(the discovery was made working at low temperature with mercury by
Kamerlingh Onnes, 1911)

e Meissner effect: exclusion of magnetic fields from superconducting re-
gions. The magnetic field decreases exponentially over distances of

order 500 A (Meissner, Ochsenfeld 7, 1933)

The theoretical explanation is based on the formation of Cooper?® pairs:
below the critical temperature the interaction between electrons close to the
Fermi surface and the phonons of the ion lattice can compensate for the
Coulomb repulsion and provides the mechanism for the formation of Cooper
pairs. Cooper showed (1956) that the Fermi sea of electrons is unstable
against the formation of Cooper pairs.

One can show that the excitations of such a system have a spectrum
which has a minimum corresponding to a finite energy gap and therefore an
electron moving in the metal cannot loose energy if its energy is below the
gap. Therefore the current flows without resistivity.

In the following we will follow the Bardeen®’, Cooper, Schrieffer3® ap-
proach (1957). We consider a non relativistic spinor field

Wy (x,t) = % ; Ck o U €XP [—i(wit — k - X)] (12.1)

27F.W. Meissner 1882-1974, R. Ochsenfeld, 1901-1993

28L. Cooper, 1930-, Nobel prize in Physics in 1972

29John Bardeen, 1908-1991, Nobel prize in Physics in 1956 and in 1972
30J. R. Schrieffer, 1931-, Nobel prize in Physics in 1972
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where u,,0 = 1,2 are the two orthogonal two dimensional spinors and the
operators ci o, CL,VU, satisfy the anticommutation relations

[Ck,o'v CL’,U’]+ = (Sk,k/(so,cr’ (122)

The Bardeen, Cooper and Schrieffer (1957) Hamiltonian is given by the
grand canonical Hamiltonian which includes a term —u/N where p ~ pup =
p%/2m. In other words the chemical potential is approximated by its value
at the Fermi surface. We have

1
H = kaCL’O—ck,O’ - v Z kalci‘;(rc-‘—_k’ic_k/”LCk/’T (123)
ko kK’

with 22 g2

F
— r — €r — — 12.4
Se=ac—er 2m 2m ( )

and Wiy = W # 0 only for electrons close to the Fermi surface

&l [ | < hwp (12.5)

where wp is the Debye frequency®' and hwp can be considered as an estimate
of the phonon energy, otherwise Wiy = 0. This can be understood from the
fact that only electrons close to the Fermi states can scatter from a phonon
and find a different and not occupied final state. The shell is very tiny

WD/[I,F ~ 1073,

Since at low temperature the phonon electron interaction generates a
condensate with pairs of electron of opposite spin and momentum the new
vacuum (fundamental state) of the theory must be such that

< c_kyckpr >F# 0 and < cT_k7¢cLT >0 (12.6)

Therefore the new vacuum |BC'S > |0 > since the standard vacuum [0 >
satisfies
ko0 >=0 (12.7)

31The Debye frequency is defined by the total number of phonon modes: N = Y k =
V/(@2n)3 [d3k = V/2r?u3n? fomD e2de = Vw?, /6m%v? where we have made use of the
dispersion relation € = v hk
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Figure 5: The distribution function of electrons at 4 °K, as a function of
ex — €p. hwp is of the order of 10? °K.

Let us now see whether it is possible to find a new vacuum |BCS > such
that

< BCS|:c_gyexyr: |BCS >=0 (12.8)
and
< BCS|c_x cx4+|BCS >= Q) # 0 (12.9)
or
C_k1Ck, = Qu+ 1 CokpCi - (12.10)

As we have done in superfluidity we perform the transformation from ci 1, c_x |
to a new pair of operators Ay, By

Ak = Ukck,T_UkCT,k7¢
Bi = ukC i)+ vkCly (12.11)

where we assume uy, vy real.

By requiring the anticommutation relation for Ay, By
[A, A1, = [Bi, BL]1 = O (12.12)

we get
ujp +vp =1 (12.13)

which can be satisfied assuming

Uy = cos by, v = sin by (12.14)
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We require also
Ax|BCS >= By|BCS >=0

By using the inverse relations

Cxp = ukAk—l—’UkB;L
Ck,| = —UkA;r(—FUkBk

we get

C_k,|Ckt = (—UkAJlr( + ukBk)(ukAk + UkB;L) = UKV : C_k|Ckt -

with

cCk|Ckt = —ukvk(ALAk + B;LBk)
+ uinAk — UIQ{ALB;L

(12.15)

(12.16)

(12.17)

(12.18)

We can now perform the transformation in the Hamiltonian: first the kinetic

term

Z fk(CLTCkT + CL¢Ck¢ = 2 Z fkl)k =+ Z Sk — ’Uk AT Ak + BTBk)
k

— 2 Z §kukvk B;LAL + AkBk)
k
and then the interaction term, neglecting terms of order O(c}),

1 1
e ! T T ! ! p— e ! ! /
% E Wkk Ck,TC—k,ic—k ACK T % E Wkk Uk VUK Vg

Kk kK

Zukvk Z Wkk’ Ck, TCT K| - R oA W ACKk/ 1t )

k/

Summing eq.(12.19) and eq.(12.20) we get

Qka’Uk—Fka Uk ATAk—FBTBk)

- 2 Z §kukvk AkBk + BIT(AL)
k
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1
V[ E Wkk/UkUkUk/’Uk/
kk’

+ ZWkk/(—2)ukvkuk/vk/(ALAkf ‘f‘Bl];/Bk’)

k,k’

-+ Z Wkk/ukvk(ui, — UIZ(/)(Bk/Ak/ + AL/BL)]

kK

Requiring the vanishing of the term Ay By + B;LAL one gets
1
28 u vy = % zk; Wiae (i — v ) v

so that the total Hamiltonian is

H =Y E(AL A + BLBy) + E
k

with 5
Ek == §k<ul2( - '1}12() + V g Wkkluk/UkIUkUk

and 1
_ 2
Ey=2 Ek Sy, — v g Wiae U U e Vs

kk’

(12.21)

(12.22)

(12.23)

(12.24)

(12.25)

The operators Al Bl (A, By) are the creation (annihilation) operators of

quasi-particles.

