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1 Vibrational modes and one dimensional lat-

tice

1.1 Lagrangian and Hamiltonian

Let us consider the elastic vibrations of a cubic cristal. The solution is simple
when the waves describing the vibrations propagate in the x, y or z direction
because entire planes of atoms oscillate.

For example for a two dimensional cristal, let us consider a wave propa-
gating as k̂ = x̂. Then one has a longitudinal wave when

uj = x̂ exp [i(kxj − ωt)] (1.1)

where uj is the displacement of the j atom, xj = ja being a the lattice size.
One has a transverse wave when

uj = ŷ exp [i(kxj − ωt)] (1.2)

In the first case the displacement of the j atom uj is in the x direction while
in the second case is in the y direction. In both cases the problem is reduced
to a one dimensional case. Therefore for simplicity we will consider a one
dimensional lattice.

Let us consider a one dimensional chain, containing N atoms with spacing
a, bound by an elastic force with elastic constant C. Let m be the mass of
the atoms and xi = ia, i = 1, . . . N , the rest (equilibrium) position of the
atoms and x′i the position at the time t. Then the displacement with respect
to the equilibrium position is

ui = x′i − xi (1.3)

For the study we will assume boundary periodic conditions

uN+1 = u1 (1.4)

The potential of the chain is given by

V =
1

2
C[(u1 − u2)

2 + (u2 − u3)
2 + · · ·] = 1

2
C

N∑
i=1

(ui − ui+1)
2 (1.5)
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the kinetic energy

m

2

N∑
i=1

u̇2i (1.6)

Then the Lagrangian for the one-dimensional lattice is given by

L =
m

2

N∑
i=1

u̇2i −
1

2
C

N∑
i=1

(ui − ui+1)
2 (1.7)

The Lagrangian describes the small oscillations of the atoms with respect
to the equilibrium. Higher order terms, cubic or quartic in ui, could be
introduced. For simplicity we limit ourselves to (1.7).

Let us now consider the Euler equations

d

dt

∂L

∂u̇i
=
∂L

∂ui
, i = 1 . . . N (1.8)

or

müi =
∂V

∂ui
= −C

2
2
∑
j

(uj − uj+1)(δi,j − δi,j+1)

= −C(ui − ui+1) + C(ui−1 − ui)

= −C(2ui − ui−1 − ui+1)

= −
∑
j

Vijuj, i, j = 1 . . . N (1.9)

with
Vij = C(2δij − δi,j+1 − δi,j−1), i, j = 1 . . . N (1.10)

This is a finite difference differential equation, which can be solved by a
discrete Fourier transform,

uj(t) = A exp (iχj) exp (−iωχt) + cc, j = 1 . . . N (1.11)

By substituting (1.11) in eq.(1.9), we get

m [A exp (iχj) exp (−iωχt) + cc] (−ω2
χ) = −C[2A exp (iχj) exp (−iωχt) + cc]

+ C[A exp (iχ(j − 1)) exp (−iωχt) + cc]

+ C[A exp (iχ(j + 1)) exp (−iωχt) + cc]

(1.12)
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and therefore

ω2
χ = 2

C

m
(1− cosχ) = 4

C

m
sin2 χ

2
(1.13)

or assuming positive frequency

ωχ = 2

√
C

m
| sin χ

2
| (1.14)

By imposing the condition (1.4) we get

exp [iχ(N + 1)] = exp (iχ) (1.15)

implying

exp (iχN) = 1, χ =
2πn

N
(1.16)

with −N/2+ 1 ≤ n ≤ N/2 for even N and −(N − 1)/2 ≤ n ≤ (N − 1)/2 for
odd N . In conclusion one has N proper modes. Since χ is defined modulus
2π, n is defined modulus N . In fact if χ→ χ+ 2mπ, then

n =
χN

2π
→ χN

2π
+

2mπN

2π
= n+mN (1.17)

We can rewrite the solution as

uj(t) = A exp (iχj − iωχt) + cc

= A exp (ikxj − iωχt) + cc

= A exp (ikxj − iωnt) + cc (1.18)

with

k =
χ

a
=

2πn

Na
(1.19)

and

ωn = 2

√
C

m
| sin πn

N
| (1.20)

Note that all atoms oscillate with the same frequency ωn. The group velocity

vg =
dω

dk
=

√
C

m
a cos

πn

N
(1.21)

Furthermore the condition (1.19) gives

nλ = n
2π

k
= Na (1.22)

or the total length must contain an integer number of wave lengths.
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1.2 Expansion in eigenmodes and quantization

Since the u
(n)
i are a set of orthonormal and complete functions, the general

solution can be written in terms of the normal modes, defined as

uj(t) ∼ u
(n)
j exp (−iωχt) + cc (1.23)

u
(n)
j =

1√
N

exp (i
2πn

N
j) (1.24)

Let us show that (1.24) are a set of orthonormal functions, or∑
j

(u
(n)
j )∗u

(m)
j = δn,m (1.25)

and satisfy the completeness relation∑
n

(u
(n)
i )(u

(n)
j )∗ = δi,j (1.26)

For i = j or n = m the properties are obvious while the orthogonality
(completeness) condition follows from the fact that by inserting eq.(1.23) in
the equations of motion (1.9), we get

Viju
(n)
j = mω2

nu
(n)
i = mω2

nδiju
(n)
j (1.27)

which means that the normal modes u
(n)
i are eigenvectors of the matrix Vij

with eigenvaluesmω2
n. Eigenvectors corresponding to distinct eigenvalues are

orthogonal.

The general solution is therefore

uj(t) =
∑
n

Anu
(n)
j exp (−iωnt) + c.c., (1.28)

with An complex or with a different normalization and notation (ωn → ωk)

uj(t) =
∑
k

√
ℏ

2mωk
aku

(k)
j exp (−iωkt) + c.c. (1.29)
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where we recall that ωk = 2
√
C/m sin(ka/2) with k = 2πn/Na. The mo-

mentum is given by

pj(t) =
∂L

∂u̇j
= mu̇j(t) = m

∑
k

√
ℏ

2mωk
aku

(k)
j (−iωk) exp (−iωkt) + c.c.

(1.30)
The Hamiltonian is

H = −L+
∑
j

u̇jpj = T + V (1.31)

Let us now invert the relations in order to obtain ak in terms of the coordi-
nates and momenta. Let us consider

uj(0) ≡ qj(0) =
∑
k

√
ℏ

2mωk
(aku

(k)
j + ak

∗(u
(k)
j )∗) (1.32)

pj(0) =
∑
k

√
mωkℏ
i
√
2

(aku
(k)
j − ak

∗(u
(k)
j )∗) (1.33)

By multiplying by (u
(k′)
j )∗ and summing over j we get

∑
j

(u
(k′)
j )∗qj(0) =

√
ℏ

2mωk′
(ak′ + a∗−k′) (1.34)

∑
j

(u
(k′)
j )∗pj(0) =

1

i

√
mωk′ℏ

2
(ak′ − a∗−k′) (1.35)

from which

ak =
∑
j

(u
(k)
j )∗(

√
mωk
2ℏ

qj(0) + i

√
1

2mωkℏ
pj(0)) (1.36)

We can now quantize the theory by requiring the standard commutation
relations

[qi, pj] = iℏδij, [qi, qj] = [pi, pj] = 0 (1.37)

By using eq.(1.36) and eq. (1.37), we get

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0 (1.38)
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Since the Hamiltonian does not depend explicitly on t we can quantize at
t = 0

H(t = 0) =
1

2m

∑
j

p2j(0) +
1

2

∑
l,j

Vljql(0)qj(0) (1.39)

where

Vlj =
∂2V

∂ul∂uj
= C(2δl,j − δl,j−1 − δl,j+1) (1.40)

By substituting in the Hamiltonian pj(0) and qj(0) we get

H =
1

2

∑
k

ℏωk(a†kak + aka
†
k) (1.41)

In fact we have

1

2m

∑
j

p2j(0) =
ℏ
2m

∑
j

∑
k

∑
k′

√
mωk

i
√
2

√
mωk′

i
√
2

(aku
(k)
j − ak

†(u
(k)
j )∗)(ak′u

(k′)
j − ak′

†(u
(k′)
j )∗)

= −ℏ
4

∑
k

∑
k′

√
ωk

√
ωk′ [δk,−k′(akak′ + a†ka

†
k′)

−δk,k′(aka†k′ + a†kak′)]

= −ℏ
4

∑
k

ωk(aka−k − aka
†
k − a†kak + a†ka

†
−k) (1.42)

Furthermore we have

1

2

∑
l,j

Vljql(0)qj(0) =
ℏ
2

∑
l,j

Vlj
∑
k

∑
k′

1√
2mωk

1√
2mωk′

(aku
(k)
l + ak

†(u
(k)
l )∗)(ak′u

(k′)
j + ak′

†(u
(k′)
j )∗)

=
ℏ
2

∑
k

∑
k′

1√
2mωk

1√
2mωk′

mω2
k

[δk,−k′(akak′ + a†ka
†
k′) + δk,k′(aka

†
k′ + a†kak′)]

=
ℏ
4

∑
k

ωk(aka−k + aka
†
k + a†kak + a†ka

†
−k) (1.43)
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where use has been made eqs. (1.27) and of the orthonormality of the u
(k)
j .

Then the Hamiltonian is given by

H =
ℏ
2

∑
k

ωk(a
†
kak + aka

†
k) =

∑
k

ℏωk(a†kak +
1

2
) (1.44)

The Hamiltonian is then the sum of N armonic oscillator Hamiltonians. The
Hilbert space is built starting from the fundamental state (in quantum field
theory this state is called the vacuum) |0 >= |0 >kmin

· · · |0 >kmax such that

ak|0 >= 0, ∀k (1.45)

Remember k = 2πn/Na with (for example for even N)

kmin =
2π(−N

2
+ 1)

Na
, kmax =

2πN
2

Na
(1.46)

The state
a†k|0 > (1.47)

eigenvector of the Hamiltonian with energy ωk represents a possible quantum
excitation of the lattice and it is called phonon. The generic state is given
by

(a†k1)
Nk1

√
Nk1!

(a†k2)
Nk2

√
Nk2!

. . . |0 > (1.48)

In conclusion the energy of an atom lattice is quantized. The phonon does not
carry physical momentum however interacts with particles such as photons
or neutrons as if it had a momentum k.

1.3 Continuum limit

The continuum limit of the oscillator lattice is obtained by taking the limit
N → ∞ or a→ 0 considering the length L = aN finite.

In this limit xj = ja→ x, k = χ/a is the wave vector.

ui(t) = x′i − xi → u(t, x) (1.49)

ui+1 − ui
a

→ u′(t, x) (1.50)
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where

u′(t, x) =
∂u(t, x)

∂x
(1.51)

The Lagrangian (1.7), in the continuum limit, becomes

L =
m

2

N∑
i=1

u̇2i −
1

2
C

N−1∑
i=1

(ui − ui+1)
2

=
m

2a

N∑
i=1

au̇2i −
1

2
Ca2

N−1∑
i=1

(ui − ui+1)
2

a2

→ µ

2

∫ L

0

dx u̇(t, x)2 − 1

2
K

∫ L

0

dx u′(t, x)2 (1.52)

or

L =

∫ L

0

dxL, L =
µ

2
u̇(t, x)2 − 1

2
Ku′(t, x)2 (1.53)

where we have introduced the linear density µ = m/a and the comprimibility
modulus K = Ca. L is called Lagrangian density. Then the equations of
motion (1.9) become the D’Alembert equation in one dimension

µ
d2

dt2
u = K lim

a→0

(ui+1 − ui)− (ui − ui−1)

a2
= Ku′′ (1.54)

where u′′ = ∂2u/∂x2. The velocity is given by

v =

√
K

µ
(1.55)

In fact in the continuum limit we have

ω2
k = 4

K

µa2
sin2(

ka

2
) → v2k2 (1.56)

The expansion becomes

u(t, x) =
∑
k

√
ℏ

2µωka
aku

(k)
j exp (−iωkt) + c.c.

=
∑
k

√
ℏ

2µωkL
ak exp (−i(ωkt− kxj)) + c.c.

=
∑
k

√
ℏ

2µωkL
ak exp (−i(ωkt− kx)) + c.c. (1.57)
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where the sum is extended over

k =
2πn

Na
=

2πn

L
(1.58)

with n = 0,±1,±2 · · ·.

The total energy associated to the field is

H =

∫
dxH (1.59)

where the Hamiltonian density is given by

H = Πu̇− L =
1

2µ
Π2 +

1

2
K(u′)2 (1.60)

where

Π =
∂L
∂u̇

(1.61)

The quantization of the system is obtained by requiring the commutation
relations at equal times

[u(t, x),Π(t, y)] = iℏδ(x− y) (1.62)

[u(t, x), u(t, y)] = [Π(t, x),Π(t, y)] = 0 (1.63)

which imply for the operators ak, a
†
k

[ak, a
†
k′ ] = δkk′ (1.64)

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 (1.65)

The total Hamiltonian, using the expansion (1.57), becomes

H =
∑
k

ℏωk(a†kak +
1

2
) (1.66)

Since the operator a†kak is definite positive, a state with minimum energy
|0 > exists, defined by

ak|0 >= 0, ∀k (1.67)
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This state corresponds to the fundamental state or of minimum energy. The
generic state of the Hilbert space is built as a linear combination of the states
(Fock states)

(a†k1)
nk1

√
nk1!

(a†k2)
nk2

√
nk2!

. . . (|0 >) (1.68)

The total energy of this state is the sum of the energy ωki of the single
quantum excitations

E =
∑
i

nkiωki (1.69)

2 Lagrangian field theory

2.1 Action and Euler equations for a continuous sys-
tem

In general the action for a continuous system is given by:

S =

∫ tf

ti

dt

∫
V

d3xL (2.1)

where L is the Lagrangian density with

L = L
[
ϕA(t,x), ϕ̇A(t,x), ∂iϕA(t,x)

]
, i, j = 1, 2, 3 (2.2)

ϕA(t,x), A = 1 . . . q are q fields and ∂if ≡ ∂f/∂xi. For Lagrangians depend-
ing on higher derivatives see [1] (Ostrogadski method).

The Action Principle requires the stationarity of the action for any vari-
ation δϕA such that

δϕA|∂V = 0, δϕA|ti = δϕA|tf = 0 (2.3)

Therefore (from now on the sum over equal indices is implied) we obtain

0 = δS =

∫
dtd3x(

∂L
∂ϕA

δϕA +
∂L
∂ϕ̇A

δϕ̇A +
∂L

∂∂jϕA
δ∂jϕA)

=

∫
dtd3x(

∂L
∂ϕA

− ∂

∂t

∂L
∂ϕ̇A

− ∂j
∂L

∂∂jϕA
)δϕA
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+

∫
dtd3x(

∂

∂t
(
∂L
∂ϕ̇A

δϕA) + ∂j(
∂L

∂∂jϕA
δϕA))

=

∫
dtd3x(

∂L
∂ϕA

− ∂

∂t

∂L
∂ϕ̇A

− ∂j
∂L

∂∂jϕA
)δϕA

(2.4)

which implies the Euler equations

∂

∂t

∂L
∂ϕ̇A

+ ∂j
∂L

∂∂jϕA
=

∂L
∂ϕA

(2.5)

It is easy, using (2.5), to get eqs.(1.54) from the Lagrangian given in eq.
(1.53)

In the relativistic case the Lagrangian

L = L(ϕA(x), ∂µϕA(x)) (2.6)

where µ = 0, 1, 2, 3 and the Euler equations (2.5) become

∂

∂xµ
∂L
∂µϕA

=
∂L
∂ϕA

(2.7)

The sum over µ is again understood.

Example. Schrödinger field. The Lagrangian for the Schrödinger
field is given by (assuming ℏ = 1):

L =
i

2
(ψ̇ψ∗ − ψψ̇∗)− 1

2m
∇ψ∗∇ψ − V ψ∗ψ (2.8)

Using this Lagrangian in (2.5), one can derive the Schrödinger equations for
ψ and ψ∗.

3 Quantization of the Klein-Gordon field

3.1 Quantization of the Klein-Gordon field in 1D

Let us consider the Klein-Gordon1 real field in 1D, x ∈ [0, L], obtained from
the continuous string Lagrangian, eq.(1.53), assuming µ = 1, K = 1 and

1The equation in 3D was proposed indipendently by O. Klein, W. Gordon, V. Fock
and E. Schrödinger in 1926
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adding a quadratic mass term. We assume the light velocity c = 1 and
ℏ = 1.

L =
1

2

(
ϕ̇2 − ϕ′2 −m2ϕ2

)
(3.9)

From the Euler equations we get

(
∂2

∂t2
− ∂2

∂x2
+m2)ϕ = 0 (3.10)

The solutions are, using the expansion (1.57) with µ = 1, ωk ≡ Ek

ϕ(t, x) =
∑
k

√
1

2EkL
[ak exp (−i(Ekt− kx)) + h.c.] (3.11)

with k = 2πn/L, n = 0,±1,±2 . . . and

Ek =
√
k2 +m2 (3.12)

The momentum density is given by

Π =
∂L
∂ϕ̇

= ϕ̇ (3.13)

The Hamiltonian is defined

H =

∫
dxH (3.14)

with

H = Πϕ̇− L =
1

2
[ϕ̇2 + ϕ′2 +m2ϕ2] (3.15)

In order to quantize the theory we promote ϕ and Π to self adjoint oper-
ators satisfying “equal time” commutation relations

[ϕ(t, x),Π(t, y)] = iδ(x− y) (3.16)

[ϕ(t, x), ϕ(t, y)] = [Π(t, x),Π(t, y)] = 0 (3.17)

We can now compute the commutation relations between the operators ak
and a†k. Before let us show that

ak =
1√
2LEk

∫ L

0

dx exp (i(Ekt− kx))[Ekϕ+ iϕ̇] (3.18)
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In fact we have:

1√
2LEk

∫ L

0

dx exp (i(Ekt− kx))
[
Ek

∑
k′

√
1

2Ek′L
[ak′ exp (−i(Ek′t− k′x))

+a†k′ exp (i(Ek′t− k′x))]

+
∑
k′

√
1

2Ek′L
Ek′ [ak′ exp (−i(Ek′t− k′x))

−a†k′ exp (i(Ek′t− k′x))]
]

=
1

2L
√
Ek

∫ L

0

dx
∑
k′

1√
Ek′

[(Ek + Ek′)ak′ exp (i((Ek − Ek′)t− (k − k′)x))

+(Ek − Ek′)a
†
k′ exp (i((Ek + Ek′)t− (k + k′)x))

=
1

2

∑
k′

1√
Ek′Ek

[(Ek + Ek′)ak′δk,k′ exp (i(Ek − Ek′)t)

+(Ek − Ek′)a
†
k′δk,−k′ exp (i(Ek + Ek′)t)]

= ak (3.19)

where use has been made of

1

L

∫ L

0

dx exp [i(k − q)x] = δkq (3.20)

Using (3.18) and (3.16)-(3.17), we have

[ak, a
†
k′ ] = δkk′

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 (3.21)

Using the expansion for ϕ, given in eq.(3.11), and the commutation relations,
we get

H =
∑
k

Ek(a
†
kak +

1

2
) (3.22)

The generic state of the Hilbert space is built as a linear combination of
the states (Fock states)

(a†k1)
nk1

√
nk1!

(a†k2)
nk2

√
nk2!