The eq.(12.22) can be rewritten as
5'29—12'29W 20
k SN 20y = oV k/ SN 20y VV ki COS 20

The eq.(12.24), using eq.(12.26), can be rewritten as

in 26, )
cos 20y
cos 20y
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By eliminating & in eq. (12.26) using eq.(12.27), we obtain

. 1 :
Ex cos 20y sin 20y, = v ; sin 20y Wiy cos 20 (12.28)
or .
Eiesin 20 = o ; sin 260, Wige (12.29)
By defining
Ak = Ek sin 291{ (1230)
we have . A
k/
_ _VZWkk, o (12.31)
k/
with

Ex = /& + AL (12.32)

Using the explicit form of Wy,

W Ak/
Ax = — 12.
k= oy ; B (12.33)
we see that A does not depend on k
w A
= — 12.34
2V " Ey (12.34)

We can now study the gap equation (12.34) which has the gapless trivial
solution A = 0. Looking for a solution with A # 0, we obtain

(12.35)

2vzm

This equation can be studied by going into the continuum

w 1 3 1 W 1 3 1
1=—=V 3 ke——-=s=57% _—
2V (27) k2 +A2 2 (2m) £(k)2 + A2
(12.36)
where the integral is performed around the Fermi surface (k)| < hwp.
Notice that there is no solution for W < 0, case corresponding to a repulsive
force.
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12.2 Study of the gap equation

Let us now study the gap equation

w1 1
1 = — 3 / dQK*dk
2 (2m)° Jietwy <t V(e(k) —ep)? + A2
w1 dk d
= - / a0kt ‘
2 (21)° Syt <hon de \/(e —ep)? + A
|44 de
~oyPr 2 2
ey |<hop /(€ = €p)? + A
1%7% +hwp df
a ZpF —hwp  \/ §2+A2
w hw
= EpparcsinhTD (12.37)
where we have introduced the density of states at the Fermi surface
B dr ,dk
PFr = (271')3 %’kF
1 k2
= FEMF
dk
1 k;Fm
= m
(12.38)
where we have introduced the Fermi momentum hkg.
Inverting eq.(12.37), we get the gap energy. If Wppr/2 << 1,
2 2712 h?
A = 2hw — = 2h — 12.39
pesp(~jp) = Ypesp () (1239

For typical metals Wpg ~ 0.3 — 0.6, see p.448 of ref. [10]. Then, considering
hwp ~ 100 °K and Wpr ~ 0.6, we get A ~ 4 °K.

In conclusion the energy of the first excitation is given by

h?k?
Ek = \/( om — 6F)2 —+ A2 (1240)
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Figure 6: The energy of the first excitation, Ey, rescaled by A, as a function
of p=|p| = hk

The spectrum, as shown in Fig. 6, has a gap, meaning that one cannot
create excitations with arbitrary small energy. The magnitude of this gap
is A. The quasiparticles are mixture of electrons and holes (see eq.(12.11)).
Furthermore since the quasiparticles have spin 1/2 the quasiparticles must
appear in pairs, so the minimim energy is 2A.

12.3 Finite temperature

Let us now compute how the gap A depends on the temperature. Starting
again from the gap equation, recall that

1
Ak = V zkl: Wkk/uk/vk/
1
= V;Wkk/ < BCS‘C,k/JCk/,HBCS >
1
= V Z Wit U < BOSHl — (ALAk’ —+ Blt/Bk’)]lBCS >
k/

(12.41)

At T = 0, since there is no quasi particles, we recover eq.(12.33) and the
formula for A = A(T = 0). However this method can be extended at finite
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temperature 7. Taking the average over a statistical ensemble at temperature
T we have

1 1
Ay = V Z Wit Uy < [1—(ATkAk+B;LBk)] >= v Z Wkk’Uk’Uk’(l_Zf(Ek’))
K/ K/
(12.42)
where f(F) is the probability to have an excitations with energy Fj at
temperature T"

1
f(Ex) = 1T ot (12.43)
Therefore the gap equation at finite temperature becomes
Z Wi 2 E (1—2f(Ew)) (12.44)
kl
Using the explicit expression for W one gets
w 1
1=— 1—2f(Ew 12.4
ng F(Be)) (12.45)
or - f (&
14— ) 12.46

Passing to the continuum

1 Vv 3 1 v 3 L
" | e ver ) Mg

Let us first compute the L.h. side. Proceeding as before, we get (12.47)
Lhside = —1+ %WpFasinh Zc(u;)
= -1+ %pr In QAFL(C;;
= %pr(ln% _ WQpF)
= %WPF(I ZZ{; In ZAh(o?i)
- %W’)F In 2((;) (12.48)
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Figure 7: The gap A, rescaled by KgT, as a function of T/T, for T < T..

Summing up we have

1 A(0) 1 /MD 1 1
“Wppln—= = —W d
o PEA(T) o Pr —hep g\/§2+(A(T))Qeﬁ\/ﬁzﬂA(T))?+1
1 o 1 1
W dx 12.49
2 pF/—oo \/1'2+U2 6\/12+u2+1 ( )

with v = BA(T), x = (€. The integral has been extended to (—o0,00)
because of its rapid convergence. So:

A(0) /°° 1 1
In——= =2 dz 12.50
A(T) 0o VaituPeVrre 4] (12.50)
This integral is discussed in [9]. For small A,
A T A(T))?
w20y, mheT | T6) (AD)) (12.51)

A(T) YA(T)  8n% (kgT)?
where /7 ~ 0.57 and ((3) ~ 1.2. For A = 0 we get the critical temperature:

kT, = %A(O) ~ 0.57A(0) (12.52)

Using eq. (12.51), expanding for small T'— T, one gets that by increasing
the temperature the gap becomes smaller and vanishes at T as

8w T 1 T 1
A(T) = /T(g)kBTc(l - f:)z ~ 3.07kpT,(1 — i)2 (12.53)
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T.(°K) | hwp/kp CK) | Tr x 10* °K) | Wp/2 | A(T = 0)/kpT,
BCS 1.76
Cd | 056 | 164 8.7 0.18 | 1.60 + 0.05
Al (12 |375 13.6 0.18 | 1.68 + 0.0
Su |35 | 195 118 0.25 | 1.73£ 0.05
Pb 7.22 96 11.0 0.39 2.15+ 0.02

Table 1: Some superconductor properties (From [10, 12, 25])

As shown in Table 12.3, the prediction of BCS theory A(T = 0) ~
1.76kgT, is quite well satisfied.

Let us finally show that Fy < 0, so that |[BC'S > is the real ground state.
Using (12.27) we can write

and using (12.29)

Ey

we

&k = By cos 20y

can rewrite Ejy:

1
2 Z fkvﬁ — V Z Wkk/ukvkukka/
k

kk’

(12.54)

1
2 Z Ey cos 26 sin” 6, — 3 Z E)\ sin? 20,
k k

2 Z Ex(cos 20y sin® Oy — sin® 6y cos? by,

Kk
-2 Z F) sin® 0
Kk

12.4 The BCS ground state

(12.55)

Let us now study the BCS ground state. It is based on the idea that electrons

form Cooper pairs. The BCS vacuum is given by

|BC'S >= Ty (ux + vkclT(TcT_M)]O >

Thus it is a superposition of states of Cooper pairs.
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This state is normalized:
1 =< BCS|BCS > (12.57)

and
< BCS\CLTCT_M\BCS >= Ul (12.58)

Proof:

< BCS|BCS > = < 0[IIk(ux + vkc_xycxr) e (uger + Uk’C;[c’TCJLk/J,”O >
= < 0|uIleue + Hkvkc_kickTHk/kaCL,Tcikw|0 >
= Iup+ < O[T UicfkwkTHk'Uk'CL/TCT_k/ﬁk,k'|0 >
= Ih(up +vg) =1 (12.59)

where use has been made of anticommutation relations:

< 0|C—k¢CkTCI{TCT_k¢‘O >=< O|C—k¢(1_CL¢CkT)CT_k¢|0 >= 0|C—k¢CT_k¢_C—k¢CLTCkTCT_kT’O >=1

(12.60)
Furthermore
< BCS|CL¢CtkT|BOS > = <O (uw + Uk’c—k’ick’T)CLTCim
Hk” (U,k// —+ Vk CL//TCJLk//J,HO >
= UgUk (1261)

The same result can be obtained by the observation that the ground state
must satisfy

and therefore
|BC'S >~ T Ax Bx|0 > (12.63)
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A Conventions and units

In theoretical and experimental particle physics it is common to use The
System of Natural Units which correspond to use

c=1,h=1 (A.1)

These two conditions reduce the three independent quantities, mass, time and
length to one, usually the energy. Dimensional analysis of physical quantities
are evaluated in terms of energy and all quantities are measured in eV (KeV,

MeV, GeV,...).

From ¢ = 1 using for example
E =+/p*+ m? (A.2)

we deduce that dimensions of momentum and mass are [E]', from i = 1 and
¢ = 1 since [p|[z] = [E]° we get

(2] = [t] = [E] (A.3)

Useful conversion factors are listed here [18]:

1 eV = 1.602176487 10'* erg (A.4)
1eV
L = 1782661758 107 g (A.5)
C
he = 197.3269631 MeV fm (A.6)

where 1 fm (fermi)= 107"* cm.

(he)? = 0.389379338 GeV? mbarn (A7)

Let us now discuss the dimensions of the fields. Since the action has
the same dimension of A, in natural units the action is dimensionless. As a
consequence since

S = / d'zL (A.8)

the Lagrangian has dimensions [E]*. By looking at the corresponding la-
grangians, it is easy to find that the dimensions of the Klein-Gordon and
electromagnetic fields are [E]! while the ones of the Dirac field are [E]3/2.
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In these lectures we use the Heaviside-Lorentz system of electromagnetic
units [6], which corresponds to choose €g = 1 and pp = 1. In this system the
Hamiltonian in the vacuum is

H= %/d?’:z:(EQ + B?) (A.9)

The non homogeneous Maxwell equations are

10E

V-E=p, VxB—-—-——=]j A.10

p o (A.10)
The structure constant is )
e

= A1l

4dmhe ( )

or in natural units simply

2
e

= — A12

a= - (A.12)
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B Fourier transform of the Heaviside distri-
butions 1, § and 6.

In this section we review the definition of Fourier transform of a temperate
distribution [22]. For any distribution temperate T', defined by the linear and
continuous functional

T:p— (T, ) (B.1)

where ¢ belong to the Schwartz space, the Fourier transform FT" is defined
by
(FT, ) = (T, Fp) (B.2)

Fourier transform of the distribution 1. For every test function ¢
we have

(F1,¢) = (1,Fp) = /Fw(p)dp = (2m)"%p(0) = ((2m)"?5,¢) Vo €S

or
F1=(2m)"?s (B.3)
Fourier transform of the distribution §.
1 1
(Fb0) = (0.F¢) = Fe(0) = o [ o)t = (o) (Ba)
therefore i
Fé = CORE (B.5)

Fourier transform of the distribution 6. Let us compute the Fourier
transform of the Heaviside distribution 6:

1o 11
Fo(p) = E/o O(z)e P de = ap— 10 (B.6)
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Using the definition of Fourier transform of a temperate distribution, we
have

+oo
(Fo.p) = (0.Fy) = / (Fe) (p)dp

+oo
= lim e~ P (Fe)(p)dp
6*)0+ 0
+oo +oo
= lim e~ e “Pdrd
e—0t 0 \/271’/ p

+oo o]
- - 7(6+ix)pd d
0t /2m / o) / ‘ e

“+o00
= lim — d
e—lg}"‘ \/27r/ e+z;1: .
= li d B.7
27 s—l>%1+ o T — ze(p(x) v ( )

where use has been made of the Fubini theorem.
We have also

1 1 1 1 s
Fo = — = — Pv— + /= d(p). B.8
iv/2r p —1i0 Vo p y ) (B5)

where we have made use of
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C The distribution p—liO

Let us considered the tempered distribution log(x + iy). We have

d log(x + i) 1
— log(z + iy) =
dx & Y x4y
Therefore
: 1 . d :
lim = lim — log(x + iy)

y—=0t T+ 1y  y—0t dx

On the other hand we have

lim log(x +iy) = log |z + iy| + iArg(z + iy)]

lim
y—0t y—07t
= log|z|+imb(—x)

By considering the corresponding distributions se have

lim [ log(z + iy)p(z)dx = / [log |z| + imf(—z)] o(x)dz

y—0+

Therefore using (C.3) we obtain

1 I I d log( + iy)
= lim = lim — log(x + 1
x + 10 y—=0t 1y  y—0t dx & y

d d
= - ylirgl+ log(z + iy) = o log |x| + imf(—z)]

.
= Pv; —imd(z)

In analogous way we have

1
0 Pv; +imd(x)
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D Coherent states

Aim of this Appendix is the definition and the study of the properties of
the coherent states. The coherent states |c > are defined as eigenvectors of
the annihilation operator of the harmonic oscillator a. Their explicit from is
given by

lc >= A1/2Z%|n> (D.1)
n=0 :
where ;
n >= (\a/% |0 > (D.2)
and

A= exp (—[ef’) (D.3)

c is a complex number since the operator a is not hermitian. These states
satisfy the following properties:

<cle>=1 (D.4)

e >= AY? exp (ca®)|0 > (D.5)
ale >= clc > (D.6)

< ¢|N|e >=< cla'alc >= |c|* (D.7)

In fact we have

1
— / = Ax\n.n
<cle> = AE E, <n|n>mm(0)c

= exp(—|c[*) exp (|c[*) =1 (D.8)

o0 T n
e >= AV? )10 > A2 exp (cal)[0 > (D.9)

2 il Vil

ale >= In—1>=clc> (D.10)

S

Finally eq.(D.7) derives directly from eq.(D.6).
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As an application let us build the coherent states for the electromag-
netic field using the creation operator of a photon with momentum k and
polarization «

& >= A/? @n> D.11
with ,
In >= m\0 > (D.12)

Vn!