. . . (|0 >) (3.23)
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and contains nk1 particles with energy Ek1, nk2 particles with energy Ek2...
The fundamental state |0 > is such that

ak|0 >= 0, ∀k (3.24)

The state |0 > is called also the vacuum state because no particles are present.
Note that the vacuum expectation value of the Hamiltonian is infinite:

< 0|H|0 >= 1

2

∑
k

Ek (3.25)

However this is not a problem since usually one measures differences of en-
ergies between states.

3.2 Quantization of Klein-Gordon field in 3D

The action for the Klein-Gordon field in three spatial dimensions is obtained
by generalizing the previous section

S =

∫ tf

ti

dt

∫
V

d3x
1

2

(
ϕ̇2 − (∇ϕ)2 −m2ϕ2

)
(3.26)

where V ≡ L3. This action can be written also in the covariant form

S =

∫
V4

d4x
1

2

(
∂µϕ∂

µϕ−m2ϕ2
)

(3.27)

where V4 is now a space-time volume, d4x is the space time volume element
and µ = 0, 1, 2, 3. The sum over the repeated indices µ is understood. Assum-
ing the mass as fundamental dimension, the dimension of the Klein-Gordon
field ar M1 so that the action is dimensionless. From the Euler equations we
get the differential equations

(
∂2

∂t2
−∇2 +m2)ϕ = 0 (3.28)

or in covariant form

(∂µ∂µ +m2)ϕ ≡ (□+m2)ϕ = 0 (3.29)
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This equation is the simplest relativistic estension of the Schrödinger equa-
tion, obtained by replacing the relativistic mass condition

(E2
k − k2 −m2) = 0 (3.30)

with the differential equation (3.28) obtained by substituting the classical
variables Ek and k by the operators

Ek → i
∂

∂t
, k → −i∇ (3.31)

As we will see the quantization of this field theory describe a many boson
relativistic theory.

To quantize this theory, we postulate equal time commutation relations
between the operators ϕ and Π are

[ϕ(t,x),Π(t,y)] = iδ3(x− y) (3.32)

[ϕ(t,x), ϕ(t,y)] = [Π(t,x),Π(t,y)] = 0 (3.33)

The field expansion is now

ϕ(t,x) =
∑
k

√
1

2EkL3
[ak exp (−i(Ekt− k · x)) + h.c.] (3.34)

with the dispersion relation of a relativistic particle

Ek =
√
k2 +m2 (3.35)

and

ki =
2πni
L

, i = 1, 2, 3, ni = 0,±1,±2, . . . (3.36)

The inversion relation for the operators ak is now

ak =
1√

2L3Ek

∫
V

d3x exp (i(Ekt− k · x))[Ekϕ+ iϕ̇] (3.37)

and the commutations relations are trivial generalization of eqs.(3.21).

The Hamiltonian is

H =

∫
d3xH =

∫
d3x

1

2
[ϕ̇2 + (∇ϕ)2 +m2ϕ2] (3.38)
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and, using the field expansion (3.34), it turns out to be

H =
∑
k

Ek(a
†
kak +

1

2
) (3.39)

The Hilbert space is built as in the previous section, with suitable gener-
alizations. For instance the state with nk particles with energy Ek is given
by

(a†k)
nk

√
nk!

|0 > (3.40)

As we will see in the following these particles have momentum k and spin 0
(bosons).

Let us finally note that when working in R3, the expansion becomes a
Fourier transform

ϕ(x) =
1

(2π)3/2

∫
d3k

1√
2Ek

[
a(k)e−ikx + h.c.

]
(3.41)

where now x and k denote, using the covariant notations, the fourvectors
and

kx = k0x0 − k · x ≡ Ekt− k · x (3.42)

3.3 Noether Theorem

Let us now prove the Noether theorem (1918)2. The theorem states that to
every continuous transformation for which the action is invariant (δS = 0),
there corresponds a definite function which is time conserved. This function
or the corresponding operator, after quantization, is the generator of the
corresponding infinitesimal transformation.

Let us consider a generic action (we use natural units, ℏ = c = 1)

SV =

∫
V

d4xL(ϕA, ∂µϕA) , A = 1, · · · q, (3.43)

2Emmy Noether, 1882-1935
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where V is a space-time volume and ϕA(x), A = 1, · · · q, denote a field with q
components.We are going to consider both an infinitesimal variation of form
of the fields and of the space-time coordinates

ϕA → ϕ̃A = ϕA + δϕA, x→ x′ = x+ δx (3.44)

In general the total variation of a function is defined as

∆f = f ′(x′)− f(x) = f ′(x′)− f(x′) + f(x′)− f(x) (3.45)

To first order we get

∆f ∼ δf +
∂f

∂x
δx (3.46)

where we have defined the local variation

δf = f ′(x)− f(x) (3.47)

Let us suppose that the action is invariant under (3.44)

S ′
V ′ =

∫
d4x′L′(x′) = SV (3.48)

where
L′(x′) = L′(ϕ̃A(x

′), ∂′µϕ̃A(x
′)) = L(x) + ∆L(x) (3.49)

with

∆L(x) = L′(x′)− L(x′) + L(x′)− L(x)

∼ ∂L
∂ϕA

δϕA +
∂L

∂∂µϕA
δ∂µϕA +

∂L
∂xµ

δxµ (3.50)

with δϕA and δ∂µϕA the local variations

δϕA = ϕ′
A(x)− ϕA(x) (3.51)

The variation of the action can be written as

δSV =

∫
V ′
d4x′L′(x′)−

∫
V

d4xL(x) (3.52)
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or

δSV =

∫
V ′
d4x′L(x) +

∫
V ′
d4x′∆L(x)−

∫
V

d4xL(x)

∼
∫
V

d4xL(x)|∂x
′

∂x
|+

∫
V

d4x∆L(x)−
∫
V

d4xL(x)

∼
∫
V

d4xL(x)(1 + ∂µδx
µ)−

∫
V

d4xL(x)

+

∫
V

d4x[
∂L
∂ϕA

δϕA +
∂L

∂∂µϕA
δ∂µϕA +

∂L
∂xµ

δxµ]

∼
∫
V

d4x[
∂L
∂ϕA

− ∂µ(
∂L

∂∂µϕA
)]δϕA

+

∫
V

d4x∂µ[
∂L

∂∂µϕA
δϕA + Lδxµ] (3.53)

In the previous equations the Jacobian has been computed to first order in
∆ as

det(I +∆) = exp[ln det(1 + ∆)] = exp[Tr ln(1 + ∆)] ∼ exp[Tr∆] ∼ 1 + Tr∆
(3.54)

with
∆µ
ν = ∂νδx

µ (3.55)

Using the Euler equations of motion in (3.53), we obtain∫
V

d4x∂µ[
∂L

∂∂µϕA
δϕA + Lδxµ] = 0 (3.56)

By considering the global variation

∆ϕA = ϕ̃A(x
′)− ϕA(x) (3.57)

we have
∆ϕA ∼ δϕA + ∂µϕAδx

µ (3.58)

In term of the global variation ∆ϕA we get∫
V

d4x∂µ[
∂L

∂∂µϕA
∆ϕA + Lδxµ − δxν

∂L
∂∂µϕA

∂νϕA] = 0 (3.59)

18



and since the variations are arbitrary

∂µ[
∂L

∂∂µϕA
∆ϕA + Lδxµ − δxν

∂L
∂∂µϕA

∂νϕA] = 0 (3.60)

Let us now study the consequences of the Noether theorem in some ex-
amples.

Space-time Translations Let us consider an infinitesimal space time
translation

δxµ = ϵµ (3.61)

Under this transformation the fields are invariant

∆ϕA = 0 (3.62)

From eq.(3.60) we get

∂µ[Lϵµ − ϵν
∂L

∂∂µϕA
∂νϕA] = 0 (3.63)

Being ϵµ arbitrary we get
∂µT

µν = 0 (3.64)

where

T µν =
∂L

∂∂µϕA
∂νϕA − gµνL (3.65)

By integrating over d3x the µ = 0 component of T µν , we get four invariants
corresponding to the total four-momentum of the field

P ν =

∫
d3xT 0ν (3.66)

In particular for ν = 0 we recover the Hamiltonian. For ν = i, we get the
spatial momentum associated to the field

P i =

∫
d3x

∂L
∂ϕ̇A

∂iϕA (3.67)
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For example, in the case of the Klein-Gordon field,

∂L
∂ϕ̇

= ϕ̇ (3.68)

and, using the field expansion (3.34), we obtain

P i =

∫
d3xϕ̇∂iϕ =

∑
k

kia†kak (3.69)

In conclusion each quantum of the Klein-Gordon field contributes to the total
momentum of the field with its momentum k.

Lorentz Transformations Let us then consider an infinitesimal Lorentz
transformation

Λµ·ν = δµν + ϵµ·ν (3.70)

The matrix condition
ΛTgΛ = g (3.71)

implies that the tensor ϵµν is antisymmetric,

ϵµν = −ϵνµ (3.72)

Let as assume that under the Lorentz transformation the fields transform as

∆ϕA = −1

2
Σµν
ABϵµνϕB (3.73)

Let us consider some examples. For the Klein-Gordon field we have

ϕ′(x′) = ϕ(x(x′)) (3.74)

or the field is a scalar field. For vector fields, like the four potential Aµ(x),we
have

A′µ(x′) = Λµ·νA
ν(x(x′)) (3.75)
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By substituting (3.73) in (3.60), we obtain

0 = ∂µ[−
∂L

∂∂µϕA

1

2
Σρσ
ABϵρσϕB + Lϵµσxσ − ϵνσxσ

∂L
∂∂µϕA

∂νϕA]

= ∂µ[−
∂L

∂∂µϕA

1

2
Σρσ
ABϵρσϕB + Lϵρσgµρxσ − ϵρσx

σ ∂L
∂∂µϕA

∂ρϕA]

= ∂µ[−
∂L

∂∂µϕA

1

2
Σρσ
ABϵρσϕB − ϵρσx

σT ρµ]

= ∂µ[−
∂L

∂∂µϕA

1

2
Σρσ
ABϵρσϕB − 1

2
ϵρσ(x

σT ρµ − xρT σµ)]

(3.76)

or
∂µMµρσ = 0 (3.77)

with

Mµρσ = xρT σµ − xσT ρµ − ∂L
∂∂µϕA

Σρσ
ABϕB (3.78)

In conclusion we can built the six invariants

Mρσ =

∫
d3xM0ρσ (3.79)

M ij are the angular momentum components or the generators of the O(3)
rotations, while M0i are the generators of the Lorentz transformations.

Internal transformations In this case only the field transforms, δx = 0,
∆ϕ = δϕ. Therefore from eq. (3.60), we get

∂µ
∂L

∂∂µϕA
∆ϕA = 0 (3.80)

As an example let us consider the gauge transformations for the Schrödinger
Lagrangian

L =
i

2
(ϕ∗ϕ̇− ϕ̇∗ϕ)− 1

2m
∇ϕ∗∇ϕ− V ϕ∗ϕ (3.81)
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The Lagrangian is invariant under the internal transformation

ϕ→ exp(iα)ϕ (3.82)

where α is a real number. Therefore for infinitesimal transformation

∆ϕ ∼ iαϕ (3.83)

The Noether theorem implies[
(
∂

∂t

∂L
∂ϕ̇

+ ∂k
∂L
∂∂kϕ

)∆ϕ+ (ϕ→ ϕ∗)

]
= 0 (3.84)

But
∂L
∂ϕ̇

=
i

2
ϕ∗,

∂L
∂ϕ̇∗

= − i

2
ϕ (3.85)

∂L
∂∂kϕ

= − 1

2m
∂kϕ

∗,
∂L
∂∂kϕ∗ = − 1

2m
∂kϕ (3.86)

and substituting in (3.84), we get

α

[
∂

∂t
(−ϕ∗ϕ) + ∂k(−

i

2m
∂kϕ

∗ϕ+
i

2m
ϕ∂kϕ

∗)

]
= 0 (3.87)

or
∂

∂t
(−ϕ∗ϕ) + ∂k(−

i

2m
∂kϕ

∗ϕ+
i

2m
ϕ∂kϕ

∗) = 0 (3.88)

In conclusion, we obtain the continuity equation

∂

∂t
(ϕ∗ϕ) +∇(+

i

2m
(∇ϕ∗)ϕ− i

2m
ϕ∇ϕ∗) = 0 (3.89)

4 Quantization of the electromagnetic field

4.1 Lagrangian and Hamiltonian

Let us start by writing the Lagrangian of the electromagnetic field (we work
in the Heaviside-Lorentz system3):

L = −1

4
FµνF

µν = −1

2
F0iF

0i − 1

4
FijF

ij =
1

2
(E2 −B2) (4.1)

3In this electromagnetic system α = e2/4πℏc = e2/4π in natural units

22



where
F µν = ∂µAν − ∂νAµ (4.2)

In particular, in eq.(4.1) we have used F 0i = −Ei and F ij = −ϵijkBk. From
this Lagrangian we can derive the Euler equations

∂L
∂Aρ

= ∂σ

(
∂L

∂∂σAρ

)
(4.3)

Now
∂L

∂∂σAρ
=

∂L
∂Fµν

∂Fµν
∂∂σAρ

= −F σρ (4.4)

and therefore we get the free equations of motion

∂σF
σρ = 0 (4.5)

In presence of an interaction with a corrent ȷµ, the Lagrangian becomes

Ltot = L+ LI (4.6)

LI = −jµAµ (4.7)

and the Euler equations of motion become the Maxwell equations in presence
of the current jµ

∂σF
σρ = jρ (4.8)

To quantize the system, let us first compute the Hamiltonian. Let define the
momentum density as

Πµ =
∂L
∂Ȧµ

(4.9)

Using the eq. (4.4), we get
Πµ = −F0µ (4.10)

Therefore the zero component Π0 = 0 and

Πi = −F0i = −Ei = Ȧi + ∂iA
0 (4.11)

The Hamiltonian density
H = ΠiȦ

i − L (4.12)

and the Hamiltonian

H =

∫
d3xH =

1

2

∫
d3x(Π2 +B2)−

∫
d3xΠi∂iA

0 (4.13)
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The last term can be integrated by parts, neglecting the boundary terms,

−
∫
d3xΠi∂iA

0 =

∫
d3x∂iΠiA

0 = 0 (4.14)

where use has been done of
∇ · E = 0 (4.15)

The Lagrangian (4.1) is invariant under gauge transformations

Aµ → Aµ + ∂µχ (4.16)

where χ is an arbitrary scalar function. In order to show that the Lagrangian
is invariant, it is sufficient to observe that

F µν → F µν + ∂µ∂νχ− ∂ν∂µχ = F µν (4.17)

We can use this arbitrariness to perform the quantization of the electro-
magnetic field in different gauges, choosing a condition on the field Aµ. Here
we choose the Coulomb gauge4

∇ ·A = 0 (4.18)

In this gauge
∇ · E = 0 = ∂iȦ

i +△A0 = △A0 (4.19)

In conclusion, eq.(4.15) implies A0 = 0. The gauge

∇ ·A = 0, A0 = 0 (4.20)

is called radiation gauge. Working in this gauge we loose manifest covariance.
The advantage is that we work with the two independent degrees of freedom,
as we will see when expanding the field in normal modes. A0 and Π0 will not
be quantized and the field A is transverse, due to eq.(4.20).

We can now expand the field in normal modes in a finite volume V

A(x) =
∑
k

∑
α=1,2

1√
2V ωk

ϵαk[a
α
ke

−ikx + h.c.], ki = ni
2π

L
(4.21)

4The quantization can be performed also in the Lorenz gauge. See for example [15].
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where
kx ≡ k0x0 − k · x (4.22)

and k0 ≡ ωk = |k|. The polarization vectors ϵαk are orthonormal and trans-
verse to k. For simplicity we assume real polarization vectors.

ϵαk · ϵβk = δαβ, ϵαk · k = 0 (4.23)

Furthermore ϵαk and k/|k| are a complete basis or

∑
α=1,2

ϵαiϵαj +
kikj

k2
= δij (4.24)

The Hamiltonian is

H =
1

2

∫
d3x[Π2 + (∇×A)2] (4.25)

where
Π = Ȧ (4.26)

The quantization5 is obtained by requiring the commutation relations

[aαk, a
β†
k′ ] = δαβδk,k′ (4.27)

[aαk, a
β
k′ ] = [aα†k , a

β†
k′ ] = 0 (4.28)

By substituting in the Hamiltonian the expansion in normal modes (4.21)
we get

H =
∑
k

∑
α=1,2

ωk(a
α†
k a

α
k +

1

2
) (4.29)

Proof:

5The first attempt of quantization of the electromagnetic field was performed by M.
Born, W. Heisenberg and P. Jordan in 1926. Then in 1927 Dirac published the paper on
The quantum theory of the emission and absorption of radiation. The idea of the second
quantization was also proposed by Jordan, in 1927, while the expression was coined by
Dirac. The general theory of quantum fields through the method of canonical quantization
was presented in W. Heisenberg and W. Pauli in 1929.
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Let us first consider

Ȧ(x) =
∑
k

∑
α=1,2

1√
2V ωk

(−iωk)ϵαk[aαke−ikx − h.c.] (4.30)

and

∇×A(x) =
∑
k

∑
α=1,2

1√
2V ωk

(ik)× ϵαk[a
α
ke

−ikx − h.c.] (4.31)

and compute∫
d3x(Ȧ)2 =

∫
d3x

∑
k

∑
α=1,2

1√
2V ωk

(−iωk)ϵαk[aαke−ikx − h.c.]

·
∑
k′

∑
α′=1,2

1√
2V ωk′

(−iωk′)ϵα
′

k′ [aα
′

k′e−ik
′x − h.c.]

= −
∑
k

∑
α=1,2

∑
k′

∑
α′=1,2

1

2

√
ωkωk′ϵ

α
k · ϵα′

k′{[
aαka

α′

k′δk,−k′ exp [−i(ωk + ωk′)t] + h.c.
]
−[

aαka
α′†
k′ δk,k′ exp [−i(ωk − ωk′)t] + h.c.

]}
= −1

2

∑
k,α,α′

ωkϵ
α
k · ϵα′

−k

[
aαka

α′

−k exp (−2iωkt) + h.c.
]

+
1

2

∑
k,α,α′

ωkϵ
α
k · ϵα′

k

[
aαka

α′†
k + h.c.

]
= −1

2

∑
k,α,α′

ωkϵ
α
k · ϵα′

−k

[
aαka

α′

−k exp (−2iωkt) + h.c.
]

+
1

2

∑
k,α

ωk

[
aαka

α†
k + h.c.

]
(4.32)

where we have used eq.(4.23). Furthermore we get∫
d3x(∇×A)2 =

∫
d3x

∑
k

∑
α=1,2

1√
2V ωk

(ik× ϵαk)[a
α
ke

−ikx − h.c.]
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·
∑
k′

∑
α′=1,2

1√
2V ωk′

(ik′ × ϵα
′

k′)[aα
′

k′e−ik
′x − h.c.]

= −
∑
k

∑
α=1,2

∑
k′

∑
α′=1,2

1

2

1
√
ωkωk′

(k× ϵαk) · (k′ × ϵα
′

k′){[
aαka

α′

k′δk,−k′ exp [−i(ωk + ωk′)t] + h.c.
]
−[

aαka
α′†
k′ δk,k′ exp [−i(ωk − ωk′)t] + h.c.