We can then compute the expectation value of the electric field in the
radiation gauge, E(¢,x) = —A(t,x), which turns out to be equal to

1 / ’ s 1.7
< GlEtx)|g > = — < Z Z ———(—iwp el [a e F T — h.e|cy >
K o/=1,2 Y 2Vwy
e’ Wk 1 o —iks
= ey W[cke M c.cl]
(0% Zwk (6 : (0%

= —ep 7|ck|sm(k~x—wkt+6k) (D.13)

where
cic = |eic| exp (dy) (D.14)

If we instead consider the expectation value of the electric field E(¢,x) on a
state with a definite number of photons |N' >, the result is zero

< N |E(t %) [N >=0 (D.15)

In conclusion the coherent state is the quantum state which is closer to a
classical electromagnetic wave.
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E Path integral for field theory

Path integral for field theory is constructed by using the same procedure of
path integral for quantum mechanics. It is convenient, since the quantum
fields are expressed in terms of creation and annihilation operators, to con-
sider the eigenvectors of such operators, the coherent states. Let us consider
a set of creation operators a and build the coherent state

|6 >= exp Z@ )|0 > (E.1)

where ¢; are a set of complex numbers. As we have seen in the Appendix D
we have

ail¢ >= ¢il¢ > (E.2)
Notice that, taking the hermitian conjugate, we obtain
< laj =< 0o (E.3)
where ¢; denotes the complex conjugate of ¢;, and
< ¢ >=exp (> M) (E.4)

These states are not normalized

< ¢l¢p >= exp (Z 0id;) (E.5)

We have
<¢lo> = <0lexp Zm exp ( Zaz )|0 >

= <0|exp Z@a exp Z%% 0> exp Z¢z¢z
= exp Z@@ (E.6)

where we have used

exp (A) exp (B) = exp (A + B) exp (% A, B]) = exp (%[A, Bl)exp (B) exp (A)
(E.7)
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which holds provided the commutator be a c-number.

The coherent states satisfy also a completeness relation
1 _ _
[ et (- S dwol >< o (E.3)

where d¢;d¢; = dRep;dIm¢;. The proof of (E.8) is based on Schur’s
Lemma??. First we note that a;, a;r act irreducibly on the Fock space.Then
we need to show that the left hand side of eq. (E.8) commute with a; and
aj. We have

/ dgdgexp (=Y i)l >< ¢| = / dgdg exp (— mew >< gl

B /dW (= 2 anonllo ><
_ /d¢d¢exp oy |¢>a¢z <4
= /dgbdgbexp(—qui@)w >< dla;

| (E.9)

where we have set dodp == Hi%d@-dgﬁi. Taking the adjoint one can also

check that also a! commute with the left hand side of eq. (E.8). The Schur’s
Lemma then guarantees that the left hand side of eq. (E.8) is multiple of the
identity operator.

The normalization is chosen so that

[ dodoep (=3 600 < 010 >< 0l >= [ dédsexp (- 3 di0n) = 1

(E.10)
Notice that we have also

allé >= 2o > (E11)

Ioi

328chur Lemma. Let S(G) be an irreducible representation of a group G on the vector
space V and A an operator on V. If [A, S(g)] = 0 Vg € G then A is multiple of the identity
operator, A = AI. For the proof, see [24]
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Let us now consider the partition function:

Z =Trexp[—pH| = Z < n|exp[—FH]|n >= (E.12)

where = 1/kgT. Using eq.(E.8) we can pass to the coherent state repre-
sentation

z = [dodoexp (=3 6:00 3 <nlo >< ol expl-5H]jn >
— [ dbdoexp (- 36003 < olexpl-GHln < nfo >
— [ dbdoexp (= 3 6100 < ol expl-5HI|o > (.13)
Notice that in order to use the completeness relation

Z|n ><n|=1 (E.14)

we have commuted < n|¢ > with < ¢|n >. In the case of fermions this (anti)
commutation gives a minus sign. We can now repeat the derivation of path
integral. Let us assume the following Hamiltonian

H = Z k:l-jajaj + Z V}jklagagakal (E15>
i igkl

and divide the time interval 5 in N interval of length §. Then we have (¢ = ¢;
and the sum over 7 is understood)

2 = [dodsesn (=3 600 < olexsl-5H)jo >

= lim / I d6"de" exp (—3"6") < ¢°|expl—6H]|¢" > ... < 6V~ |expl—dH]|¢" >

where ¢° = ¢V = ¢.
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Now

< ¢"Mexp[-BH]|¢" > ~ < ¢"¢" > =0 < " H|P" >

< ¢ |H|gr >
< pntion >

= <¢"¢" > (1—6H(¢", ¢™))

= exp (¢"T") (1 — 0H (¢, ¢"))

~ exp(¢"T ") exp [-0H(¢"H, 9] (B.1T)

where H(¢"*!, ¢") is the function obtained by the substitution af — ¢,
a— ¢.

= <> (1-6 )

By substituting eq.(E.17) in eq.(E.16), we obtain

Z = lm / TN dgmde™ exp (67 — 6")|¢"] exp [~SH (6™, 6]

(@1~ 0
4]

= i / 12 dg"dg™ exp +[5(( H(¢™,¢")]

) 8

/ngngexp[—/ drL] (E.18)
0

where

L = —66+H(,9)
= Z[_‘Z;ifbj + Z kijdid; + Z Vijkihi 0 drpi] (E.19)
2

irj ijkl
By going back to the configuration space we obtain

7 / Dé(r, 2)Dé(r, z)e~5 (E.20)

where

B
szlth/ﬁ%wa¢+gﬁvwwvw+vu—ywume@wwn

(E.21)
The functional integration is performed over all the fields satisfying periodic
boundary conditions

o(r,z) = o(1 4+ 5, 7) (E.22)
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which imply

o(r,x) = Z "7 p(wy, T) (E.23)
where 5
W = %" (E.24)

As we have already noticed for fermions, we require antiperiodic boundary
conditions

@D(T» ZL’) = —¢(T+5ax) (E25)
which imply
o(r,x) = Z T p(wWn, T) (E.26)
where
oy = % (E.27)
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F Yukawa potential

Let us consider the static equation for the Klein-Gordon field in presence of
a point-like source
(=V? +m?)E(x) = 6°(z) (F.1)

By Fourier transforming, we obtain
(a* +m?)FE(q) = (2m) %/ (F.2)
where F'E(q) denotes the Fourier transform of E. Therefore

1 1
(27)3/2 @2 + m?

FE(q) =

where ¢ = |q|, and

E(x) = (273)3/2 /d3qFE(q) exp (iq - x) (F.4)

Therefore

1 .
E(x) = &gy s exp (iq - X)

1 o0 q2 1 27
d dcosf doe Lqx cos O
/O e / / b exp (igm cos 6)

1 / o ¢ singx
272 J, ¢>+m? qx

1 / ° g singr
- dg—t 97
22 J_ ¢?+m? =z

o0

(F.5)

where we recall © = |x|. The integral can be compute in the complex plane
by using singr = (2i) 7! (e"” — e7%*) and closing the contour above for the
first exponential or below for the second. By using the residue theorem we
get

—mlx|

e

E(x) (F.6)

- 47 |x|
In conclusion we get a screened Coulomb potential with a range of order
m~!. For m = 0 we recover, apart the sign, the Coulomb potential.
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G Dirac equation solutions and their proper-
ties
G.1 Spinors

Solutions of the Dirac equations can be written, using the solutions in the
rest frame of the electrons, as

_ p+m u v — __ptm v r=
uT(p) - \/m 7’(0>’ T<p) \/m T(0)7 172 (G1>
i) the solutions are normalized
Uy (P)us(P) = brs; Ur(P)Us(P) = —0ys (G.2)
In fact we have
W@)n(p) = Gt (0,5 )5+ m)us(0)
= GO B+ om0
1 - . 2
= mu(m(zJ + m)*u,(0)
1 _ .
= (m + E)UT(O)(]D—F m)us(0)
= u,(0)us(0)
= O (G.3)
where we have used ‘
u,-(0)y'us(0) =0 (G.4)

We have in fact

1, (0)7'u5(0) = 1 (0)7'1,(0) = uf(0)y'7 us(0) = —1,(0)y'us(0) = 0
(G.5)

In similar way one can prove the normalization for the v.
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ii) By introducing the two-component non relativistic spinors

wne(@)owmne(l) e

the solutions can be written using the Dirac-Pauli representation of the Dirac
matrices as

ur(p):A( X ) vr(p):A(Bp"’”T), (G.7)

Bp " OXr Mr
with 12
E+m 1
A= B= G.8
( 2m ) ’ E+m (G.8)
The explicit form is
1 0
0 1
UI(p) Bps uz(p) B(P1 - 2292) ( )
B(p1 +ip2) —DBps
B(p1 — ip2) Bps
-B B(p1 +1
wp)=a| | ) =a| B ) (.10)
0 1
In fact we have
p+m
Uy = —u,(0
() 2m(E +m) ©
e (57 220
om(E+m) \ p-o  —E+m 0
_ Axr
_ (ABP . UXT) (G.11)
iv) The spinors satisfy
E
Wl (P (p) = s = v (D) () (G.12)
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In fact we have

1

ul(p)us(p) = mui(o)(fﬁ +m)(p + m)u,(0)
= GO0+ mn "+ mu(0)
1 _ .
= e OB+ Fus(0)
1 _
= . " E)uT(O)E(m + E)u,(0)
_ %5% (G.13)
where we have used
B+m°B+m) = (B+m) (O y'pu+7°m)
= (p+m) (29" p — p7° +"m)
= (p+m)(2E — 7’ ++°m)
= 2E(p+m)+ (p+m)(=p+m)y’
= 2E(p+m) (G.14)
Similarly for v.
v) The spinors satisfy also
ul(p)o(—p) = 0 = o' (p)u(—p) (G.15)
and
u(p)u(p) =0 (G.16)
In fact

I
/-\S\l/-\
ELee

S
_l’_
S
2
<
|
&3
-2
o
|
3
=
2
B
_l’_
2
A/i
e

[
)

(G.17)
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u(p)v(p) = u'(0)(p" +m)y°(—p+ m)v(0)
u'(0)y°(p + m)(—p + m)v(0)
—u(0)(E* — p* — m*)v(0)

o

(G.18)

Solutions of the Dirac equation can also be built using the helicity oper-
ator defined as

h(p) = % (G.19)

o— (‘5 g) (G.20)

This operator, which commutes with the Hamiltonian H = a - p + fm,
corresponds to the projection of twice the spin of the particle in the direction
of motion. Since

where o is the 4 by 4 matrix

h(p)® =1 (G.21)

the eigenvalues of the elicity operator are +1. Solutions of the Dirac equation
in terms of helicity spinors can be found in [5].

G.2 Projection operators

The energy projection operators are

_ Ep+m
T 2m

A*(p) (G.22)

They satisfy
(A*(p))* =A%(p), AT(P)+A(p)=1 AT(p)A™(p)=0  (G.23)
They project out positive and negative energy states

AT (p)ur(p) = ur(p), A (P)vr(P) = v,(P) (G.24)
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One can easily show that

: p) = Zura(p)’arﬁ(p)? <G25)

In fact, in the rest frame, we have

1 0
_ 0 1
> u(0)a,(0) = o | (100 0)+], (1000
' 0 0
1 00 0
|0 1 00
|0 0 00
00 00
1 0
- 17 (G.26)
2
Therefore
1
+ _ 0
b ;“*(p)“" m m) 2 (@)@ +m)
1
= m Zur 077 (p" + m)y°
B 1 R 1+7 R
= i E Pt PEm)
_ 1 N 2 A 0/ A
= Imm T B [(p+m)” + (p+m)y"(p + m)]
1 9 . .
= — E
om(m B H Mt BB+ m)
_ pim (G.27)
2m
where we have used (G.14). In analogous way
_ —p+m
=N 0 (p)0,s(p) = G.28
3 ralp)alp) = (G28)
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One can build also spin projectors. In the rest frame they are simply

1+o 1/1+0 0
+ 2 1 3 G

with 012 given by eq.(10.58). They project spin £1/2 solutions in the 3d di-
rection. In particular Pg projects u1(0),v1(0) while Pg projects uz(0), v2(0).
In a general frame one prefers to consider

]5i: 1:‘:’}/57%

G.30
F = (G-30)

where n* is a space like four vector orthogonal to p*
n*= -1, nfp,=0 (G.31)

Now, in the rest frame

~ 1+ 01270 1 1+ o3 0
Py = ———— = — G.32
° 2 2 ( 0 1Fos (G.32)

and therefore PJ projects u;(0),v,(0) while Pg projects uy(0), v1(0) .