]}
= −1

2

∑
k,α,α′

1

ωk

{
− (k× ϵαk) · (k× ϵα

′

−k)
[
aαka

α′

k′δk,−k′ exp [−2iωkt] + h.c.
]
−

(k× ϵαk) · (k× ϵα
′

k )
[
aαka

α′†
k′ δk,k′ + h.c.

]}
=

1

2

∑
k,α,α′

ωkϵ
α
k · ϵα′

−k

[
aαka

α′

−k exp (−2iωkt) + h.c.
]

+
1

2

∑
k,α

ωk

[
aαka

α†
k + h.c.

]
(4.33)

where we have used

(k× ϵαk) · (k× ϵα
′

−k) = k2ϵαk · ϵα′

−k (4.34)

(k× ϵαk) · (k× ϵα
′

k ) = k2ϵαk · ϵα′

k = δαα′k2 (4.35)

Summing eq. (4.32) and eq. (4.33), we obtain

H =
1

2

∫
d3x[Ȧ2 + (∇×A)2]

=
1

2

∑
k,α

ωk

[
aαka

α†
k + h.c.

]
=

∑
k,α

ωk(a
α†
k a

α
k +

1

2
) (4.36)

Using the Noether theorem we can build the energy momentum tensor

T 0
i =

∂L
∂Ȧµ

∂iA
µ =

∂L
∂Ȧk

∂iA
k = Πk∂iA

k = Ȧk∂iA
k (4.37)
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Therefore the momentum of the field is

P i =

∫
d3xT 0i = −

∫
d3xȦk∂iA

k (4.38)

By substituting the expression in normal modes (4.21), we obtain

P =
∑
k

∑
α=1,2

k(aα†k a
α
k) (4.39)

This expression allows us to associate to the photon state aα†k |0 > the mo-
mentum k and therefore the mass of the photon is zero

m2 = ω2
k − k2 = 0 (4.40)

Note that the usual expression of the Poynting vector is equivalent to
(4.37), since∫

d3x(E×B)i = −
∫
d3xϵijkȦ

jϵklm∂lA
m

= −
∫
d3xȦj∂lA

m[δilδjm − (l ↔ m)]

= −
∫
d3x(Ȧm∂iA

m − Ȧl∂lAi)

= −
∫
d3xȦm∂iA

m (4.41)

where in the last step we have eliminated a term by integrating by parts and
taking into account the Coulomb gauge condition.

The Hilbert space is built by many photons states

|nk1,α1 , nk2,α2 . . . > (4.42)

with

|nk1,α1 , nk2,α2 . . . >=
(a†k1,α1

)nk1,α1√
nk1,α1 !

(a†k2,α2
)nk2,α2√

nk2,α2 !
. . . |0 > (4.43)

with
ak,α|0 >= 0, ∀α,k (4.44)
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In conclusion, neglecting the vacuum energy, the total energy and the total
momentum of the electromagnetic field are the sum of single photon contri-
butions of energy ωk and momentum k.

H|nk1,α1 , nk2,α2 . . . >=
∑
i

ωki
nki,αi

|nk1,α1 , nk2,α2 . . . > (4.45)

P|nk1,α1 , nk2,α2 . . . >=
∑
i

kinki,αi
|nk1,α1 , nk2,α2 . . . > (4.46)

The photon is characterized by the momentum k and by the polarization
α. From the two one photon states

a†k,1|0 >, a
†
k,2|0 > (4.47)

we can define the circular polarization states

∓ 1√
2
[a†k,1 ∓ ia†k,2]|0 > (4.48)

These two states are eigenvectors of the helicity operator, the projection of
the spin of the photon along the photon flight direction), with eigenvalues
±1 (see for example [2, 17]) . In conclusion the photon has spin one but only
states with helicity ±1 are allowed. This is related to the fact that the photon
is massless and it is a consequence of the theory of Poincaré representations.

Using the expansion (4.21) and the commutation relations (4.28) we can
compute the commutation relations between the canonical operators field
and momentum density:

[Ai(t,x),Πj(t,y)] =
∑
k

∑
α=1,2

∑
k′

∑
α′=1,2

1√
2V ωk

1√
2V ωk′

(−iωk′)ϵαik ϵ
α′j
k′

[aαke
−i(ωkt−k·x) + h.c., aα

′

k′e−i(ωk′ t−k′·y) − h.c.]

=
i

2V

∑
k,α

ϵαik ϵ
αj
k [eik·(x−y) + h.c.]

=
i

2V

∑
k

(δij − kikj

k2
)[eik·(x−y) + h.c.]

=
i

V

∑
k

(δij − kikj

k2
)eik·(x−y)
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= i[δijδ3(x− y)− ∂i∂j

∇2
δ3(x− y)]

= i[δijδ3(x− y) + ∂i∂j
1

4π|x− y|
] (4.49)

where we have used eq.(4.24) and introduced the distribution [∇2]−1δ3(x−y).
Since

∇2E(x− y) = δ3(x− y) (4.50)

with

E(x− y) = − 1

4π|x− y|
(4.51)

[∇2]−1δ3(x− y) = − 1

4π|x− y|
(4.52)

Proceeding in similar way we can show that

[Ai(t,x), Aj(t,y)] = [Πi(t,x),Πj(t,y)] = 0 (4.53)

The three A operators are not independent, since we are quantizing in
the Coulomb gauge. As a consequence the commutator (4.49) between the
field and the momentum density is not canonical (see [3]).

4.2 Casimir effect

The Casimir effect is the macroscopic manifestation of the vacuum fluctua-
tions of the quantized electromagnetic field:

< 0|1
2

∫
d3x[E2 +B2]|0 >= 1

2

∑
α,k

ωk (4.54)

H. Casimir (1909-2000), a dutch physicist, wrote the paper on this effect
in 1948. This effect was experimentally detected in 1958 by Spaarnay and
checked with percent accuracy by Lamoreaux (1998).

We will show that the vacuum energy (4.54) generates an actractive force
between the faces of metallic plates at a distance d, such that the force for
surface unit

f(d) =
F (d)

L2
∼ ℏc
d4

(4.55)
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Let us consider two metallic squared parallel plates at distance d inside
a the cubic box of volume L3. Let us assume that the conducting plates are
orthogonal to the z axis. The electric field in the vacuum is solution of the
Maxwell equation with the boundary condition that the tangential field Etg

has to vanish on the conducting wall (z = 0, d).

Therefore the tangential field behaves as

Etg ∼ sin(kzz) (4.56)

with
kz =

nπ

d
, with n = 1, 2... (4.57)

The energy is

ωk =

√
k2x + k2y + (

nπ

d
)2 (4.58)

with
kx,y =

nx,yπ

L
, nx,y = −∞, ...∞ (4.59)

So the total vacuum energy is

U(d) = 2
1

2

∑
kx,ky ,n

ωk (4.60)

where the 2 comes from the polarization sum. Let us define k =
√
k2x + k2y

so that kdk = ωkdωk ≡ ωdω where

ω =

√
k2 +

(nπ
d

)2

(4.61)

and pass to the continuum (the plaque lenght L→ ∞):

U(d) = L2

∞∑
n=1

∫
d2k

(2π)2
ω

=
L2

(2π)2

∞∑
n=1

∫ ∞

0

kdk

∫ 2π

0

dφω

=
L2

2π

∞∑
n=1

∫ ∞

nπ/d

dωω2 (4.62)
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The integral is divergent; there are several ways to regularize the energy to
get finite physical results. The result does not depend on the chosen regular-
ization (see for example [4]). Let us consider, by introducing a convergence
factor exp(−ϵω), the following expression

U(d, ϵ) =
L2

2π

∞∑
n=1

∫ ∞

nπ/d

dωω2e−ϵω

=
L2

2π

d2

dϵ2

∞∑
n=1

∫ ∞

nπ/d

dωe−ϵω

=
L2

2π

d2

dϵ2

∞∑
n=1

e−ϵnπ/d

ϵ

=
L2

2π

d2

dϵ2

[1
ϵ
(

1

1− e−πϵ/d
− 1)

]
(4.63)

The energy for surface unit is given by

U(d, ϵ)

L2
=

1

2π

d2

dϵ2

[1
ϵ
(

1

1− e−πϵ/d
− 1)

]
(4.64)

To evaluate the limit for ϵ→ 0 we need the following series

1

1− et
= −

∞∑
n=0

Bn
tn−1

n!
(4.65)

where Bn are the Bernouilli numbers (B0 = 1, B1 = −1/2, B2 = 1/6, B3 =
0, B4 = −1/30). The Bernouilli numbers can be evaluated by expanding in
Taylor series

z

1− ez
=

∞∑
n=0

Bn
zn

n!
(4.66)

Therefore we obtain

U(d, ϵ)

L2
= − 1

2π

d2

dϵ2

[1
ϵ
[1 +

∞∑
n=0

Bn
(−πϵ/d)n−1

n!

]
= − 1

2π

d2

dϵ2

[1
ϵ
[1−B0

d

πϵ
+B1 −B2

πϵ

2d
−B4

π3ϵ3

24d3
+O(ϵ4)]

]
(4.67)
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Neglecting terms that do not contribute for ϵ→ 0 we get

U(d, ϵ)

L2
= 3

B0d

π2ϵ4
− (1 +B1)

1

πϵ3
+
B4π

2

24d3

= C0d+ C1 +
C2

d3
(4.68)

In conclusion we have the C2 finite term which gives the correct result

f(d) = − ∂

∂d

U(d, ϵ)

L2
= − π2

240d4
(4.69)

but still two divergent terms, C0, C1 when ϵ → 0. The second C1 does not
contribute to the force, so we can put C1 = 0. The second can be treated
with a trick, which consists in introducing two additional external plates at
distance 2D so that we end with three condensators. The total energy for
surface unit is now

U(d,D, ϵ)

L2
= 2[C0(D − d/2) +

C2

(D − d/2)3
] + C0d+

C2

d3

= 2C0D + C2(
1

d3
+

2

(D − d/2)3
) (4.70)

Then

f(d,D) = − ∂

∂d

U(d,D, ϵ)

L2
= −3C2

d4
+ C2(−3)

1

(D − d/2)4
(−1/2) (4.71)

and taking the limit D → ∞

lim
D→∞

f(d,D) = − π2

240d4
(4.72)

We have obtained the result in the system of natural units. The di-
mensions of the force for unit surface f are L−4. In the cgs units we have
[f ] =ML−1T−2. On the other hand

[ℏc] =ML3T−2 (4.73)

Therefore to get the right dimensions in the cgs system, we have to multiply
by ℏc

F

A
= − π2

240

ℏc
d4

(4.74)
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For d = 10µm, we obtain a tiny force

F

A
= −1.3× 10−6dyne/cm2 (4.75)

The gravitational force for unit area of two plates of m = 1g and L =
1cm at a distance of 10µm is comparable. However at smaller distances the
Casimir force becomes dominant.

5 Hamiltonian for a system of non relativistic

charged particles interacting through the

electromagnetic field

In this chapter we consider several processes of interaction between matter
and the electromagnetic field, like emission and absorption of photons by
atoms, the scattering of photons over atoms and the emission of light by
charged particles (Cherenkov effect6). In order to compute these processes,
we need to consider a system of non relativistic charged particles interacting
through the electromagnetic field.

The Lagrangian for a system of N non relativistic particles with mass mr

and charge er in interaction between themselves through the electromagnetic
field is given by

L =
∑
r

[1
2
mrξ̇r(t)

2 − erA0(t, ξr) + erξ̇r(t) ·A(t, ξr)
]
+

∫
d3xL (5.1)

where ξr(t) denotes the position of the r-th particle at time t and

L =
1

2
(E2 −B2) (5.2)

Let us perform the Lagrange transform. Defining

pr =
∂L

∂ξ̇r
= mrξ̇r + erA(t, ξr)

Πi =
∂L
∂Ȧ

i = −Ei = ∂iA0 + Ȧi (5.3)

6P. Cherenkov (1904-1990), Nobel prize in Physics in 1958
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the Hamiltonian is

H =
∑
r

pr(t) · ξ̇r(t) +
∫
d3xΠ · Ȧ(t,x)− L (5.4)

We obtain (from now on ξr ≡ ξr(t),pr ≡ pr(t))

H =
∑
r

1

2mr

(pr − erA(t, ξr))
2 +

∑
r

erA0(t, ξr)

+

∫
d3x

1

2
(E2 +B2)−

∫
d3xΠi∂iA0(t,x)

=
∑
r

1

2mr

(pr − erA(t, ξr))
2 +

∑
r

erA0(t, ξr)

+

∫
d3x

1

2
(E2 +B2) +

∫
d3x∂iΠiA0(t,x) (5.5)

where we have integrated by parts. On the other hand

∂iΠi = −∂iEi = −ρ(t,x) = −
∑
r

erδ(x− ξr) (5.6)

So

H =
∑
r

1

2mr

(pr − erA(t, ξr))
2 +

∑
r

erA0(t, ξr)

+

∫
d3x

1

2
(E2 +B2)−

∑
r

er

∫
d3xδ(x− ξr)A0(t,x)

=
∑
r

1

2mr

(pr − erA(t, ξr))
2 +

∫
d3x

1

2
(E2 +B2)

=
∑
r

1

2mr

(pr − erA(t, ξr))
2

+

∫
d3x

1

2
[(Ȧ(t,x)2 + (∇A0(t,x))

2 + 2Ȧ(t,x) · ∇A0(t,x) + (∇×A(t,x))2]

=
∑
r

1

2mr

(pr − erA(t, ξr))
2

+

∫
d3x

1

2
[(Ȧ(t,x)2 − (∇2A0(t,x)A0(t,x)) + (∇×A(t,x))2]
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=
∑
r

1

2mr

(pr − erA(t, ξr))
2

+

∫
d3x

1

2
[(Ȧ(t,x)2 +

∑
r

erδ(x− ξr)A0(t,x) + (∇×A(t,x))2]

=
∑
r

1

2mr

(pr − erA(t, ξr))
2 +

1

2

∑
r ̸=s

eres
4π|ξr − ξs|

+

∫
d3x

1

2
[(Ȧ(t,x)2 + (∇×A(t,x))2]

(5.7)

where we have used
A0(ξ̇r, t) =

∑
s ̸=r

es
4π|ξr − ξs|

(5.8)

In conclusion the Hamiltonian is given by

H = Hatom +Hrad + V (5.9)

where

Hatom =
∑
r

p2
r

2mr

+ Vcoul (5.10)

is the atomic Hamiltonian with

Vcoul =
1

2

∑
r ̸=s

eres
4π|ξr − ξs|

(5.11)

and

V = −
∑
r

er
mr

pr ·A(t, ξr) +
∑
r

er
2

2mr

(A(t, ξr))
2

≡ V1 + V2 (5.12)

V is the interaction between the charged particles and the electromagnetic
field. Hrad denotes the Hamiltonian of the electromagnetic field.

Then we perform the first quantization of the atomic system and the
quantization of the electromagnetic field by using the standard commutation
relations:

[ξir, p
j
s] = iδijδrs (5.13)
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[Ai(t,x), Ȧj(t,y)] = i

[
δijδ3(x− y) + ∂i∂j

1

4π|x− y|

]
(5.14)

or remembering the expansion in normal modes by using the creation and
annihilation operator commutators (4.27),(4.28).

We are now able to compute emission and absortion from an atom by
considering the perturbation theory that we recall in the following section
and the interaction Hamiltonian given in eq.(5.12). Notice that the general
form has a first term linear in aαk and aα†k , which can describe processes of
emission and absorption of one photon. The second which is bilinear and
describes processes where the number of photons can change of two or zero
photons.

Other processes could be studied like Thomson, Rayleigh, Raman scat-
tering, photoelectric effect, bremstrahlung,..

6 Scattering theory

6.1 S matrix

As we have seen as we progress from the discussion of the previous section
of the free fields and particles to the more realistic case of field and particles
in interaction, it is much more difficult to find exact solutions to the prob-
lem. In these cases, like radiative transitions in atoms, processes of quantum
electrodynamics, the solutions can be found only perturbatively, that is by
expanding in power of the interaction strength. In electrodynamics the ex-
pansion parameter is the fine structure constant α = e2/4π ∼ 1/137, which is
sufficiently small to make succesfull the perturbation series. In the theory of
strong interactions, Quantum ChromoDynamics (QCD), the corresponding
parameter αs ∼ 0.1 and therefore the expansion is more problematic.

To develop the perturbative methods it is first convenient to introduce
the interaction (or Dirac) representation. Let us start by recalling the
Schrödinger equation and representation

i
d

dt
|ϕ(t) >S= H|ϕ(t) >S (6.1)
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If H does not depend explicitly on the time, we can build the evolution
operator

US(t, t0) = e−iH(t−t0) (6.2)

such that
|ϕ(t) >S= US(t, t0)|ϕ(t0) >S (6.3)

The operator US is unitary, U †
SUS = I.

In the Heisenberg representation operators and states coincide, at t = t0,
with the corresponding operators and states of the Schrödinger representa-
tion. For general t, if OS denotes the operator in the Schrödinger represen-
tation, the corresponding operator in the Heisenberg representation is

OH = U †
SO

SUS (6.4)

and satisfies

i
d

dt
OH = [OH , H] (6.5)

Let us now assume that the Hamiltonian is given by

H = H0 +HI (6.6)

where H0 is the Hamiltonian in absence of the interaction and HI is the
interaction Hamiltonian. For example in the radiation matter interaction

HI = −
∑
r

er
mr

pr ·A(t, ξr) +
∑
r

er
2

2mr

[A(t, ξr)]
2 (6.7)

Let us define the vectors in the interaction representation as

|ϕ(t) >I= U †
0 |ϕ(t) >S (6.8)

with
U0 = e−iH0t (6.9)

and the operators as
OI = U †

0O
SU0 (6.10)

The operators satisfy the equation

i
d

dt
OI = [OI , H0] (6.11)
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while the states

i
d

dt
|ϕ(t) >I= HI

I (t)|ϕ(t) >I (6.12)

where HI
I (t) is given by

HI
I (t) = U †

0HIU0 (6.13)

and represents the Hamiltonian in the interaction representation. In fact

i
d

dt
|ϕ(t) >I = i

d

dt
U †
0 |ϕ(t) >S= −H0U

†
0 |ϕ(t) >S +U †

0(H0 +HI)|ϕ(t) >S

= U †
0HI |ϕ(t) >S= HI

I |ϕ(t) >I (6.14)

Therefore when the interaction is switched off, the state vector remain con-
stant in time. Let us now study the evolution operator in the interaction
representation, defining

|ϕ(t) >I= UI(t, t0)|ϕ(t0) >I (6.15)

with UI(t0, t0) = I. Using the equation (6.14), we obtain

i
d

dt
UI(t, t0) = HI

IUI(t, t0) (6.16)

One of the advantages of the interaction representation is that, when
the interaction is turned off, the vectors are constant in time. Usually the
interaction is localized in time and one assumes that in the far past and in
the far future the states are eigenstates of H0.