In the rest frame one has n® = 0 and therefore one can always choose
n=(0,0,1).

G.3 Trace theorems

i) try* =0, ii) trys; =0, iii) try#y” = 4¢"” (G.33)
iv) try¥y"y? =0, v) try"y"yy7 = 4(g"g" — 99" + ¢"79"")  (G.34)
vi) trysyHy” = 0 vil) trysyHyt Py = diet P (G.35)

In general the trace of an odd numbers of v’s is zero.

Proofs:
i)
try’ =tr (%)% = try°y"° = —tr (%)’ = —try" =0 (G-36)
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and

try? = tr (7)) = try'7% = —tr (v')*y° = —try* = 0 (G.37)

i)
trys = itr (Y0)*y5 = itr12957° = —itr (4°)*y5s = trys = 0 (G.38)

i)
tr Y = %tr (Y9 +4H) = %Zgu”tr Iy = 4g" (G.39)

iv)
Ty = tr gy "y = tr sy s = —tr gy (G.40)

tryfy"yPy7 = 29"ty —try"yiyy”
= 8g"g" — 29" tr vy + tr "y "7
= 89" g" — 89" g"7 + 2¢"7tr P — tr Yy
89" g — 89" g"7 + 89" g"" — tr 4"

(G.41)
or
tr "y = 4(g" 9" — 9" 9" + 9" g"") (G.42)
vi) When p = v vi) is equivalent to ii). For u # v, using
V5 = %Eaﬂ757a767776 (G.43)
we can show that
WY = —ivse"?7 7,7, no sum on p, o (G.44)
Then
tr sy Yy = —ieP7tr (v5) 2, Ve = —ie P tr Y, = 0 (G.45)

where we have used tr,v, = 0 since p # 0.

viil) When p = v = p = o vii) is equivalent to ii); when two indices are
equal vii) is equivalent to vi). Let us consider all four indices different. Then

VA APy = ey (G.46)
and

trys = tr 7"y Py = i€upott Vi = 4ietvPe (G.47)
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H Calculation of 4 — er,v, decay squared am-
plitude

Aim of this Appendix is the calculation of the sum over the final spins and
the average of the initial spin of the squared amplitude

1
5 Myl (H.1)
TiTf

where
Mfi = ﬂrue (pe>7>\(1 - V5)U'rae (pﬂe)aruu (pl/u)/y)\<1 - 75)u7"u (p“) (H2)
We have

1 1
5 > IMP = 5 > i (P) (1 = 75)r,, (Po )i, (P, )7 (1 = 75)ttr,, (D)

T3, Tf Ti,Tf

ul (Pu)(1 = 75)7870tUr, (Py,)vr,, (P2.) (1 = 75)7" 0t (Pe)

I ) .
= 5D U (P2)20(1 = 95)7 0t (Pe) i, (P) 1A (L = 75)r,, (P5)

Ti,Tf

U, (Pu, )V (1 = ¥5)tur, (D) tir,, (P) 70 (1 = ¥5)7570Un,, ()

_ %TT[( (o)1 = 15077 AT (P (L — 7))

Tr[A* (P, )7 (1 = 7) AT (Pu)r0(1 = 75)7870
- %Tr[( A~ (Pe )" (1 = 3)A (P (1 — 5]

TriA* (py, YN = 75) AT (P)Y0 (1 — 75)]

1 1
= 3 T Az/ o 1- Ae A -
2 W6y o, e v e (1= 75)Pey ™ (1 = 75)]
Tr[puo, (1 =75) (Bu + mu)y” (1 = 75)] (H.3)

where in the projection operators A we have neglected the masses of th
electron and neutrinos with respect to the p mass.

Now
Trpu.Yo(1 = 75)Pe (1 = 75)] = 2T [Pu. Yobey] — 2T [Pu.Yovshey’] (H.A4)
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Therefore we need v) of (G.34)

Tr[VaYovs72) = 4(Gac9sr — Gasgor + Gargos) (H.5)
and vii) of (G.35)
TT[7a7075757)\] = 4i€aa§A (H6>
Therefore
Tripuye(1 =)0y (L =) = 2T7[bu.Yobey] — 2T [Pr Vo V5D ]
= 8pgepgxaa5>\ (H7)
where
Xaooh = Gaocds) — JasGor + Gargoes + ieaaéA (H8>

Furthermore we have

Tr[pu, (1 = 5) (B + )77 (1 = 75)]

_I_

7Py, (1 = 75)D77 (1 = 75)]
Trpy, (1 = v5)my? (1 = 75)]
= Tr[py, (1 —75)p77 (1 — 7s5)]
+T7 [Py, Yamu 7] = Tr[pu, 12 75m,7]
=17 [pu, 2muy”s] 4 T Do, 1 v5muy” 5]
= Tr[ﬁuu%\(l - '75)23;/70(1 —75)]
= DPpXery (H.9)
where we have used

Trh,u’YV’yﬂ] =0 (H.10)
and the properties of the 75 matrix. Using

Xaaé)\X‘r/\pU = 4gapgcr7' (Hll)

and substituting in (H.3), we obtain

1 1

1
D IMpP = S Tr[pu. Ve (1 — v5)pey™ (1 —
2 | fl 2 16mumyemyume T[p o 75)Pe7 75)]

T‘Z‘,Tf

Tr[ﬁm%\(l —95) (D + M)y (1 = 75)]
= 8;@“ * Do) (P, * Pe) (H.12)

My, MMy, M M
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I Bose Einstein and Fermi Dirac statistics

Let us now review the quantum statistics. We know from Quantum Mechan-
ics that there are two types of particles, bosons and fermions. Single states
can be occupied by any number of bosons while for fermions a single state
can be occupied at most by one fermion.

Since atoms are composed of spin 1/2 particles (neutrons, protons and
electrons) there are atoms which are bosons (H', He') and atoms which are
fermions (H?, He®). Let us now compute the gran partition function for
free bosons and fermions. Thermodynamic quantities are derived by the gran
partition function Z, since Z is connected with the thermodynamic potential
via

Q= —kpTlog2Z (L.1)

and the average number of particles and the gas pressure are given by:

_ ot 08 (1.2)

Let H be the Hamiltonian for N free particles
2

N
P
H=Y" o (1.3)
i=1

Let us suppose that for every momentum p there are np particles with
such momentum. Since we are working in a box, p = 27/Lm with m =
(mg, my, m,) integers. Therefore we have

E=> npep=E(np) N=) np (14)

The gran partition function is given by

Z(wV,T) =Y g(np) exp(=BE(np) + BpN) (L5)

N {np}
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with g(np) = 1 since all particles are identical. Fer fermions n, = 0,1 while
for bosons np = 0,1,2,---. So we have

[e.9]

Z(wV,T) = > > exp(—BE(ny) + BuN)

N=0{np}

= ZZexp BZ Np€p — HNp)]

N=0 {np}

S S T fesp(B — )"

N=0 {np}

= D) lexp(B(i — €)™ [exp(B(p — €1))]"™ -

ng ni
= 1I Z exp(B(p — €p))]"™
= Hpr (L6)

Let us now consider a gas of fermions, then

Zy = [ew(Bp— )™ =1+ exp[B(u —ep)] (L.7)

np=0,1

For a boson gas we have

Zi= D lexp(Blp—e))"™ = eXp[;(u 5 (L.8)

Note that in the boson case the series converges only if

exp Bk — ep) < 1 (19)

Therefore if the ground level is for ¢ = 0 the chemical potential must be
negative. Finally we can calculate the thermodynamic potential:

of = —kBTZ In[1 + exp(B(p — €p))]
0F = kBTZ In[1 —exp(B(pn — €p))] (I.10)
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Given the energy e, we can calculate all the thermodynamic quantities. Let
us first compute the average number:

NI - 1
T Z = >‘§p:exp<5<ep—u>>+1
B onr B 1
S THaD DL L Bpeer ) e

At low temperature bosons tend to accumulate in the ground state (p = 0),
only thermal fluctuations can invert the process. In fact N¥ increases when
—pn— 0.

The classical limit, the Boltzmann distribution, is obtained for exp(8(ep—
p)) >> 1 or exp(B(p — €p)) << 1. This corresponds to exp(u/kgT’) <<
exp(ep/kpT) or large T and p/kpT — —oc.

Let us now compute the fermion partition function Qf for a free particle
gas by going in the continuum (V — 00):

. 47V 2 p2
QF = _kBTF i p“dpIn[l + exp((B(p — %))] (I.12)
We can now derive average pressure and number of fermions as
EmF 47 2 p?
4 1
N = —W;/ pdp 3 (1.14)
h* - Jo 1+ exp(B(—p+£3))
All the results can be expressed in terms of the functions
d - 2!
Fape2) = 2o fspa(2) = ;(—)Hlm
4 - 2!
f52(2) = —/ dzz?In(1 4 z exp(— )it (.15
5/2( ) ﬁ 0 ( ; l5/2 )
where z = exp (Bu):
P 1
k:B_T = EfS/Q(Z)
N 1
v = Ffs/z(z) (1.16)
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where
2mh?
kaT

(L.17)

For a Bose gas the partition function is singular when p =0 and u — 0
or z — 1. Therefore it is convenient to separate in the sum the term with
p = 0 before passing to the continuum.

We get
p= kT [yt —ep(3u— )~ "2l —exp(60) (115)
h3 2m V
4 [ 1
N = Vﬁ p2dp_1+exp(ﬁ(_u+2%>) + Ny (1.19)
where
- exp(Bp) _ = (1.20)

1—exp(Bp)  1-=
Ny denotes the number of particles in the p = 0 state.

The results can now be written in terms of the functions

93/2(2) = 2_95/2 213/2

o0

gs2(2) = _ﬁ i dzz®In(1 — z exp(— 215/2 (I.21)
We have
L= posnalz) - (1 -2)
= el (122

I.1 A gas of free fermions

Let us now rewrite the equations (I.16) for the pressure and concentration
for a gas of fermions:

E

1
= EfS/Q(Z)

_ % Fual2) (1.23)

g
<=9
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The equation of state is obtained by eliminating z from the two equations.
Let us start with the equation

%3 = f32(2) (1.24)

Therefore it is convenient to study the function f3/5 as a function of z. f3/,
is a function monotone in z. For small z

22 23 24
f3/2(2) =z 23/2 + 33/2 - 43/2 + o (125)
For large z (Huang p.246)
4 2 1
= [(nz)? 4 1 1.2

Therefore for every positive value of A\ a solution for z exists.
Low density and high temperature, \*/v << 1

In this case the thermal length A ~ hA/p ~ h/y/mkpT is much smaller
than the average distance among the particles v'/?, therefore quantum effects
are negligible. From

A3 22
one gets
A3 1\

z =

7 + W(7)2 + .. ) (1.28)

and the equation of state becomes

pV v 2? B 1 M3
(Z—W—F...—l—FW?

TN = 3 +... (1.29)

Therefore one obtains quantum corrections to the classic case. Recalling the
virial expansion

kBLT = %1 - B(T)g +C(T) (g) +..) (1.30)

one can identify the virial coefficients.
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High density and low temperature, \3/v >> 1

In this case the thermal distance is much larger than the average distance
so the quantum effects become relevant. The leading term is now

A3 4

Therefore we get

z = exp (Ber) (1.32)
where the chemical potential e¢p is called Fermi energy
R [6m2]%?
= — |— [.33
°r 2m [ v } ( )

Let us now consider < n, >, defined in egs.(I.11)

<np >= m (1.34)
When T'— 0, 8 — +0o we have
< Np >r=o=1 (1.35)
for e, < €p and
< np >r=0=0 (1.36)

for ep > €p.

Therefore at zero temperature the fermions occupy all the lowest levels up
to ep. Because of the Pauli principle they cannot occupy all the ground state
and therefore they fill all the states up to the highest energy er. Such a state
is called a degenerate Fermi gas. In the momentum space the particles fill a
sphere of radius pp, the Fermi surface. One defines also a Fermi temperature
or degeneracy temperature Tr such that

kBTF = €f (137)

Finally we can compute the internal energy

Vidr [
U= Z EpNp = ﬁ% . dpp4 < Np > (138>
p
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By part integration we get
u 1% /°°d P d BV /md pPeferiu
= — — | ——n L A — e
A>mh3 J, Py op P 20m2m2h3 J, p(eﬂep_m‘ +1)2
(1.39)

The integrand has a peak at p = pp. The asymptotic behavior of the
integral is (see [?])