So let us assume that, at the time t = ti = −∞, the state is described by
the vector

|ϕ(−∞) >≡ |i >≡ lim
t→−∞

|ϕ(t) >I (6.17)

which is an eigenstate of the H0 Hamiltonian. The S matrix is defined as

|ϕ(+∞) >= lim
t→∞

|ϕ(t) >I= lim
t→∞,t0→−∞

UI(t, t0)|ϕ(t0) >≡ S|ϕ(−∞) >

(6.18)
or

S = lim
t→∞,t0→−∞

UI(t, t0) (6.19)
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For any final state |f >, eigenstate of H0, one considers the matrix ele-
ment

< f |ϕ(+∞) >= Sfi (6.20)

The solution of eq.(6.16) can be obtained in iterative way

UI(t) = I − i

∫ t

t0

HI
I (t1)dt1 + (−i)2

∫ t

t0

HI
I (t1)dt1

∫ t1

t0

HI
I (t2)dt2 . . . (6.21)

The series of the S matrix is given by the so-called Dyson series

S =
∞∑
n=0

(−i)n
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtnH

I
I (t1)H

I
I (t2) . . . H

I
I (tn) (6.22)

In general [HI
I (ti), H

I
I (tj)] ̸= 0. Note also that the integrals are time ordered,

t > t1 > t2 · · ·. 7

7We can rewrite (6.22) as

S =

∞∑
n=0

(−i)n 1

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 . . .

∫ ∞

−∞
dtnT (H

I
I (t1)H

I
I (t2) . . .H

I
I (tn)) (6.23)

with
T (HI

I (t1)) = HI
I (t1) (6.24)

T (HI
I (t1)H

I
I (t2)) = θ(t1 − t2)H

I
I (t1)H

I
I (t2) + θ(t2 − t1)H

I
I (t2)H

I
I (t1) (6.25)

and so on.
Let us check for example the second order term, by considering∫ t

t0

dt1

∫ t

t0

dt2T (H
I
I (t1)H

I
I (t2)) =

∫ t

t0

dt1

∫ t1

t0

dt2H
I
I (t1)H

I
I (t2)

+

∫ t

t0

dt1

∫ t

t1

dt2H
I
I (t2)H

I
I (t1) (6.26)

The integral for the left-hand side is over the square (t0, t) × (t0, t). In the first integral
of right-hand side is over the triangle white (t1 > t2) while the second term is integrated
over the triangle (t2 > t1). However∫ t

t0

dt1

∫ t

t1

dt2H
I
I (t2)H

I
I (t1) =

∫ t

t0

dt2

∫ t2

t0

dt1H
I
I (t2)H

I
I (t1)

=

∫ t

t0

dt1

∫ t1

t0

dt2H
I
I (t1)H

I
I (t2) (6.27)
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One usually defines the transition matrix T

Sfi = δfi − 2πiδ(Ef − Ei)Tfi (6.30)

and a perturbative series for S and T

Sfi = δfi + S
(1)
fi + S

(2)
fi + . . . (6.31)

Tfi = T
(1)
fi + T

(2)
fi + . . . (6.32)

The relation with the evolution operator in the Schrödinger representation
is given by

UI(t, t0) = eiH0tUS(t, t0)e
−iH0t0 (6.33)

The S matrix is unitary
S†S = I (6.34)

This is equivalent to the requirement of the conservation of probability.∑
f

< i|S†|f >< f |S|i >= 1 (6.35)

In the application to scattering problems it is convenient sometime to turn
on and off the interaction adiabatically to avoid problems with the oscillatory
behaviour at t→ ±∞. This is obtained by replacing the Hamiltonian with

HI → HIe
−ϵ|t| (6.36)

so that ∫ t

t0

dt1

∫ t1

t0

dt2T (H
I
I (t1)H

I
I (t2)) = 2

∫ t

t0

dt1

∫ t1

t0

dt2H
I
I (t1)H

I
I (t2) (6.28)

Dyson series can be written in a covariant form

S =
∑
n=0

(−i)n 1

n!

∫
d4x1

∫
d4x2 . . .

∫
d4xnT (HI

I(x1)HI
I(x2) . . .HI

I(xn)) (6.29)

The only source of non covariance of eq.(6.29) comes from the presence of the T ordering.
However t1−t2 > 0 is a property which remains true in every Lorentz frame when (x1−x2)2
is time-like while for space-like distances (x1 − x2)

2 < 0 [H(x1),H(x2)] = 0 and so the
ordering is not relevant.

41



so that the interaction acts for a time approximately of order 2/ϵ. Then at
the end of the calculations, after all the integrations have been performed,
we take the limit ϵ→ 0.

To first order

−2πiδ(Ef − Ei)T
(1)
fi = S

(1)
fi = −i lim

t0→−∞,t→∞

∫ t

t0

dt′ < f |HI
I |i > (6.37)

Recalling we have

−2πiδ(Ef − Ei)T
(1)
fi = −i lim

t0→−∞,t→∞

∫ t

t0

dt′ < f |eiH0t′HIe
−iH0t′ |i >

= −i lim
ϵ→0+

∫ ∞

−∞
dt′ < f |eiH0t′e−|ϵ|t′V e−iH0t′|i >

= −i lim
ϵ→0+

∫ ∞

−∞
dt′ei(Ef−Ei)t

′
e−|ϵ|t′ < f |V |i >

= −i < f |V |i > lim
ϵ→0+

[
1

i
(

1

Ef − Ei − iϵ
)− 1

i
(

1

Ef − Ei + iϵ
)]

= − < f |V |i > [Pv
1

Ef − Ei
+ iπδ(Ef − Ei)

−Pv 1

Ef − Ei
+ iπδ(Ef − Ei)]

= −2πiδ(Ef − Ei) < f |V |i > (6.38)

where we have used, see Appendix ??,

1

Ef − Ei ∓ iϵ
= Pv

1

Ef − Ei
± iπδ(Ef − Ei) (6.39)

The same result can be obtained without the adiabatic approximation but
working with distributions.

In conclusion
T

(1)
fi =< f |V |i > (6.40)

where < f |V |i > is calculated in the Schrödinger representation (at t = 0).

The second order result is given by

T
(2)
fi =

∑
n

< f |V |n >< n|V |i >
Ei − En + iϵ

(6.41)
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where |n > denotes the general state.

We have (defining τ = t1 − t2))

−2πiδ(Ef − Ei)T
(2)
fi = (−i)2 < f |

∫ ∞

−∞
dt1

∫ t1

−∞
dt2H

I
I (t1)H

I
I (t2)|i >

= −
∫ ∞

−∞
dt1

∫ t1

−∞
dt2e

iEf t1

< f |H0e
−iH0t1e+iH0t2HI |i > e−iEit2

= −
∑
n

∫ ∞

−∞
dt1

∫ t1

−∞
dt2e

iEf t1e−iEit2e−iEn(t1−t2)

< f |HI |n >< n|HI |i >

= −
∑
n

∫ ∞

−∞
dt1

∫ ∞

0

dτeiEf t1e−iEnτeiEi(τ−t1)

< f |HI |n >< n|HI |i >
= −

∑
n

< f |V |n >< n|V |i > 2πδ(Ef − Ei)∫ ∞

0

dτei(Ei−En)τ

=
∑
n

< f |V |n >< n|V |i > 2π
1

i(Ei − En + iϵ)

(6.42)

where use has been made of the Fourier transforms in the distribution space
(see Appendix B)

1√
2π

∫ +∞

0

θ(x)eipxdx = − 1

i
√
2π

lim
ϵ→0

1

p+ iϵ
(6.43)

1√
2π

∫ ∞

−∞
dxeipx =

1√
2π
δ(p) (6.44)

For the proof with the adiabatic factor, see for example [5].

6.2 Fermi golden rule

Let us now compute the transition probability by considering the squared
modulus of the S matrix element. Proceeding in this way one gets a diver-
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gence, generated by δ(0):

2πδ(Ef − Ei)2πδ(Ef − Ei)|Tfi|2 ∼ 4π2δ(0)δ(Ef − Ei)|Tfi|2 (6.45)

The previous step can be made more rigorous by considering the δ distribu-
tion as a limit of distributions associated to functions.

It is possible to obtain a finite result, by considering a transition probabil-
ity per time unit, assuming that the perturbation acts for a finite time T and
then taking the limit T → ∞. Let us consider the following representation
of δ

2πδ(Ef − Ei) = lim
T→∞

∫ T/2

−T/2
dtei(Ef−Ei)t (6.46)

So we have

lim
T→∞

Pfi(T )

T
= lim

T→∞

1

T

∫ T/2

−T/2
dtei(Ef−Ei)t lim

T→∞

∫ T/2

−T/2
dtei(Ef−Ei)t|Tfi|2

= lim
T→∞

1

T

∫ T/2

−T/2
dtei(Ef−Ei)t2πδ(Ef − Ei)|Tfi|2

= 2πδ(Ef − Ei)|Tfi|2 (6.47)

In general, when computing the rate of transition in a final state, one adds
also a factor taking into account the density of final states or phase space
dϕf . In other words we compute the transition rate times the number of final
states

dwfi = 2πδ(Ef − Ei)|Tfi|2dϕf (6.48)

Eq.6.48 is the Fermi8 golden rule. For example, when in the final state we
have a particle with momentum k

dϕf = V 3 d
3kf

(2π)3
(6.49)

To compute the cross section, defined as the transition rate in a group
of final states for one scattering center and unit incident flux, we need to
calculate

dσ =
dwfi
Φ

(6.50)

where Φ is the flux of incoming particles.

8E. Fermi, (1901-1954) Nobel prize in Physics in 1938 ”for his demonstrations of the
existence of new radioactive elements produced by neutron irradiation, and for his related
discovery of nuclear reactions brought about by slow neutrons”
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7 Radiation processes of first order: emission

and absorption of a single photon

We are now ready to compute the emission and the absorption of a photon
by an atom. Let us first consider the decay of an atom which emits a photon
of momentum k and polarization α. The initial state is

|i >≡ |A; . . . nk,α . . . >≡ |A > ⊗| . . . nk,α . . . > (7.1)

and the final state

|f >≡ |A′; . . . nk,α + 1 . . . >≡ |A′ > ⊗| . . . nk,α + 1 . . . > (7.2)

where |A(A′) > denotes the initial (final) atom state. We have to compute
the matrix element

Vfi =< A′; . . . nk,α + 1 . . . |V1|A; . . . nk,α . . . > (7.3)

where V1 is given in Eq.(5.12). In the coordinate space the initial (final) state
is described by the wave function

ψA(A′)(ξr) =< ξ1, · · · ξN |A(A′) > (7.4)

To first order in the perturbation theory we have (neglecting proton con-
tribution with respect to electron one and denoting the electron masses by
m)

T
(1)
fi = − e

m

∑
r

< A′; . . . nk,α + 1 . . . |pr ·A(0, ξr)|A; . . . nk,α . . . >

= − e

m

∑
r

∑
k′,α′

1√
2V ωk′

< A′; . . . nk,α + 1 . . . |pr · ϵα
′

k′ [aα
′

k′ exp (ik′ · ξr) + h.c.]

|A; . . . nk,α . . . >

= − e

m

∑
r

∑
k′,α′

1√
2V ωk′

< A′|pr · ϵα
′

k′ exp (−ik′ · ξr)|A > δα,α′δk,k′
√
nk′,α′ + 1

= − e

m

∑
r

√
nk,α + 1
√
2V ωk

< A′|pr · ϵαk exp (−ik · ξr)|A >

= − e

m

∑
r

√
nk,α + 1
√
2V ωk

∫
d3ξrψ

∗
A′(ξr)ϵ

α
k · (−i∇r)(exp (−ik · ξr)ψA(ξr))

(7.5)
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If the transitions are in the visible region, k−1 ∼ 1000 Angstrom, then
kξr << 1 since ξr ∼ 1 Angstrom. So, in the dipole approximation, exp (−ik · ξr) ∼
1,

T
(1)
fi = − e

m

√
nk,α + 1

2V ωk

∑
r

< A′|pr · ϵαk)|A >

= −e
√
nk,α + 1

2V ωk

∑
r

< A′|vr · ϵαk)|A > (7.6)

where vr is the velocity operator.

Let us now compute the probability of emitting photons of momentum
in the interval k,k+ dk and polarization α

dwfi = 2πδ(Ef − Ei)|T (1)
fi |

2V d
3k

(2π)3

= 2π
e2

2V ωk
(nk,α + 1)|

∑
r

< A′|vr · ϵαk(exp (−ik · ξr))|A > |2

×δ(Ef − Ei)
V d3k

(2π)3

=
d3k

(2π)2
(nk,α + 1)

e2

2ωk
|
∑
r

< A′|vr · ϵαk(exp (−ik · ξr))|A > |2

×δ(EA′ + ωk − EA)

=
αem
2π

(nk,α + 1)ωkdωkdΩ|
∑
r

< A′||vr · ϵαk(exp (−ik · ξr))|A > |2

×δ(EA′ + ωk − EA)

(7.7)

We can now integrate over ωk obtaining the probability of emitting a photon
in the solid angle dΩ

dwfi
dΩ

=
αem
2π

ωk(nk,α + 1)|
∑
r

< A′|vr · ϵαk(exp (−ik · ξr))|A > |2 (7.8)

where now ωk = EA − EA′ . In the dipole approximation

|
∑
r

< A′|vr · ϵαk(exp (−ik · ξr))|A > |2 ∼ |
∑
r

< A′|vr · ϵαk|A > |2

∼ | < A′|Ḋ
e
· ϵαk|A > |2 (7.9)
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where we have introduced the dipole operator

D = e
∑
r

ξr (7.10)

Using
Ḋ = i[Hatom,D] (7.11)

we get
ḊA′A = i < A′|[Hatom,D]|A >= i(EA′ − EA)DA′A (7.12)

Therefore we have

dwfi
dΩ

=
αem
2π

ω3
k(nk,α + 1)|1

e
DA′A · ϵαk|2 (7.13)

with
1

e
DA′A =

∫
(Πrd

3ξr)ψ
∗
A′(ξr)

∑
r

ξrψA(ξr) (7.14)

The result is zero also when there is no initial radiation field, nk,α = 0. This is
the new result which emerges at the quantum level, the so-called spontaneous
emission.

When nk,α = 0, and we do not observe the polarization of the photon, we
can perform some more analytical step:∑

α

dwfi
dΩ

=
αem
2π

ω3
k

∑
α

|1
e
DA′A · ϵαk|2 (7.15)

Since∑
α

|1
e
DA′A·ϵαk|2 =

1

e2

∑
α

Di∗
A′AD

j
A′Aϵ

αiϵαj =
1

e2
Di∗
A′AD

j
A′A(δij−

kikj
k2

) =
1

e2
|D⊥

A′A|2

(7.16)
In conclusion ∑

α

dwfi
dΩ

=
αem
2π

ω3
k

1

e2
|D⊥

A′A|2 (7.17)

By integrating over all the solid angle, we obtain the life-time τ for the
transition A→ A′ which is defined by

1

τAA′
=

∫
dΩ

∑
α

dwfi
dΩ

=
αem
2π

ω3
k

1

e2
|DA′A|2(4π−

4

3
π) =

4

3
ω3
k

1

e2
|DA′A|2 (7.18)
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To get the total life time one has to sum over all the possible states in which
the atomic state can decay:

1

τA
=

∑
A′

1

τAA′
(7.19)

In the cgs system the eq. (7.18) becomes

1

τ
=

4

3
ω3
k

1

c2e2
|DA′A|2 (7.20)

To get an extimate of the life time for the 2p to 1s transition for the hydrogen
atom, assuming ωk ∼ 1016 sec−1, D/e ∼ 0.5× 10−8 cm, we get τ ∼ 10−8 sec.

8 Interaction of the light with the matter

8.1 Scattering Thomson, Rayleigh, Raman

Let us now consider the scattering of the light (photons) by atomic electrons,
neglecting the scattering by the protons since interaction Hamiltonian, given
in eqs. (6.6) and (6.7), is inversely proportional to mr. In particular we will
compute the scattering of a photon of momentum k1 and polarization α1 by
an electron bound in a given atom. For simplicity we consider just an atom
with one electron. The result can be easily generalized to N electrons. The
initial state is

|A > ⊗|k1, α1 > (8.1)

while the final state is
|A′ > ⊗|k2, α2 > (8.2)

where k2 and α2 are the momentum and the polarization of the final state
photon, |A(A′) > denote the initial (final) electron state. In conclusion in
the process the number of photons does not change ∆n = 0. Since the
Hamiltonian V1 can describe only ∆n = ±1 process, we have to go to the
next order in the expansion, that is to order (e2). The Hamiltonian V2 can
describe ∆n = 0 process, since

V2 ∼ (aαk + aα†k )(aα
′

k′ + aα
′†

k′ ) (8.3)
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The general amplitude to order e2 is given by

T
(2)
fi = (V2)fi +

∑
n

(V1)fn(V1)ni
Ei − En + iϵ

(8.4)

where the sum is over all possible intermediate states |n >≡ |N > ⊗|...nk,α... >,

Ei = EA + ωk1 (8.5)

En = EN + ... denotes the energy of the intermediate state. Let us first
consider the case when the energy of the incoming photon is much larger
than the level splitting of the atoms. In this case one can neglect the second
term of eq.(8.4) and one recovers the classical result of the scattering of the
light by a free electron (Thomson9 scattering). Substituting in V2 we get

V2 =
e2

2m

∑
k,α

∑
k′,α′

ϵαk · ϵα
′

k′
1√

2ωkV
√
2ωk′V

(aαke
ik·ξ +h.c.)(aα

′

k′eik
′·ξ +h.c.) (8.6)

The terms contributing to the final result are aαka
α′†
k′ and aα†k a

α′

k′ . The final
result is

T
(2)
fi = (V2)fi =

e2

m
ϵα1
k1

· ϵα2
k2

1

2V
√
ωk1ωk2

< A′|ei(k1−k2)·ξ|A >

=
e2

m
ϵα1
k1

· ϵα2
k2

1

2V
√
ωk1ωk2

∫
d3ξψ∗

A′(ξ)ei(k1−k2)·ξψA(ξ) (8.7)

where we have introduced the wave function of the electron in the state
A(A′), ψA(A′)(ξ).

The generalization to N electrons is:

T
(2)
fi =

e2

m
ϵα1
k1

· ϵα2
k2

1

2V
√
ωk1ωk2

∑
r

∫
Πrd

3ξrψ
∗
A′(ξr)e

i(k1−k2)·ξrψA(ξr) (8.8)

If the dipole approximation can be used, we get

T
(2)
fi = (V2)fi =

e2

m
ϵα1
k1

· ϵα2
k2

1

2V
√
ωk1ωk2

δAA′ (8.9)

9J.J. Thomson, 1856-1940, Nobel prize in Physics in 1906 for the discovery of the
electron
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Using the Fermi golden rule we get the probability of scattering per unit time

dw = 2πδ(ωk1 − ωk2)
e4

4ωk1
2V 2m2

(ϵα1
k1

· ϵα2
k2
)2

V

(2π)3
d3k2 (8.10)

Finally the cross section is obtained by dividing by the incoming flux Φ =
ρv = 1/V , being the photon velocity equal to one in natural units,

dσ =
dw

Φ
= δ(ωk1 − ωk2)(

e2

4πmωk1
ϵα1
k1

· ϵα2
k2
)2k22dk2dΩk2 (8.11)

By integrating over ωk2 = k2∫
k2

dσ = r20(ϵ
α1
k1

· ϵα2
k2
)2dΩk2 (8.12)

where r0 is the classical radius of the electron

r0 =
e2

4πm
∼ 2.8 fm = 2.8× 10−13 cm (8.13)

If we do not know the initial polarization and we do not measure the final
polarization, we average over the initial polarization and we sum over the
final ones

1

2

∑
α1,α2

dσ =
r20
2
(1 + cos2 θ)dϕd cos θ (8.14)

where θ is the angle between k1 and k2. In fact we have

1

2

∑
α1,α2

ϵα1
k1

iϵα2
k2

iϵα1
k1

jϵα2
k2

j =
1

2

∑
α1

ϵα1
k1

iϵα1
k1

j(δij −
ki1k

j
1

k21
)

=
1

2
(δij −

ki2k
j
2

k22
)(δij −

ki1k
j
1

k21
)

=
1

2
[3− 1− 1 + (k̂1 · k̂2)

2]

=
1

2
[1 + (k̂1 · k̂2)

2] (8.15)

By integrating over the angles, we obtain the total Thomson cross section

σ =
8π

3
r20 (8.16)
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Using the numerical value of r0 we get σ = 6.6× 10−25cm2.