3 5 o kgT
= Nep |14+ —7x2 2 1.4
U 5 (S |: + 127T ( r ) 1 ( O)

From the internal energy one can derive the specific heat

2 kT
Cy = Nkp—-Z
2 €r

(L41)

which goes to zero when 7" — 0 (Third law of thermodynamics) and the
pressure

p (1.42)

2U 2€F 5 2/€BT2
= —-— = - — 1 _—
3V " 50 { T )}

€r

Notice that even at T' = 0 as a consequence of Pauli principle the gas has
a non vanishing pressure. This pressure is responsible for the gravitational
stability of white dwarfs and neutron stars. A white dwarf can be thought as a
gas of ionized helium and electrons. The gravitational stability is guaranteed
by the degenerate electron pressure. In the case of neutron stars the stability
is guaranteed by the pressure of the degenerate gas of neutrons.

Note Alternative way to compute €p.

An alternative way of computing er is to fill all the states in the momen-
tum space up to pp:

47V [PF 47V %4
N — 2 Jn — S — 3 1.43
h3 A p 3h3 pF 67T2h3pF ( )

or N
pr = ()67 (1.44)
/3
1 N yanss, s 12 [672]°
— (X A [4

°r Zm(V) 3 2m | v ( 5>
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I.2 A gas of free bosons

Let us now study with some detail the Bose case. The function g3/, for z
small can be studied as a series

1 1
with
=1 3
93/2(1) = ;_1 B2 = C(§) = 2.612... (1.47)

where ( is the Riemann function. As we have already noticed for a boson gas
p < 0then 0 <z <1and ggp < 1. Rewriting the eq.(1.22) for the average
number

Ny A
N = 148
v " 93/2(2) (1.48)
with v
== 1.49
b= (1.49)
we see that No/V > 0 if temperature and specific volume v are such that
)\3
e 93/2(1) (1.50)
In fact
AP A°
0 <~ = g32(1) <= = g52(2) (1.51)

This means that the ground state is occupied by a macroscopic fraction of
bosons. The critical temperature for the Bose condensation is defined by

A1 2nk?

n mk‘BTC

3/2
v ) = g32(1), or p=0, No=0 (1.52)

o 1 2mk*/m 1 2xk*/m N

*~ knlogya (VP ks [CGRPE Y
At the critical temperature the bosons start to occupy the p = 0 state and
if the temperature decreases more and more bosons occupy such a state. For
T < T, the chemical potential p remain zero. Inserting the values pges =
0.145g/cm?® ~ myaN/V with my. = 4m,, m, = 4 x 1.67 x 1072"Kg,
B = 1.0551073* J s, the Boltzmann constant k& = 1.38 10723J/°K) we get
T, ~ 3.14 °K. This temperature is very close to the critical temperature of

liquid Helium, Ty = 2.17 °K, below which the helium becomes superfluid.

)33 (1.53)
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J Fundamental state of the superfluidity the-
ory

Let us now discuss the properties of the new vacuum state |<130 > of the
Hilbert space of quantum states of superfluidity. The usual form of quantum
field theory vacuum cannot be used since the fundamental state for a system
of N bosons is given by

‘(bO(N) >:‘N707O> (J54>

that means that all the particles are in the lowest energy state (k = 0).
Therefore the annihilation operator ag does not annihilate the minimum en-
ergy state

agl0 >=0 (J.55)
but
ao|o(N) >= N'?|g(N — 1) > (J.56)
e
af|do(N) >= (N +1)"%|¢o(N + 1) > (1.57)

To find the minimum energy state, it is necessary to consider first the coher-
ent state

do >= AV exp[V'V pal]|0 > (J.58)
which satisfies
aolpo >= VV o o > (J.59)
and
ax|go >=0 k # 0 (J.60)
e N(kv_ 0> _ % < dolabao|do >= %Vqﬁ% (J.61)

In other words the expectation value of N is V¢3. The normalization is given

by
1
AY? = eXp[—L—Lqug] (1.62)

Therefore ng is the boson density in the state k£ = 0. The vacuum expectation
value of the field ¢(z) on the state ¢y > is given by

< oulola)ldn > o = i = XE=D> gy
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and it is related to the density of the condensate. The true vacuum state is
however defined as we have found in Section 11.4 by the condition (11.54)

. 0 0 .
Ag|po >= {cosh(gk)ak + sinh(gk)aTk} |po >=0 (J.64)
The solution is given by

G0 >= N exp [_% S tanh(8/2)ala’ JIgo > (J.65)
k0

This means that the true vacuum state contains pair of bosons with opposite
momenta.

Exercise. Verify the at eq. (J.64) is satisfied by the new vacuum (J.65).

Exercise. Verify that the state |<50 > corresponds to a lower value of the
energy with respect to |¢g >.

K Bogoliubov transformation

Let us now derive the Bogoliubov transformation. Let us start considering

Z [aka,tak + g(aka,k + aLaT_k)] (K.1)
k40
where F2p2
— - K.2
o = b+ om (K.2)
Let us consider
Ay = Bray + ’YkaT_k (K.3)

with Ok, 7% € R. Then we get

[Ar, AL] = [Brar + a1, Bral, +ya_w] = (67 — 72) 0w (K.4)

In order to get standard commutation relations, let us require
Br—m=1 (K.5)
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It is convenient to define

0 0
B, = cosh (§k> , Y, = sinh (3’6) (K.6)
The inverse transformations are
ar = BrAr — AL, al = BrAl — A, (K.7)

In fact
Bredr — wAL, = Bu(Brar +maly) = w(Braly + man) =ar (K8)
Substituting in eq.(K.1) one obtains
Z [akalak + g(aka_k + azatk)} = Z [ak(ﬁkAL — A _g) (BrAL — 7kAT_k)
k#0 k#0

—I—g <(5k;z4k — AL (BeA—r, — e AL)

‘f‘(ﬂkAL — VkA—k)(ﬁkAT,k _ %Ak)ﬂ
- Z K(ﬁ% + V) o — 25k%#> Al A +

k0
( — Bryrou + g(ﬂi + ’le)) (ArA_ + ALAT_k)
+app — ﬂmu} (K.9)

By requiring the vanishing of the coefficient of Ay A_ + ALAik we get
20k W

tanh 6, = == K.10
N R A (10
Then the coefficient of Al A, becomes, using (K.10) and (K.6)
B (B8R — i) o ay
B+ i) = 2Bmn = (B7 + i) ak — = =
e FIOWNT R T Bl R
- % 29 _ /.2
= = 1 —tanh® 0, = /a2 — p?
cosh 0, ak At Uk RN
= e(k) (K.11)
with €(k) given by eq.(11.56). Finally
2 _ ;2 2
2 2V — Bk al o Ok
U — Brk = oy =— = —¢(k) sinh (—) (K.12)
" "B B 2

where use has been made of eq.(K.11).
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