We can now proceed to compute the cross section in the general case
deriving the so called Kramers Heisenberg formula (1925). The possible
intermediate states contributing to the second order part of the amplitudes
are

|N > ⊗|0 >, |N > ⊗|k1, α1; k2, α2 > (8.17)

that is |N > times the vacuum states and the two photon state. The result
for the amplitude is

T
(2)
fi = (V2)fi +

∑
N

[
(V 0

1 )A′N(V
0
1 )NA

EA + ωk1 − EN + iϵ
+

(V II
1 )A′N(V

II
1 )NA

EA − ωk2 − EN + iϵ
] (8.18)

where

(V 0
1 )A′N =

e

m

1√
2ωk2V

< A′|p · ϵα2
k2
e−ik2·ξ|N > (8.19)

(V 0
1 )NA =

e

m

1√
2ωk1V

< N |p · ϵα1
k1
eik1·ξ|A > (8.20)

(V II
1 )A′N =

e

m

1√
2ωk1V

< A′|p · ϵα1
k1
eik1·ξ|N > (8.21)

(V II
1 )NA =

e

m

1√
2ωk2V

< N |p · ϵα2
k2
e−ik2·ξ|A > (8.22)

and (V2)fi is given in eq.(8.7). In the dipole approximation we get

T
(2)
fi =

1

2V
√
ωk1ωk2

fA′A (8.23)

with

fA′A =
e2

m
ϵα1
k1

· ϵα2
k2
δAA′+ e2

m2

∑
N

[
< A′|p · ϵα2

k2
|N >< N |p · ϵα1

k1
|A >

EA + ωk1 − EN + iϵ

+
< A′|p · ϵα1

k1
|N >< N |p · ϵα2

k2
|A >

EA − ωk2 − EN + iϵ
] (8.24)

To obtain the cross section we divide by the flux:

dσ

dΩ
= 2πδ(EA + ωk1 − EA′ − ωk2)

1

4V 2ωk1ωk2
|fA′A|2k22dk2

V

(2π)3
1
1
V

(8.25)
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By integrating over k2, we obtain∫
dσ

dΩ
=
ωk2
ωk1

|fA
′A

4π
|2 (8.26)

The case A′ = A ωk1 = ωk2 correspond to the elastic case (Rayleigh10 scatter-
ing) while the inelastic case, A′ ̸= A ωk1 ̸= ωk2 , corresponds to the Raman11

effect.

Note that when the energy of the initial photon ωk1 = EN − EA, the
amplitude as given in eq.(8.24) diverges and consequently the cross section
becomes infinite. Since the cross section is a measurable quantity, this means
that the calculation to second order becomes inadequate and higher orders
become relevant.

What is happening is that we have assumed the intermediate states N
as stable, neglecting their life time due to the instability for the spontaneous
emission. If the probability of finding an electron in a generic energy level
EN decreases for spontaneous emission as

exp (− t

τN
) = exp (−ΓN t) (8.27)

where τN (ΓN) is the life time (width) of the state N , the corresponding
amplitude behaves as

exp (−ΓN t/2) (8.28)

This is equivalent to a time evolution of the state as

exp [−i(EN − i
ΓN
2
)t] (8.29)

In conclusion in presence of a resonant process, when ωk1 ∼ EN −EA we can
replace

1

EA + ωk1 − EN
→ 1

EA + ωk1 − EN + iΓN

2

(8.30)

so that the cross section, close to the resonance, assumes the classic Lorentz
form

dσ

dΩ
∼ |C|2

|EA + ωk1 − EN + iΓN

2
|2

=
|C|2

(EA + ωk1 − EN)2 +
Γ2
N

4

(8.31)

10J.W.S.Rayleigh (1842-1919), Nobel prize in Physics in 1904 for discovery of Argon
11C.V. Raman (1888-1970), Nobel prize in Physics in 1930 ”for his work on the scattering

of light and for the discovery of the effect named after him”
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8.2 Calculation of the total width

In order to compute the total width, we start considering the total shift in
the energy of the bound state to order O(e2):

∆En =< n|HI |n > +
∑
m ̸=n

< n|HI |m >< n|HI |m >

En − Em
(8.32)

where
|n >= |N > ⊗|0 > (8.33)

is a pure atom state, no photons are present. The interaction Hamiltonian is

HI = V1 + V2 (8.34)

with

V1 = − e

m
p ·A(ξ, 0), V2 =

e2

2m
(A(ξ, 0))2 (8.35)

Assuming HI normal ordered

< n|HI |n >=< n|V2|n >= 0 (8.36)

and only the second term of eq. (8.32) is different from zero

∆En =
∑
m̸=n

< n|V1|m >< m|V1|n >
En − Em

(8.37)

Therefore since |n >= |N > ⊗|0 > the only intermediate state allowed is

|m >= |M > ⊗|1k,α > (8.38)

and the result is given by the amplitude for the spontaneous emission

(< N |⊗ < 0|)V1(|M > ⊗|1k,α >) = T spont.emiss.NM (8.39)

where we can use the result of the spontaneous emission (7.8) for nk,α = 0
for one electron or

T spont.emiss.MN = − e

m

1√
2V ωk

< N |p · ϵαk exp (−ik · ξ)|M >

= − e

m

1√
2V ωk

|tMN |2 (8.40)
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So we get

∆En =
e2

2m2V

∑
k,α

∑
M

1

ωk

|tMN |2

EN − EM − ωk

→ e2

2m2

∫
d3k

(2π)3

∑
M

1

ωk

|tMN |2

EN − EM − ωk

=
α

m2

1

(2π)2

∫
dωkdΩωk

∑
M

|tMN |2

EN − EM − ωk

(8.41)

On the other hand using (7.8) for spontaneous emission for atoms with a
single electron, we have

dwNM
dΩ

=
α

2πm2
ωk| < N |p · ϵαk(exp (−ik · ξ)|M > |2

=
α

2πm2
ωk|tMN |2

(8.42)

where ωk = EN − EM .

In conclusion we can rewrite ∆EN as

∆En =
1

2π

∑
M

∫ ∞

0

dωk
1

EN − EM − ωk

dwNM
dΩ

(8.43)

where dwNM

dΩ
is the probability of spontaneous emission of a photon of fre-

quency ωk which assumes any value from zero to infinity.

The integral (8.45) has a pole for ωk = EN − EM . Let us replace the
denominator with EN − EM − ωk + iϵ, so we have to compute

∆En =
1

2π

∑
M

∫ ∞

0

dωk
1

EN − EM − ωk + iϵ

dwNM
dΩ

(8.44)

Using (C.6) we have

∆En =
1

2π

∑
M

[Pv

∫ ∞

0

dωk
1

EN − EM − ωk
−iπ

∫ ∞

0

dωkδ(EN−EM−ωk)]
dwNM
dΩ

(8.45)
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By taking the imaginary part

Im[∆En] = − 1

2π

∑
M

∫ ∞

0

dωk[πδ(EN − EM − ωk)]
dwNM
dΩ

= −1

2

∑
M

dwNM
dΩ

|ωk=EN−EM

= −1

2
ΓN (8.46)

where ΓN is the total width of the state N due to spontaneous emission.
Therefore the time evolution is now

ψN(t) = e−i(EN+Re[∆EN ]− i
2
ΓN )tψN(0) = e−i(EN+Re[∆EN ])te−

1
2
ΓN tψN(0) (8.47)

and the probability decreases as

|ψN(t)|2 = e−ΓN t|ψN(0)|2 (8.48)

The real part of ∆EN gives the shift in the energy of the bound state corre-
sponding to the Lamb shift. The integral

Re[∆En] =
1

2π

∑
M

Pv

∫ ∞

0

dωk[
1

EN − EM − ωk
]
dwNM
dΩ

(8.49)

is divergent and a special procedure of renormalization of the mass of the
electron is necessary [20, 17].

9 Cherenkov effect

In 1934, while Pavel Cherenkov (1904-1990) was studying, under the super-
vision of Sergei Vavilov at the Physical Institute of the USSR Academy of
Science, the luminescence of liquids of uranyl salt under irradiation of gamma
rays from radium, he discovered a new bleu glow. Vavilov suggested that the
effect could be due to bremstrahlung of electrons that were knocked out by
the gamma rays of the radium. However the correct explanation, which is
not bremstrahlung, was given by Tamm and Frank12 (1937): they considered

12I.M. Franck, I.E. Tamm, Nobel prize in Physics in 1958 with Cherenkov
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the field of a point like charged particle moving in a medium uniformly and
rectilinearly and show that if the velocity v of the particle is higher than the
velocity of the light in the medium c/n, the particle emits a radiation in a
cone of angle θ such that

cos θ =
c

nv
(9.1)

Let us first consider when a free charged particle of momentum p, traveling
in a medium of index n, can emit a photon of momentum k. From the
conservation of the momentum we get

pµ = (p′ + k)µ (9.2)

or
(p′)2 = m2 = (p− k)2 = m2 − 2pµkµ + ω2

k − k2 (9.3)

We conclude that

2(p0ωk − p · k) = ω2
k − k2 = (

1

n2
− 1)k2 (9.4)

Then

p · k = E
k

n
+
n2 − 1

2n2
k2 (9.5)

or

cos θ =
E

p

1

n
+
n2 − 1

2n2

k

p

=
1

nv
+
n2 − 1

2n

ω

mγv
(9.6)

The final relativistic formula for the Cherenkov angle is

cos θ =
1

nv

[
1 +

n2 − 1

2m
ω
√
1− v2

]
(9.7)

where we have used E = mγ, p = mγv.

Since the Cherenkov light in the water is in the visible light corresponding
to 400-700 nm∼ or 10−1 eV−1 the ratio k/m ∼ 10−4, we can neglect the
second term of eq.(9.7), therefore the angle is approximately

cos θ =
1

nv
(9.8)
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This result implies
1

nv
≤ 1 (9.9)

or v ≥ 1/n. So in the vacuum this process is forbidden, since v cannot be
greater the 1, (the light velocity c = 1 in natural unit). However in a medium
v can be greater than 1/n and the process is allowed.

In conclusion a charged particle, which travels at a velocity that exceeds
c/n, can emit a photon. The refractive index of the water between 400-700
nm is in the range 1.33-1.34. So the critical velocity in the water is v ∼ 0.75.

This effect has been used to build detectors for charged particles. Today
the largest Cherenkov detector is the Super-Kamiokande detector, which
contains 50000 tons of water, 11200 photomultipliers, and is located in Japan.
This experiment has discovered neutrino oscillations. The Cherenkov light
is emitted in a cone around the direction of a charged particle. The photo-
multiplier tubes of the tank detect this Cherenkov light and give information
of the quantity of the detected light and the timing of the detection. They
give information also on the energy, direction, interaction point and type of
the charged particle.

We will derive the Cherenkov emission of a charged particle by consid-
ering the quantized electromagnetic field in a medium. For the total energy
associated to the electromagnetic field see [6, 7]. In order to get the standard
form for the Hamiltonian in terms of creation and annihilation operators

H =
∑
k

∑
α=1,2

ωk(a
α†
k a

α
k +

1

2
) (9.10)

we need to include the refraction index in the expansion [6, 7]

A(x) =
∑
k

∑
α=1,2

1

n
√
2V ωk

ϵαk[a
α
ke

−ikx + h.c.], ki = ni
2π

L
(9.11)

where now k0 ≡ ωk = k/n and n = n(ωk). To calculate the probability that
an electron emits Cherenkov radiation, for simplicity of the calculations we
will consider the non relativistic approximation for the electron. The initial
state is

|i⟩ = |p⟩ ⊗ |0⟩ (9.12)
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where |p⟩ represent a non relativistic electron state of momentum p and |0⟩
the state with no photons. The final state is

|f⟩ = |p′⟩ ⊗ |1k,α⟩ (9.13)

where |1k,α⟩ represent the Cherenkov photon. Let us compute

Vfi = ⟨f |V |i⟩ = ⟨p′| ⊗ ⟨1k,α|(−e
p

m
·
∑
k′

∑
α′=1,2

1

n
√
2V ωk′

ϵα
′

k′ [aα
′

k′eik
′·x + h.c.])|p⟩ ⊗ |0⟩

= ⟨p′|(−e p
m

· ϵαk
1

n
√
2V ωk

e−ik·x)|p⟩

= − ep′·ϵαk
nm

√
2V ωk

⟨p′|e−ik·x)|p⟩

= − ep′·ϵαk
nm

√
2V ωk

δp′−p+k,0

= − ep·ϵαk
nm

√
2V ωk

δp′+k−p,0 (9.14)

where we have used the non relativistic wave functions

< x|p >= 1√
V
eip·x (9.15)

Then one can compute the transition rate that an electron of momentum p
emits a photon of momentum k times the number of final states. Passing to
the continuum, we get

dw = 2πδ(Ef − Ei)|Vfi|2
V

(2π)3
d3p′

V

(2π)3
d3k

= 2πδ(Ef − Ei)(
ep·ϵαk

nm
√
2V ωk

)2
(2π)3

V
δ3(p′ + k − p)

V

(2π)3
d3p′

V

(2π)3
d3k

=
πe2

n2ωk
| p
m
·ϵαk|2

d3p′

(2π)3
d3kδ3(p′ + k − p)δ(Ep′ + ωk − Ep) (9.16)

Integrating over d3p′∫
p′
dw =

πe2

n2ωk
| p
m
·ϵαk|2

1

(2π)3
d3kδ(Ep′ + ωk − Ep)

∼ πe2

n2ωk
| p
m
·ϵαk|2

1

(2π)3
d3kδ(v · k− ωk)

=
e2

8π2
| p
m
·ϵαk|2nωkdωkd cos θdϕδ(v · k− ωk) (9.17)
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where we have used

Ep′ = Ep−k ∼ Ep −
∂E

∂p
· k (9.18)

However

δ(v · k− ωk) =
1

vk
δ(cos θ − 1

nv
) (9.19)

Therefore we get, where using the non relativistic relation for the momentum
p, ∫

p′
dw =

e2

8π2
|v·ϵαk|2nωkdωkd cos θdϕ

1

vk
δ(cos θ − 1

nv
)

=
e2

8π2
|v·ϵαk|2dωkdϕd cos θ

1

v
δ(cos θ − 1

nv
) (9.20)

Summing over the polarization and finally integrating over ϕ and θ∫
ϕ,cos θ

∑
α

∫
p′
dw =

∫
ϕ,cos θ

∑
α

e2

8π2
vivjϵαiϵαj

1

v
δ(cos θ − 1

nv
)dωk

=

∫
ϕ,cos θ

e2

8π2
vivj(δij − kikj

k2
)
1

v
δ(cos θ − 1

nv
)dωk

=
e2

4π
v(1− 1

n2v2
)dωk

= αv(1− 1

n2v2
)dωk (9.21)

This result, that we have obtained using a non relativistic approach, co-
incides with the calculation performed using as initial and final states the
electron described by the Dirac field and the Hamiltonian interaction given
by eq.(10.112) of next Section, in the limit ωk/Ep << 1.

The energy loss of the electron per unit lenght of the trajectory is

dE

dx
=

1

v

dE

dt
=

∫ ωmax

0

1

v
αv(1− 1

n2v2
)ωkdωk = α

∫ ωmax

0

(1− 1

n2v2
)ωkdωk

(9.22)
The integral is cutoff by ωmax,

ω ≤ ωmax ∼
(nv − 1)2m

n2 − 1

γ

v
(9.23)

as we obtain by requiring cos θ ≤ 1 from eq.(9.7).
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10 The Dirac field

10.1 The Dirac equation: classical theory

Let us now consider the classical theory of the Dirac equation (1928), which
describes relativistic particles with spin 1

2
. Let us first write the following

first order differential equation:

i
∂ψ(x)

∂t
= [α · (−i∇) + βm]ψ(x) (10.1)

where αi, β are four hermitian matrices n × n and ψ a vector of dimension
n. By iterating i ∂

∂t
we obtain

−∂
2ψ(x)

∂t2
= [α · (−i∇) + βm]2ψ

= [−iαi∂i + βm][−iαj∂j + βm]ψ

= [−αiαj∂i∂j − i(αiβ + βαi)∂im+ β2m2]ψ

= [−1

2
(αiαj + αjαi)∂i∂j − i(αiβ + βαi)∂im+ β2m2]ψ

(10.2)

By requiring the validity of Klein Gordon equation one gets

αiαj + αjαi = 2δij, αiβ + βαi = 0, β2 = 1 (10.3)

or
[αi, αj]+ = δij, [β, αi]+ = 0, β2 = 1, (10.4)

where [A,B]+ ≡ AB +BA is the anti-commutator. The minimal dimension
n of the matrices where the previous relations hold is four. In the Dirac-Pauli
representation they are represented as

β =

(
1 0
0 −1

)
, α =

(
0 σ
σ 0

)
(10.5)

The equation can be rewritten in the form

(iγµ∂µ −m)ψ(x) = 0 (10.6)
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where
γ0 = β, γi = βαi (10.7)

are Dirac 4× 4 matrices satisfying

[γµ, γν ]+ = 2gµν (10.8)

and
γµ† = γ0γµγ0 (10.9)

In the Dirac-Pauli representation

γ0 =

(
1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
(10.10)

Therefore ψ(x) is a four component wave function. Usually the components
are indicated by ψα(x), α = 1, 2, 3, 4.

10.2 Lorentz and parity transformation

Let us now assume that the Dirac equation be valid in any inertial frame.
Then in the S ′ system, where x′ = Λx, assuming the relativity principle,
Dirac equation must have the same form

(iγµ′∂′µ −m)ψ′(x′) = 0 (10.11)

In order to reproduce the Klein-Gordon condition the matrices γµ′ must
satisfy the same algebra as the matrices γµ. By requiring also the same
hermiticity condition (10.9), neglecting a unitary transformation, we can
always identify γµ′ ≡ γµ.

Assuming that

ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1x′) (10.12)

we can prove that, if for an infinitesimal transformation we write Λ as

Λµν ∼ gµν + ϵµν (10.13)

then

S(Λ) ∼ 1− i

4
σµνϵ

µν (10.14)
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with

σµν =
i

2
[γµ, γν ] (10.15)

with σµν = −σνµ.

In fact from the Dirac equation in the S system, we get

0 = (iγµ∂µ −m))S−1(Λ)ψ′(x′)

=

(
iγµ

∂x′ν

∂xµ
∂′ν −m)

)
S−1(Λ)ψ′(x′)

=
(
iγµΛνµ∂

′
ν −m)

)
S−1(Λ)ψ′(x′)

(10.16)

where ∂′µ = ∂
∂x′µ

. By multiplying by S(Λ) to the left, we get

(
iS(Λ)γµS−1(Λ)Λνµ∂

′
ν −m)

)
ψ′(x′) = 0 (10.17)

Comparing with the Dirac equation in the S ′ system we get

S(Λ)γµS−1(Λ)Λνµ = γν (10.18)

or
S−1(Λ)γνS(Λ) = Λνµγ

µ (10.19)

For the infinitesimal transformation (10.13) and assuming (10.14) to first
order in ϵρλ we get

[σρλ, γν ] = −2i(gρνγλ − gλνγρ) (10.20)

The unique solution to eq.(10.20) is given by

σρλ =
i

2
[γρ, γλ] (10.21)

This can be verified by noticing that

γργλ =
1

2
[γρ, γλ]+ +

1

2
[γρ, γλ]

=
1

2
[γρ, γλ]− + gρλ

=
1

i
σρλ + gρλ (10.22)
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Then

[σρλ, γν ] = i[γργλ, γν ] = iγρ[γλ, γν ]+ − i[γρ, γν ]+γλ

= −2i(gρνγλ − gλνγρ) (10.23)

For a finite transformation the solution for S(Λ) is obtained by exponentia-
tion of eq.(10.14):

S(Λ) = exp(− i

4
σµνϵ

µν) (10.24)

S(Λ) is the representation of the Lorentz transformation Λ on the space of
the wave functions ψ. The six matrices σµν are the generators of the Lorentz
transformations. In particular σ0i are the three generators of the Lorentz
boosts and σij are the three generators of the 3D-rotations. Using the Dirac
Pauli representation for the gamma matrices

γ0 =

(
1 0
0 −1

)
, γk =

(
0 σk

−σk 0

)
(10.25)

we have

σij = ϵijk

(
σk 0
0 σk

)
(10.26)

Let us now prove that ψ̄ψ ≡ ψ†γ0ψ is a scalar under Lorentz transforma-
tion. In fact from eq.(10.12)

ψ† → ψ†S(Λ)† (10.27)

and
ψ̄ → ψ†S(Λ)†γ0 = ψ̄γ0S(Λ)†γ0 = ψ̄S−1(Λ) (10.28)

where in the last term we have used the property (10.9). Therefore

ψ̄ψ → ψ̄S−1(Λ)S(Λ)ψ = ψ̄ψ (10.29)

In analogous way we can prove that ψ̄γµψ transforms as a fourvector. In
fact

ψ̄γµψ → ψ̄S−1(Λ)γµS(Λ)ψ = Λµνψ̄γ
νψ (10.30)

where use has been made of (10.19).
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Finally we can also prove that ψ̄σµνψ transform as a tensor:

ψ̄σµνψ → ΛµρΛ
µ
λψ̄σ

ρλψ (10.31)

Example Let us consider a generic z-axis rotation. The 4× 4 matrix
representing the z-axis rotation of an angle θ is given by

Rz =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (10.32)

For infinitesimal θ we get

Rz ∼


1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1

 = I4 + ϵ (10.33)

or

ϵµν = θ


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 (10.34)

From eq.(10.24) we obtain

S(Rz) = exp(− i

4
σµνϵ

µν) = exp(− i

2
σ12ϵ

12) = exp(
i

2
θσ12) (10.35)

with

σ12 =
i

2
[γ1, γ2] = iγ1γ2 = i

(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)
=

(
σ3 0
0 σ3

)
(10.36)

In conclusion under a z-rotation of an angle θ the spinor ψ transforms as

ψ → ψ′ = exp

[
i

2
θ

(
σ3/2 0
0 σ3/2

)]
ψ =

(
exp(iθσ3/2) 0

0 exp(iθσ3/2)

)
ψ

(10.37)
and σ12/2 is the corresponding generator.
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Let us now study the parity transformation

x → −x (10.38)

which is assumed to be a symmetry of the Dirac equation. The parity trans-
formation acts on the fourdimensional space as

x′µ = P µ
ν x

ν , P µ
ν =


1

−1
−1

−1

 (10.39)

The transformation of the spinor field under the parity transformation is
obtained by requiring the invariance of the Dirac equation under parity and
it is given by

ψ(x) → ψ′(x′) = S(P )ψ(x) (10.40)

with S(P ) such that

S−1(P )γ0S(P ) = γ0, S−1(P )γiS(P ) = −γi (10.41)

In this way we obtain:

(iγ0∂0 − iγi∂i −m)ψ(x) = 0

→P (iγ0∂0 + iγi∂′i −m)S−1(P )ψ′(x′) = 0 (10.42)

By multiplying by S(P ) and using (10.41) we obtain

(iγ0∂0 − iγi∂′i −m)ψ′(x′) = 0 (10.43)

The solution of eq.(10.41) is given by

S(P ) = γ0ηP (10.44)

with |ηP | = 1.

It is easy to check that under the parity transformation

ψ̄ψ → ψ̄ψ (10.45)
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Using the matrix γ5 defined as13

γ5 = iγ0γ1γ2γ3 (10.46)

with the properties

γ†5 = γ5, γ
2
5 = 1, [γ5, γµ]+ = 0 (10.47)

we can consider the expression
ψ̄γ5ψ (10.48)

Under the Lorentz transformation

ψ̄γ5ψ → ψ̄γ5ψ (10.49)

However under the parity transformation

ψ̄γ5ψ → −ψ̄γ5ψ (10.50)

In conclusion while ψ̄ψ is a scalar, the ψ̄γ5ψ bilinear is a pseudo-scalar.
In analogous way one can prove that

ψ̄γ5γµψ (10.51)

is an axial-four-vector.

Note that the 16 matrices (1, γ5, γµ, γ5γµ, σµν) are a basis for the 4 by 4
hermitian matrices.

10.3 Wave plane solutions of the Dirac equation

Let us now look for solutions of the Dirac equation of the form

ψ(x) = e−ipxu(p), positive energy

ψ(x) = eipxv(p), negative energy (10.52)

13An alternative form for γ5 is γ5 = i
24ϵµνρσγ

µγνγργσ, with ϵ0123 = +1. This form is
useful to show that ψ̄γ5ψ trasforms as a pseudoscalar, using S−1(Λ)γ5S(Λ) = (detΛ)γ5 =
γ5, under proper Lorentz transformation and S−1(P )γ5S(P ) = γ0γ5γ0 = −γ5 under parity.

In the Dirac-Pauli representation γ5 =

(
0 1
1 0

)
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where
px ≡ p0t− p · x ≡ Et− p · x (10.53)

with
E =

√
p2 +m2 (10.54)

By substituting eqs.(10.52) in the Dirac equation, we get:

(p̂−m)u(p) = 0, (p̂+m)v(p) = 0 (10.55)

Going into the rest frame pµ = (m,0), eqs.(10.55) become

(γ0 − 1)u(0) = 0, (γ0 + 1)v(0) = 0 (10.56)

In the Dirac-Pauli representation, where γ0 is given by (10.25) the solutions
are

u1(0) =


1
0
0
0

 , u2(0) =


0
1
0
0

 , v1(0) =


0
0
1
0

 , v2(0) =


0
0
0
1

 ,

(10.57)
Note that we have two positive energy and two negative energy independent
solutions. u1,2 and v1,2 are eigenvectors of the generator of rotations along
the z axis (see eqs. (10.35) and (10.37),

σ12
2

=
1

2

(
σ3 0
0 σ3

)
(10.58)

corresponding to eigenvalues ±1/2. Therefore we expect that these solutions
represent spin 1/2 particles.

The solutions to a generic frame can be obtained by boosting these so-
lutions from the rest frame with a Lorentz transformation with velocity
v = p/E (see [2]). However it is simpler to observe that

(p̂−m)(p̂+m) = γµpµγ
νpν −m2

=
1

2
[γµ, γν ]+pµpν −m2 = p2 −m2 = 0 (10.59)

where use has been made of (10.8). Therefore we have

ur(p) ∼ (p̂+m)ur(0), vr(p) ∼ (p̂−m)vr(0), r = 1, 2 (10.60)
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By requiring the normalization

ūr(p)us(p) = δrs, v̄r(p)vs(p) = −δrs (10.61)

we get (see Appendix G.1)

ur(p) =
p̂+m√

2m(E +m)
ur(0), vr(p) =

−p̂+m√
2m(E +m)

vr(0), r = 1, 2

(10.62)
We have also the orthogonality condition

ūr(p)vs(p) = 0, v̄r(p)us(p) = 0 (10.63)

and the completeness condition∑
r

[urα(p)ūrβ(p)− vrα(p)v̄rβ(p)] = δαβ, α, β = 1, 2, 3, 4 (10.64)

Now the complete set

1√
V
e−ipxur(p),

1√
V
eipxvr(p) (10.65)

can be used to expand the general solution of the Dirac equation

ψ(x) =
∑
rp

√
m

V E
[br(p)ur(p)e

−ipx + d∗r(p)vr(p)e
ipx] (10.66)

with br(p), d
∗
r(p) complex functions that after quantization of the spinor field

ψ become operators. Notice that we have also (see Appendix G.1)

u†r(p)us(p) =
E

m
δrs = v†r(p)vs(p) (10.67)

u†(p)v(−p) = v†(p)u(−p) = 0 (10.68)
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10.4 Lagrangian of the Dirac field

The Dirac equation given in eq.(10.6) can be derived from the Lagrangian
density

L = ψ̄(x)[i∂̂ −m]ψ(x) (10.69)

Varying the action with respect to ψ̄, we obtain the Dirac equation. Assum-
ing the mass as fundamental dimension, the dimension of the Dirac field are
M3/2 so that the action is dimensionless. The interaction of the relativis-
tic electron with the electromagnetic field is obtained by using the minimal
substitution

E → E − eA0, p → p− eA (10.70)

or in the covariant form
pµ → pµ − eAµ (10.71)

and
i∂µ → i∂µ − eAµ (10.72)

where Aµ is the four potential of the electromagnetic field. The Lagrangian
describing the Dirac field interacting with the electromagnetic field is there-
fore

L′ = ψ̄(x)[i∂̂ − eÂ−m]ψ(x) (10.73)

and the corresponding Dirac equation is

[i∂̂ − eÂ−m]ψ(x) = 0 (10.74)

10.5 Non relativistic limit of the Dirac equation

Let us now consider the non relativistic limit of the Dirac equation in an
external field. Starting from (10.74) and multiplying by γ0 we get

i
∂ψ(x)

∂t
= [α · (−i∇− eA) + βm+ eA0]ψ(x) (10.75)

Let us now look for solutions with positive energy of the following form

ψ(x) = exp (−iEt)
(
ϕ(x)
χ(x)

)
(10.76)
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where ϕ, χ are two component spinors depending on x and

E = m+ T (10.77)

We obtain

(m+ T )

(
ϕ
χ

)
=

(
(m+ eA0)ϕ+ σ · πχ
σ · πϕ+ (−m+ eA0)χ

)
(10.78)

with π = −i∇− eA (πi = −i∂i − eAi) or

(eA0 − T )ϕ+ σ · πχ = 0

σ · πϕ+ (−2m+ eA0 − T )χ = 0 (10.79)

By considering the non relativistic limit, A0, T << m, from the second
equation of (10.79) we get

χ =
σ · πϕ
2m

(10.80)

By substituting (10.80) in the first equation of (10.79) we obtain

Tϕ = (
1

2m
σ · π · σ · π + eA0)ϕ (10.81)

Using

σ · π · σ · π = σiσjπiπj =
1

2
([σi, σj] + [σi, σj]+)π

iπj = iϵijkσ
kπiπj + π2

=
i

2
ϵijkσ

k[πi, πj] + π2

= −1

2
eϵijkσ

k(∂iA
j − ∂jA

i) + π2

= −eϵijkσk∂iAj + π2

= −eσ ·B + π2 (10.82)

where we have used [−i∂i, f(x)] = [−i∂i, xl]∂f/∂xl = −i∂f/∂xi. We get

Tϕ = (
1

2m
π2 − e

2m
σ ·B + eA0)ϕ

= (
1

2m
π2 − e

2m
2S ·B + eA0)ϕ

= (
1

2m
π2 − µ ·B + eA0)ϕ (10.83)
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where S denotes the electron spin and µ the magnetic momentum of the
electron

µ =
e

2m
2S (10.84)

In conclusion Dirac equation predicts the magnetic field the gyromagnetic
factor of the electron

ge = 2 (10.85)

Its experimental value is different from 2 at the per mil level [18]

ge − 2

2
= 1159.65218076± 0.00000027× 10−6 (10.86)

By studying the next order in the non relativistic expansion of the Dirac
equation and assuming for A0 the Coulomb potential for the Hydrogen atom,
one can get the fine structure terms, see [17]: the relativistic correction

− p4

8m3
(10.87)

the Darwin term
e

8m2
∇2A0 (10.88)

and the spin-orbit term
e

2m2

1

r

dϕ

dr
S ·L (10.89)

The exact solution of the Dirac equation and the relativistic form of the
energy levels for the Hydrogen atom can be found for instance in [2].

10.6 Quantization of the Dirac field

The Dirac equation given in eq.(10.6) can be derived from the Lagrangian
density (10.69) by minimizing the action with respect to ψ̄. The conjugate
momenta are given by

πα(x) =
∂L
∂ψ̇α

= iψ†
α, π̄α(x) =

∂L
∂ ˙̄ψα

= 0 (10.90)
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The Hamiltonian is given by

H =

∫
d3xH (10.91)

with

H = π(x)ψ̇(x) + π̄(x) ˙̄ψ(x)− L = ψ̄(x)[−iγj∂j +m]ψ(x) (10.92)

When computing the Hamiltonian, using the field expansion (10.66), we
have L = 0 and therefore the Hamiltonian is simply given by

H = i

∫
d3xψ†(x)ψ̇(x) (10.93)

Therefore substituting in the Hamiltonian the expansion (10.66) we obtain

H =

∫
d3x

∑
rp

√
m

V E
[b†r(p)u

†
r(p)e

ipx + dr(p)v
†
r(p)e

−ipx]

∑
sp′

E ′
√

m

V E ′ [bs(p
′)us(p

′)e−ip
′x − d†s(p

′)vs(p
′)eip

′x]

= m
∑
rp

∑
sp′

E ′
√
EE ′

[(
b†r(p)bs(p

′)u†r(p)us(p
′)

− dr(p)d
†
s(p

′)v†r(p)vs(p
′)
)
δp,p′

+
(
dr(p)bs(p

′)v†r(p)us(p
′)e−2iEt − b†r(p)d

†
s(p

′)u†r(p)vs(p
′)e2iEt

)
δp,−p′

]
(10.94)

and using the orthogonality properties of the spinors, eq.(10.67) and eq.(10.68),

H =
∑
pr

E[b†r(p)br(p)− dr(p)d
†
r(p)] (10.95)

If we now would assume commutation relations

[br(p), b
†
s(p

′)] = [dr(p), d
†
s(p

′)] = δrsδp,p′ (10.96)

the Hamiltonian could be rewritten, apart an infinite term, as

H =
∑
rp

E[b†r(p)br(p)− d†r(p)dr(p)] (10.97)
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This Hamiltonian is unbounded from below and therefore the theory does not
admit a stable minimum. However, if we assume anticommutation relations

[br(p), b
†
s(p

′)]+ = [dr(p), d
†
s(p

′)]+ = δrsδp,p′ (10.98)

and all other anticommutators vanishing, the expression for H is, apart an
infinite term,

H =
∑
rp

E[b†r(p)br(p) + d†r(p)dr(p)] (10.99)

which is now definite positive and admits a minimum state |0 > with zero
energy. The state |0 > is defined by the conditions

br(p)|0 >= dr(p)|0 >= 0 (10.100)

Dirac quantized theory describes two types of particles: one can build one
particle states as

b†r(p)|0 >, and d†r(p)|0 > (10.101)

To distinguish these two types of particles we can consider additional
operators commuting with H. Since the theory is invariant under gauge
transformations

ψ → eiαψ, ψ† → e−iαψ† (10.102)

we can build the corresponding Noether current (see eq.(3.80))

jµ =
∂L
∂∂µψ

∆ψ +∆ψ̄
∂L
∂∂µψ̄

(10.103)

which turns out to be
jµ = ψ̄(x)γµψ(x) (10.104)

This current can also be identified by introducing in the Dirac Lagrangian
the interaction with the electromagnetic field by means of the minimal sub-
sitution i∂µ → i∂µ − eAµ as done in Section 10.4.

Let us compute the total charge as

Q =

∫
d3xj0 =

∫
d3xψ†(x)ψ(x) (10.105)
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By substituting the expansion (10.66) in Q we obtain, again neglecting an
infinite term,

Q =
∑
rp

[b†r(p)br(p)− d†r(p)dr(p)] (10.106)

Therefore the two types of particles have opposite charges. In conclusion the
Dirac equation describes the electron and its antiparticle the positron. This
particle was discovered in 1932 by the american physicist Carl Anderson who
received the Nobel prize in Physics in 1936. This discovery had been made
earlier by P. Blackett14 and G. Occhialini15 who however did not immediately
publish their results. Dirac was awarded of the Nobel in 1933 together with
Schrödinger “for the discovery of new productive forms of atomic theory”.

Quantization of a field theory with anticommutators implies Fermi Pauli
statistics: the two particle state is antisymmetric under the exchange of the
two particles

b†p1,rb
†
p2,s|0 >= −b†p2,sb

†
p1,r|0 > (10.107)

Furthermore since [b†p,r]
2 = 0 it is impossible to build a state with two elec-

trons with the same quantum numbers.

Using the invariance of the action under translation and Lorentz trans-
formations we can also consider the total spatial momentum

P = −i
∫
d3xψ†∇ψ =

∑
rp

p[b†r(p)br(p) + d†r(p)dr(p)] (10.108)

and the angular momentum:

M =

∫
d3xψ†(x)[x× (−i∇)]ψ(x) +

∫
d3xψ†(x)

1

2
σψ(x) (10.109)

where σ a 4 by 4 matrix given by

σ =

(
σ 0
0 σ

)
(10.110)

The two terms represent the angular momentum and the spin term for 1/2
particles.

14Patrick Blackett, 1897-1974
15Giuseppe Occhialini,1907-1993
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Finally let us note that using the anticommutation relations (10.98) and
the expansion (10.66), one can derive the canonical anticommutation rela-
tions

[ψ(t,x),Π(t,y)]+ = iδ3(x− y), [ψ(t,x), ψ(t,y)]+ = [Π(t,x),Π(t,y)]+ = 0
(10.111)

10.7 Coulomb scattering of electrons

As an application of Quantum Field Theory, let us now consider the scatter-
ing of a relativistic electron by a classical Coulomb potential generated by
a point charge −Ze > 0. The Hamiltonian interaction density is given by,
using eq.(10.73),

HI = −LI = eψ̄(x)γµψ(x)A
µ(x) (10.112)

with

Aµ(x) = (− Ze

4π|x|
,0) (10.113)

Let us consider, as initial state, an electron with four-momentum p and
polarization r

|e(p, r) >= b†r(p)|0 > (10.114)

and, as a final state, an electron with four-momentum p′ and polarization s

|e(p′, s) >= b†s(p
′)|0 > (10.115)

and consider the matrix element

Vfi = < e(p′, s)|HI |e(p, r) >

=

∫
d3x < e(p′, s)|eψ̄(x)γ0ψ(x)A0(x)|t=0|e(p, r) >

= e

√
me

EpV

√
me

Ep′V

∫
d3xe−i(p

′−p)·xūs(p
′)γ0ur(p)A

0(x)(10.116)

where we have used the spinor expansion (10.66) and the anticommutation
relations (10.98).

By introducing the transfer momentum

q = p− p′ (10.117)
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we can rewrite Vfi as

Vfi = e

√
m

EpV

√
m

Ep′V
ūs(p

′)γ0ur(p)A
0(q) (10.118)

where we have introduced the Fourier transform of the Coulomb potential
A0(x)

A0(q) =

∫
d3xeiq·xA0(x) (10.119)

Its explicit form is

A0(q) = −Ze
q2

(10.120)

Using the Fermi rule the cross section is then given by

dσ = 2πδ(Ep′ − Ep)|Vfi|2
V d3p′

(2π)3
1

Φ
(10.121)

where

Φ =
|p|
EpV

(10.122)

is the incident flux. We obtain

dσ = δ(Ep′ − Ep)
m2Z2e4

(2π)2
d3p′

|ūs(p′)γ0ur(p)|2

|p|Epq4
(10.123)

or

dσ

dΩ
= δ(Ep′ − Ep)

m2Z2e4

(2π)2
p′2dp′

|ūs(p′)γ0ur(p)|2

|p|Epq4

= δ(Ep′ − Ep)4m
2Z2α2 |ūs(p′)γ0ur(p)|2

q4
dEp′ (10.124)

where we have used
|p′| = |p|, Ep = Ep′ (10.125)

and

α =
e2

4π
(10.126)

By integrating over dEp′ we get

dσ

dΩ
= 4m2Z2α2 |ūs(p′)γ0ur(p)|2

q4
(10.127)
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If we do not know the initial polarization and we do not measure the final
electron polarization, we average over the initial spin, assuming equal a priori
probability to different initial polarization states, and sum over the final spin

dσunpol
dΩ

= 4m2Z2α21

2

∑
r,s

|ūs(p′)γ0u(p)|2

q4
(10.128)

The polarization sums can be reduced to traces as we are going to see.
Let us consider∑

r,s

|ūs(p′)γ0ur(p)|2 =
∑
r,s

ūr(p)γ
0us(p

′)ūs(p
′)γ0ur(p)

=
∑

r,s,α,β,γ,δ

ūrα(p)γ
0
αβusβ(p

′)ūsγ(p
′)γ0γδurδ(p)

= γ0αβ(
p̂′ +m

2m
)βγγ

0
γδ(
p̂+m

2m
)δα

= Tr(γ0
p̂′ +m

2m
γ0
p̂+m

2m
)

=
−p · p′ + 2p0p

′
0 +m2

m2
(10.129)

where use have been made of the definition of positive energy projectors
(G.22) and of (see (G.34))

Tr[γ0γµγ0γν ] = −4gµν + 8g0µg0ν (10.130)

Tr[γµγνγρ] = 0 (10.131)

The numerator of Eq. (10.129) can be written as

−p · p′ + 2p0p
′
0 +m2 = −EpE ′

p + p′ · p+ 2EpE
′
p +m2

= EpE
′
p + p′ · p+m2

= E2
p + p2 cos θ +m2 (10.132)

where θ is the scattering angle. By substituting in eq.(10.128), we obtain the
final result for the differential unpolarized scattering cross section

dσ

dΩunpol
=

α2Z2

8p4 sin4 θ
2

(E2
p + p2 cos θ +m2)

=
α2Z2

4E2
pv

4 sin4 θ
2

(1− v2 sin2 θ

2
) (10.133)
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where we have used

q2 = 4p2 sin2 θ

2
(10.134)

The cross section given by eq.(10.133) is the Mott cross section. For
v << 1 the formula reduces to the Rutherford scattering.

10.8 Higgs decay width to fermions

As a second application of the perturbative approach of Quantum Field
Theory we consider the decay rate of the Higgs16 in electron and positron,
H → e+e−. The Higgs is a spin zero particle, present in the spectrum of
the Standard Model (SM) of electroweak interactions and responsible for the
mechanism of generating the masses of the quarks u, d, c, s, t, b, of the leptons
e, µ, τ, νe, νµ, ντ and of the gauge fieldsW±, Z. The experimentally measured
Higgs mass is mH ∼ 125.1 GeV [18].

Quarks and leptons have spin 1/2 and therefore can be described by Dirac
fields. The Higgs is not a stable particle and decays in various channels. His
main decay is in the quark channel b̄b where b̄ denotes the antiparticle of the
quark b. The branching ratio in the b̄b channel is defined as

B(H → b̄b) =
Γ(H → b̄b)

ΓtotH
(10.135)

where ΓtotH is the total width of the Higgs, which, within the SM, is predicted
to be ΓtotH = 4.2 MeV. The branching ratio in the b̄b channel is approximately
58 %[18], corresponding to Γ(H → b̄b) = 2.44 MeV.

However this channel has a large background from strong interactions.
The relevant decay channels for Higgs discovery are

γγ,W+W−, ZZ, τ+τ−, b̄b (10.136)

In the following we compute the H → e+e− width and then with a suitable
rescaling the H → b̄b width.

16P. Higgs (1929-), Nobel prize in Physics in 2013
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The Higgs interaction with the spin 1/2 particles (quarks and leptons) is
decribed by an Hamiltonian (see for example [14])

HI =

∫
d3xHI (10.137)

with
HI = −λϕ(x)ψ̄(x)ψ(x) (10.138)

where ϕ(x) is the scalar field which describes the Higgs and ψ(x) the Dirac
field describing the fermion. The interaction coupling is

λ =
m

v
∼ m

246 GeV
(10.139)

where m is the mass of the field ψ. The coupling constant λ is dimensionless.
In fact, assuming the mass as fundamental dimension, the dimensions of the
scalar field are M1, the dimensions of the fermion field M3/2 and since

HI = −LI (10.140)

the dimensions of the Lagrangian areM4 so that the action is dimensionless.
In eq. (10.139) the parameter v ∼ 246 GeV is related to the energy scale (the

inverse of the range) of the weak interactions, G
−1/2
F . The Fermi constant

GF is related to v by

GF =
1√
2v2

(10.141)

The masses of the three gauge bosons W±, Z which mediate the weak in-
teractions are of the order of v. In particular mW = 80.379 ± 0.012 GeV,
mZ = 91.1876± 0.0021 GeV [18].

For the electron, me ∼ 0.5 MeV, λ ∼ 10−6, therefore the decay H → e+e−

is very small. However in the case of the µ, mµ = 105.6 MeV ∼200 me

and the decay rate is larger; LHC has already some evidence for the decay
H → µ+µ− [19]. For the calculation of the decay widths we will consider
the fields quantized in a box of volume V . Therefore we have the following
expansions

ϕ(x) =
∑
k

1√
2EkV

(ake
−ikx + h.c.)

ψ(x) =
∑
kr

√
m

EkV
[br(k)ur(k)e

−ikx + d†r(k)vr(k)e
ikx]

(10.142)
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where we recall that
kx ≡ Ekt− k · x (10.143)

and Ek =
√
k2 +m2 where m denotes the corresponding mass of the boson

or of the fermion.

The initial state is therefore a Higgs with momentum p

|i⟩ = a†p|0⟩ (10.144)

while the final state is a positron with momentum and k1 and an electron
with momentum k2

|f⟩ = d†r1(k1)b
†
r2
(k2)|0⟩ (10.145)

where r1, r2 are the spin labels. The vacuum is the direct product of the
vacua of the two Fock spaces

|0⟩ ≡ |0⟩ϕ ⊗ |0⟩ψ (10.146)

We have, evaluating the Hamiltonian density at t = 0,

⟨f |HI |i⟩ = −λ
√

me

Ek1V

√
me

Ek2V

1√
2EpV

ei(p−k1−k2)·xūr2(k2)vr1(k1) (10.147)

and

Vfi =

∫
d3x⟨f |HI |i⟩ = −λ

√
me

Ek1V

√
me

Ek2V

1√
2EpV

ūr2(k2)vr1(k1)V δp,k1+k2

(10.148)

Using the golden rule, we can compute the probability that the Higgs
of momentum p decays in a positron of momentum k1 and an electron of
momentum k2

dwfi = 2πδ(Ek1 + Ek2 − Ep)|Vfi|2V
d3k1
(2π)3

V
d3k2
(2π)3

= (2π)4δ4(Pf − Pi)V λ
2(

√
me

Ek1V

√
me

Ek2V

1√
2EpV

)2

|ūr2(k2)vr1(k1)|2V
d3k1
(2π)3

V
d3k2
(2π)3

(10.149)
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where passing to the continuum we have used

(V δp,k1+k2)
2 → (2π)3δ3(p− k1 − k2)V (10.150)

Pf,i are the final and initial total four-momentum. In order to compute the
total width Γ(H → e+e−), we can now integrate over k1 and k2∫

dwfi =
1

(2π)2
λ2

2

∫
d3k1d

3k2δ
4(k1 + k2 − p)

m2
e

Ek1Ek2Ep

|ūr2(k2)vr1(k1)|2

=
1

(2π)2
λ2

2

∫
d3k1δ(Ek1 + Ek2 − Ep)

m2
e

Ek1Ek2Ep

|ūr2(k2)vr1(k1)|2 (10.151)

and sum over r1 and r2.

Γ(H → e+e−) =
∑
r1r2

∫
k1,k2

dwfi

=
1

(2π)2
λ2

2

∫
d3k1δ(Ek1 + Ek2 − Ep)

m2
e

Ek1Ek2Ep∑
r1r2

v̄r1(k1)ur2(k2)ūr2(k2)vr1(k1)

=
1

(2π)2
λ2

2

∫
d3k1δ(Ek1 + Ek2 − Ep)

m2
e

Ek1Ek2Ep
1

4m2
e

Tr[(k̂1 −me)(k̂2 +me)]

=
λ2

8π2

∫
d3k1δ(Ek1 + Ek2 − Ep)

k1 · k2 −m2
e

Ek1Ek2Ep
(10.152)

In the previous equations we have used∑
r1r2

v̄r1(k1)ur2(k2)ūr2(k2)vr1(k1) =
∑
r1

vr1β(k1)v̄r1α(k1)
∑
r2

ur2α(k2)ūr2β(k2)

= −Tr(Λ−Λ+) (10.153)

where Λ± = 1
2me

(±k̂ +me) are the positive (negative) energy solution pro-
jectors. We have also used

Tr(γµγν) = 4gµν , Tr(γµ) = 0, Tr(I) = 4 (10.154)
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Usually one computes the decay rate in the rest frame of the decaying
particle. Therefore

p = (mH ,0), k1 = (Ek1 ,k1), k2 = (Ek2 ,−k1) (10.155)

with

Ek1 = Ek2 =
√
m2
e + k2

1 (10.156)

We have
k1 · k2 = 2k2

1 +m2
e (10.157)

Substituting in the width, after integration over dΩ we get

Γ(H → e+e−) =
λ2

mHπ

∫ ∞

0

dk1
k41

k21 +m2
e

δ(mH − 2
√
k21 +m2

e)

=
4λ2

m3
Hπ

∫ ∞

0

dk1k
4
1δ(mH − 2

√
k21 +m2

e)

=
λ2

m2
Hπ

∫ ∞

0

dk1k
3
1δ(k1 −

1

2

√
m2
H − 4m2

e)

=
λ2

8π
mH(1−

4m2
e

m2
H

)3/2 (10.158)

where in the last equation we have used the property

δ(f(x)) =
1

|f ′(x0)|
δ(x− x0) (10.159)

where x0 is a zero of f(x) of order one. Using mH ∼ 125 GeV and me ∼
0.5 MeV we get

Γ(H → e+e−) ∼ 2.1× 10−11 GeV = 2.1× 10−2 eV (10.160)

For the quark bottom (mb = 4.2 GeV) we obtain, taking into account a
factor three from the sum over the three colors of the bottom quark (the
color gauge interaction which is responsible of the strong force is based on
the SU(3) group and the b quark is a triplet of SU(3))

Γ(H → b̄b) ∼ 3(
mb

me

)2Γ(H → e+e−) ∼ 4.3 MeV (10.161)
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This result is only approximate because one needs to take into account also
QCD and electroweak corrections to Γ(H → b̄b). This channel is the main de-
cay channel of the Higgs however it is not the cleanest because of QCD back-
ground. The main discovery channels at LHC were γγ, ZZ∗ and W+W−∗

where the ∗ denotes a virtual particle [18]. For example, when considering
H → ZZ since mH ≤ 2mZ only one Z particle can be real. The second Z is
only a virtual intermediate state decaying in two particles which are detected
in the detectors ATLAS and CMS of LHC.

10.9 The decay width for the process µ− → e−ν̄eνµ

The decay µ− → e−ν̄eνµ is due to the weak interactions and can be explained
by the Fermi interaction17 between the Dirac fields representing the muon,
the electron and the two neutrinos.The effective Hamiltonian density is given
by a current-current interaction

HW =
GF√
2
(J†λ
e Jµλ + h.c) (10.162)

where the electronic and the muonic currents are

Jλe = ψ̄eγ
λ(1− γ5)ψνe , J

λ
µ = ψ̄µγ

λ(1− γ5)ψνµ (10.163)

The Fermi constant GF can be derived, as we will see, by the experimental
value of the decay width and turns out to be GF = 1.16 × 10−5 GeV−2.
Remember that each fermion field ψ describes both particle and antiparticles

ψ(x) = ψ(+)(x) + ψ(−)(x) (10.164)

where ψ(±) denote the positive and negative energy part of the spinor.

The initial state is a muon with given momentum and spin

|µ−(pµ, rµ) >≡ |µ−(pµ, rµ) > ⊗|0 >e− ⊗|0 >νµ ⊗|0 >νe (10.165)

and the final state is

|e νµν̄e >= |0 >µ ⊗|e−(pe, re) > ⊗|νµ(pνµ , rνµ) > ⊗|ν̄e(pν̄e , rν̄e) > (10.166)

17The theory was proposed by Fermi in 1934
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Each fermion field can be expanded as

ψ(x) =
1√
V

∑
r

∑
p

√
m

E
[br(p)ur(p)e

−ipx + d†r(p)vr(p)e
ipx] (10.167)

One can verify that

ψ(+)
µ (x)|µ−(pµ, rµ) >=

1√
V

√
mµ

Eµ
urµ(pµ)e

−ipµx|0 > (10.168)

< e(pe, re)|(ψ(+)
e )†(x) =

1√
V

√
me

Ee
u†re(pe)e

ipex < 0| (10.169)

and similarly for ν̄e and νµ.

< ν̄e(pν̄e , rν̄e)|(ψ(−)
νe )(x) =

1√
V

√
mνe

Eν̄e
vrνe (pν̄e)e

ipν̄ex < 0| (10.170)

< νµ(pνµ , rνµ)|(ψ(+)
νµ )†(x) =

1√
V

√
mνµ

Eνµ
u†rνµ (pνµ)e

ipνµx < 0| (10.171)

where
|0 >≡ |0 >µ ⊗|0 >e− ⊗|0 >νµ ⊗|0 >νe (10.172)

The relevant term of the interaction (10.162) is

J†
µλJ

λ
e = ψ†

νµ(1− γ5)γ
†
λγ0ψµψ

†
eγ0γ

λ(1− γ5)ψνe

= ψ(+)†
νµ (1− γ5)γ

†
λγ0ψ

(+)
µ ψ(+)†

e γ0γ
λ(1− γ5)ψ

(−)
νe + . . .(10.173)

Therefore we obtain, by considering the interaction Hamiltonian density at
t = 0,

< f |HW |i > =
GF√
2
< e νµν̄e|J†

µλJ
λ
e |µ >

=
GF√
2

√
mµ

Eµ

√
me

Ee

√
mνe

Eν̄e

√
mνµ

Eνµ

1

V 2
ei(pνµ+pν̄e+pe−pµ)x|x0=0

u†re(pe)γ0γλ(1− γ5)vrν̄e (pν̄e)u
†
rνµ

(pνµ)γ0γ
λ(1− γ5)urµ(pµ)

=
GF√
2

√
mµ

Eµ

√
me

Ee

√
mνe

Eν̄e

√
mνµ

Eνµ

1

V 2
ei(pνµ+pν̄e+pe−pµ)x|x0=0

ūrne
(pe)γλ(1− γ5)vrν̄e (pν̄e)ūrνµ (pνµ)γ

λ(1− γ5)urµ(pµ)
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and finally

Vfi =

∫
d3x < f |HW |i >

=
GF√
2

√
mµ

µ

√
me

Ee

√
mνe

Eν̄e

√
mνµ

Eνµ

1

V 2
V δ3(pνµ + pν̄e + pe − pµ)

ūrne
(pe)γλ(1− γ5)vrν̄e (pν̄e)ūrνµ (pνµ)γ

λ(1− γ5)urµ(pµ)

≡ Mfi
GF√
2

√
mµ

Eµ

√
me

Ee

√
mνe

Eν̄e

√
mνµ

Eνµ

1

V
δ3(pνµ + pν̄e + pe − pµ)

(10.174)

where

Mfi = ūrνe (pe)γλ(1− γ5)vrνe (pν̄e)ūrνµ (pνµ)γ
λ(1− γ5)urµ(pµ) (10.175)

Let us now compute the decay rate, using the Fermi golden rule and averaging
over the initial spin and summing over the final spin

dw =
1

2

∑
ri,rf

2πδ(Ef − Ei)|Mfi|2|
1

V

√
mµ

Eµ

√
me

Ee

√
mνe

Eν̄e

√
mνµ

Eνµ
|2

(2π)3

V
δ3(pνµ + pν̄e + pe − pµ)

V

(2π)3
d3pe

V

(2π)3
d3pν̄e

V

(2π)3
d3pνµ

(10.176)

Therefore the final result can be written as

dw = (2π)4δ4(Pf − Pi)
mµ

Eµ
Πf

d3pf
(2π)3

mf

Ef

1

2

∑
ri,rf

|Mfi|2 (10.177)

with (see Appendix H)

1

2

∑
ri,rf

|Mfi|2 = 64G2
F

1

2mνµ2mνe2mµ2me

(pµ · pν̄e)(pνµ · pe) (10.178)

This can be rewritten as

dw = (2π)4δ4(Pf − Pi)Πf
d3pf

2Ef (2π)3
1

2Eµ
< M >2 (10.179)
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with
< M >2= 64G2

F (pµ · pν̄e)(pνµ · pe) (10.180)

The total width is computed in the rest frame of the muon

pµ = (mµ,0) (10.181)

In this frame we have
(pµ · pν̄e) = mµEν̄e (10.182)

Furthermore from

(pµ − pν̄e)
2 = (pνµ + pe)

2 (10.183)

neglecting neutrino and electron masses we get

(pνµ · pe) ∼
1

2
m2
µ −mµEν̄e (10.184)

and therefore

< M >2∼ 64G2
F

m2
µ

2
Eν̄e(mµ − 2Eν̄e) (10.185)

The first integration over pνµ is trivial and we obtain∫
pνµ

dΓ =
1

16(2π)5mµ

d3pν̄e
Eν̄e

d3pe
EeEνµ

δ(mµ−Eν̄e −Eνµ −Ee) < M >2 (10.186)

with < M >2 given in (10.185). In the µ rest frame we have pµ = 0,
pνµ = −pνe − pe. Then from

Eνµ = |pνµ | = |pνe + pe| (10.187)

we get

Eνµ =
√
E2
ν̄e + E2

e + 2Eν̄eEe cos θ (10.188)

Also we have
d3pν̄e = E2

ν̄edEν̄e sin θdθdϕ (10.189)

To perform the integral over θ we can transform from θ to

u ≡ Eνµ =
√
E2
ν̄e + E2

e + 2Eν̄eEe cos θ (10.190)
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So

du = −Eν̄eEe sin θdθ
Eνµ

(10.191)

and we get∫
pνe ,pνµ

dΓ =

∫
dEν̄e < M >2 d3pe

1

16(2π)4mµE2
e

∫ u(cos θ=1)

u(cos θ=−1)

duδ(mµ−Eν̄e−u−Ee)

(10.192)
Let us discuss the extrema of the integration

u(cos θ = 1) = |Eν̄e + Ee| (10.193)

u(cos θ = −1) = |Eν̄e − Ee| (10.194)

So the integral is different from zero when

|Eν̄e − Ee| < u = mµ − Eν̄e − Ee < |Eν̄e + Ee| (10.195)

which are equivalent to

|Eν̄e − Ee|+ Eν̄e + Ee <
mµ

2
< Eν̄e + Ee (10.196)

This implies

Eν̄e <
mµ

2
< Eν̄e + Ee (10.197)

when Eν̄e > Ee and

Ee <
mµ

2
< Eν̄e + Ee (10.198)

when Eν̄e < Ee. Therefore the extrema are

mµ

2
− Ee < Eν̄e <

mµ

2
(10.199)

By integrating over dEν̄e∫
dΓ =

∫ mµ
2

mµ
2

−Ee

dEν̄e < M >2 d3pe
1

16(2π)4mµE2
e

= 2G2
F

d3pe
(2π)4

(
mµ

2
− 2Ee

3
) (10.200)
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Then we can integrate over pe.

Γ =
2G2

F

(2π)4
mµ

∫ mµ/2

0

dEeE
2
e

∫
Ω

sin θdθ(
mµ

2
− 2Ee

3
)dϕ (10.201)

The final result is

Γ(µ→ e−ν̄eνµ) =
G2
Fm

5
µ

3× 26π3
(10.202)

The decay time is given by

τµ =
3× 26π3

m5
µG

2
F

(10.203)

Using the experimental determination18 τµ ∼ 2.2× 10−6sec and mµ ∼ 105.7
MeV, one can extract the value of the Fermi constant

GF = 1.16× 10−5GeV−2 (10.204)

18From [18] τµ = (2.1969811± 0.0000022× 10−6) sec, mµ = (105.6583745± 0.0000024)
MeV . The first measurements of the µ life time were performed by F. Rasetti (1941),
τµ = (1.5± 0.3× 10−6) sec, and B. Rossi (1943), τµ = (2.15± 0.07× 10−6) sec
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11 Superfluidity

In my recent studies on liquid helium
close to the absolute zero, I have succeeded in discovering a num-
ber of new phenomena. . . I am planning to publish part of this
work. . . but to do this I need theoretical help. In the Soviet
Union it is Landau who has the most perfect command of the the-
oretical field I need, but unfortunately he has been in custody for
a whole year. All this time I have been hoping that he would be
released because, frankly speaking, I am unable to believe that he
is a state criminal. . .” P. Kapitza, letter to Molotov on April
6,1939
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11.1 Brief introduction to superfluids

There are two stable isotopes of the helium: the first He4 was discovered
in 1871 in the solar spectrum, while the He3 was discovered in 1939 at the
Berkeley cyclotron by Louis Alvarez19.

The isotope He4, which has a nucleus composed of two protons and two
neutrons, is a boson (spin 0) while He3 composed of two protons and one
neutron, is a fermion (spin 1/2). Both liquids have, at low temperatures, low
densities and apparently remain liquid down to absolute zero temperature
unless a high pressure is applied (25 atm for the He4). The density of the
He4, at T = 2.17 ◦K and p = 0.0497 atm, is

ρ4 = 0.145 g/cm3 (11.1)

This property of not freezing comes from the extremely weak Van der
Walls forces between the atoms with respect to the quantum fluctuations.

The two liquids behave in different way because the Pauli principle keeps
He3 fermions far each other. The He4, below Tλ =2.17 ◦K, enters in a new
phase, HeII, Fig. 1.

The first researcher, who liquified the Helium below the gas liquid tran-
sition at 4.2 ◦K, was Kamerlingh Onnes20 (1908), in the experiments leading
to discover superconductivity. Later in 1927, M. Wolfke and W.H. Keesom
discovered a new phase transition for the Helium at 2.17 ◦K, that manifested
itself in a discontinuity of the specific heat. After this observation, it took
ten years to understand that the new phase was a superfluid phase: the fluid
can flow without any friction and viscosity.

The transition line λ is the separation between HeI and HeII phases, the
first a normal liquid, the second superfluid. In this phase the liquid is capable
of flowing through narrow capillaries without friction. Experiments to prove
superfluidity where first performed by Kapitza21 (1938) at the Institute of
Physical Problems in Moscow and indipendently by J.F. Allen and A.D.
Misener (1938) in Cambridge.

19L. Alvarez 1911-1988, Nobel prize in Physics in 1968 for his contribution to particle
physics, in particular the bubble chamber

20H. Kamerlingh Onnes, 1853-1926, Nobel prize in Physics in 1913
21P.L. Kapitza, 1894-1984, Nobel prize in Physics in 1978

90



Figure 1: Phase diagram of superfluid He-4 (from J.C.Davis Group, Cornell)

Figure 2: Specific heat (from Huang)
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It is natural to associate the λ transition to the Bose Einstein condensa-
tion (London, 1938) modified by the molecular interactions. In fact, as we
will review in the following, the critical temperature for the condensation in
a non interacting gas of bosons is 3.14 ◦K, very close to Tλ.

The He3 also becomes superfluid but only at temperatures of the order
10−3◦K (1972, Lee, Osheroff and Richardson22): in this case pairs of fermions
condensate, a similar mechanism to the Cooper pairs for superconductors.
Recently, in 2005, the superfluidity has been observed in ultracold Fermi
gases (Ketterle23 et al) at very low temperature, 200 nK.

H2 solidifies at higher temperature because of stronger interactions among
his molecules.

An additional property of the Helium is that at low temperature (T <<
Tc) the specific heat varies as T3, as shown in Fig. 2.

To explain such a behavior Landau24 (1941) suggested to interpret the
quantum states of the liquid as a phonon gas with the linear dispersion
relation

ϵk = ℏck (11.2)

where c is the velocity of propagation of the sound in the fluid. The main
idea is that the body moving in the liquid excites sound waves which are
collective motions in the liquid. The liquid at low temperature must be
treated as a quantum liquid and its excitations are phonons as for the quan-
tum excitations of the vibrations of a crystal. A body moving in the helium
at low temperature does not loose energy transferring to single atoms but
excites collective quanta as phonons. The Helium dispersion relation curve
is measured by neutron scattering, see Fig. 3. Approximately one has

ϵk = ℏck, k << k0 (11.3)

with c = (239± 5) m/s

ϵk = ∆+
ℏ2(k − k0)

2

2σ
, k ∼ k0 (11.4)

22Nobel prize in Physics in 1978
23W. Ketterle, 1957- Nobel prize in Physics in 2001
24L. Landau, 1908-1968, Nobel prize in Physics in 1962
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and with ∆/kB = (8.65 ± 0.04) ◦K, with kB the Boltzmann constant, k0 =
(1.92 ± 0.01)108 cm−1, σ/m = 0.16 ± 0.01 with m the mass of the helium
atom. Therefore the dispersion relation is linear for small k and has a local
minimum at k = k0.

The nature of the excitations in the helium is studied by measuring the
change in energy and momentum in cold neutron scattering on Helium su-
perfluid (see for example, Palewsky et al, Physical Review 112, (1958), 11).
The reason is that cold neutrons have momentum close to the momentum of
the excitations (the energy of the neutron is ∼ 50◦K).

Making use of the conservation laws

1

2m
(p2

i − p2
f ) = ϵ(k) (11.5)

pi − pf = ℏk (11.6)

where pi(f) are the momenta of the incoming (outgoing) neutron one can
obtain the spectrum of the excitations.

Let us now see how it is possible that an object can move in a superfluid
without loosing energy (Landau criterion for superfluidity). Let us consider
an object of mass M moving in a superfluid. The only way in which it can
loose energy is by emission of a phonon

P2

2M
− (P− ℏk)2

2M
= −ℏ2k2

2M
+

P · kℏ
M

= ϵk (11.7)

Therefore

(V · k)ℏ = ϵk +
ℏ2k2

2M
≥ cℏk (11.8)

or
ℏV k ≥ |V · k| ≥ ck (11.9)

implying
V ≥ c (11.10)

Therefore if V ≤ c the process is prohibited. This explanation depends in
an essential way from the linear spectrum of the phonons. If the spectrum
of the excitations is quadratic the minimum threshold for loosing energy is
zero.
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At energies around k0 the object looses energy by emitting the so-called
rotons:

(V · k0)ℏ = ϵk0 +
ℏ2k20
2M

≥ ϵk0 (11.11)

or
V k0ℏ ≥ |V k0ℏ cos θ| ≥ ϵk0 = ∆ (11.12)

or
V ≥ vc (11.13)

with vc = ∆/(ℏk0) = 8.65 1.38 10−23J/(1.055 10−34 1.92 Js)×10−8 cm ∼ 58
m/s. The rotons are the elementary excitations associated to vortices in
the fluid. At low temperature the roton effects are negligible due to the
Boltzmann factor exp (−∆/kBT ). At the thermal equilibrium elementary
excitations have energies close to the minimum of ϵ that is zero. In presence
of a purely phonon spectrum the critical velocity is c = 239 m/sec, when
rotons are included the critical velocity drops to vc = 58 m/sec (observed in
He4 under pressure).

For a general spectrum ϵk the condition is

V ≥ ϵk
ℏk

(11.14)

Therefore the critical velocity, defined as

Vc = min(
ϵk
ℏk

) (11.15)

for a free particle spectrum, ϵ(p) = ℏ2k2/2m is zero.

11.2 Bose Einstein condensation for an ideal gas

Since the He4 atom contains six spin 1/2 particles which are bound in such
a way that the total spin is zero, we can consider an ideal gas consisting of
N bosons in a volume V . The partition function is given by (see. Appendix
I)

ΩB = kBT
∑
p

log [1− exp [β(−ϵp + µ)]] (11.16)
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Figure 3: E(◦K) versus k(angstrom−1). Experimental data and fit to the
neutron scattering data, From R.J. Donnelly, J.A. Donnelly and R.N. Hills,
Journal of Low temperature Physics, 44 1981 471
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where µ is the chemical potential and where β = 1/kBT . Let us now recall
the average number of an ideal gas of N non interacting bosons, derived by
using the grand partition function,

NB = −∂Ω
∂µ

=
∑
p

1

exp [β(ϵp − µ)]− 1
(11.17)

and passing to the continuum

N = N0 +
V

h3

∫
d3p

1

exp [β(ϵp − µ)]− 1
(11.18)

where N0 is the number of bosons with p = 0.

At T = 0 all bosons occupy the state with p = 0 (Bose condensation).
At finite temperature, T ̸= 0, only a fraction N0/N of bosons remain in the
state p = 0. For T >> Tc, where Tc is the critical temperature, there is no
condensate, N0 = 0, n = N/V requiring µ < 0 because of the singularity for
µ > 0. When T decreases, for fixed N/V , the absolute value of the chemical
potential increases until for temperatures sufficiently low reaches the value
of 0. The condensation starts when µ = 0

N0

N
= 0 µ = 0 (11.19)

or

N = 0 +
V

h3

∫
d3p

1

exp[ ϵp
kBTc

]− 1

=
V

h3
(2mkBTc)

3/24π

∫ ∞

0

x2
1

ex2 − 1
dx

=
V

λ3c
g3/2(1) (11.20)

where we have performed the substitution

x =
p√

2mkBTc
(11.21)

and

λc =

√
2πℏ2
mkBTc

(11.22)
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From this condition we can get the critical temperature

Tc =
1

kB

2πℏ2/m
[vg3/2(1)]2/3

=
1

kB

2πℏ2/m
[ζ(3/2)]2/3

(
N

V
)2/3 (11.23)

where g3/2(1) = ζ(3/2) ∼ 2.6 with ζ the Riemann function (see Appendix I).
Using the numerical values ρHe4 = 0.145 g/cm3 = mHe4N/V with mHe4 =
4mp, mp = 4 × 1.67 × 10−27Kg, one can get N/V . Then inserting ℏ =
1.05510−34 J sec, the Boltzmann constant kB = 1.38 10−23J/◦K, ζ(3/2) =
2.61, we get Tc = 3.14 ◦K. This temperature is very close to the critical
temperature of liquid Helium, Tλ = 2.17 ◦K, below which the helium becomes
superfluid.

For T < Tc µ remains zero and using eq. (11.18), with µ = 0 we get

N −N0

V
=

∫
d3p

h3
1

exp [ϵp/kBT ]− 1

=
1

λ3
g3/2(1) =

(
mkBT

2πℏ2

)3/2

g3/2(1) =
N

V

(
T

Tc

)3/2

(11.24)

or
N −N0

N
=

(
T

Tc

)3/2

(11.25)

or
N0

N
= 1−

(
T

Tc

)3/2

(11.26)

and
N0

V
=
N

V

[
1−

(
T

Tc

)3/2
]
T < Tc (11.27)

In conclusion below Tc a fraction of particles occupy the state with p = 0.
Therefore for T < Tc we have a condensate with a macroscopic number of
particles in the same quantum state with p = 0. Bose Einstein condensation
provides only a qualitative description of superfluidity. For example the
specific heat of a non interacting boson gas vanishes as T 3/2 while the specific
heat of He4 behaves as T 3. Furthermore we have superfluidity only for zero
velocity of the atoms given that the spectrum is the free particle one, ϵ =
p2/2m.
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11.3 Quantization of the Schrödinger field

The Schrödinger field ϕ(x, t) satisfies the equation

iℏ
∂

∂t
ϕ = −ℏ2

∇2

2m
ϕ (11.28)

which can be derived from the following Lagrangian

L = iℏϕ∗ϕ̇− ℏ2
1

2m
∇ϕ∗ · ∇ϕ (11.29)

The corresponding Hamiltonian density is given by

H = Πϕ̇− L = ℏ2
1

2m
∇ϕ∗ · ∇ϕ (11.30)

with Π = ∂L/∂ϕ̇ = iℏϕ∗. The commutation relations are

[ϕ(x, t),Π(y, t)] = iℏδ3(x− y) (11.31)

[ϕ(x, t), ϕ(y, t)] = [Π(x, t),Π(y, t)] = 0 (11.32)

or equivalently

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 [ak, a

†
k′ ] = δk,k′ (11.33)

Using the general solution of the Schrödinger equation

ϕ(x, t) =
1√
V

∑
k

ei(k·x−ωkt)ak (11.34)

with ωk = ℏk2/2m, the Hamiltonian of the field is given by

H =

∫
d3xH =

∑
k

ℏωka†kak (11.35)

As an application of the non relativistic field theory we will consider the
superfluidity theory.

Bogoliubov (1947) studied the fundamental state of a dilute gas of weakly
interacting bosons and their excitations using the second quantization of a
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many body system and assuming the following interaction Hamiltonian, see
[9, 10]:

HI =
1

2

∑
k1+k2=k′

1+k′
2

W (|k1 − k′
1|)a

†
k′
1
a†k′

2
ak1ak2 (11.36)

where ℏk1, ℏk2 (ℏk′
1, ℏk′

2) represent the momenta of incoming (outgoing)
bosons and ℏk′

1 − ℏk1 the transfer momentum. The function W (k) is the
Fourier transform of the four boson interaction

W (k) =

∫
dr⃗W (r)eik·r (11.37)

The dilute gas approximation justifies to consider only two boson scattering.

Bogoliubov was the first to prove the existence of the ”phonons” as col-
lective excitations in the quantum liquid.

Before discussing the Bogoliubov approach let us first review how one can
describe the superfluidity phase by use of the general approach of Ginzburg25-
Landau to phase transitions.

11.4 Ginzburg-Landau Model

The superfluidity phase transition can be derived within the Ginzburg-Landau
approach to phase transitions, assuming that the states of the system are de-
scribed by a scalar field which can be interpreted as the wave function of the
superfluid.

The Hamiltonian of the model (the free energy), which was proposed as
an effective description of field theory for phase transitions, is given by

Heff =

∫
d3xHeff (11.38)

with

Heff =
ℏ2

2m
(∇ϕ)†(∇ϕ)− µϕ†ϕ+

1

2
g(ϕ†ϕ)2 (11.39)

with µ and g positive constants. In particular µ < 0 for T > Tc and passes
through zero at Tc.

25V.L. Ginzburg, 1916-2009, Nobel prize in Physics in 2003
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Therefore the potential can be identified as

V (ϕ) = −µϕ†ϕ+
1

2
g(ϕ†ϕ)2 (11.40)

and is dominated for low density by the chemical potential and at large
density by the g term. The form of the potential is shown in Fig. 4. A
microscopic interpretation of the parameters µ and g can be found in [10].
They can be related to the strength of the four boson interaction and to the
density of the condensate (see next Section).

Let us now assume that the chemical potential depends on the tempera-
ture, so that µ < 0 for T > Tc, Tc being the critical temperature, and µ > 0
for T < Tc. The potential, for T < Tc, has a maximum in |ϕ| = 0 and a
minimum for

ϕ†ϕ =
µ

g
(11.41)

or

ϕ(x) = ϕ0 exp (iψ) =

√
µ

g
exp (iψ), (11.42)

Let us notice that the Hamiltonian (11.39) is invariant under the trans-
formation

ϕ(x) → ϕ(x) exp (iα), α ∈ [0, 2π) (11.43)

while the minimum state is not (ϕ0 exp (iψ) → ϕ0 exp [i(ψ + α)]). This phe-
nomenon is called Spontaneous Symmetry Breaking and it is used for describ-
ing phase transitions in different domains of physics.

The minimum is degenerate varying ψ ∈ [0, 2π). For simplicity let us
choose the minimum at ψ = 0. The series of the field in normal modes can
be performed with respect to the new minimum in ϕ0

ϕ(x) = ϕ0 + ϕ̃(x) = ϕ0 +
∑
k ̸=0

1√
V
ake

ik·x (11.44)

Notice that we are working in the Schrödinger representation: the operator
ϕ is evaluated at t = 0.

100



0.5 1.0 1.5 2.0
|ϕ|

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

V

Figure 4: The potential V corresponding to eq.(11.40) as a function of |ϕ| =√
ϕ†ϕ for T < Tc (blue), T = Tc (red) and T > Tc (green) for given values of

µ and g and in suitable units.

By substituting eq.(11.44) in the potential (11.40) one gets, by expanding
to second order in ϕ̃

V = −µ
[
ϕ2
0 + ϕ0(ϕ̃+ ϕ̃†) + ϕ̃†ϕ̃

]
+

1

2
g
[
ϕ4
0 + ϕ2

0(ϕ̃+ ϕ̃†)2 + 2ϕ3
0(ϕ̃+ ϕ̃†) + 2ϕ2

0ϕ̃
†ϕ̃
]

+O(ϕ̃3, ϕ̃4)

= −gϕ2
0

[
ϕ2
0 + ϕ0(ϕ̃+ ϕ̃†) + ϕ̃†ϕ̃

]
+

1

2
gϕ4

0 +
1

2
gϕ2

0(ϕ̃+ ϕ̃†)2 + gϕ3
0(ϕ̃+ ϕ̃†)

+gϕ2
0ϕ̃

†ϕ̃+O(ϕ̃3, ϕ̃4)

= −1

2
gϕ4

0 +
1

2
gϕ2

0(ϕ̃+ ϕ̃†)2 +O(ϕ̃3, ϕ̃4)

= −µ
2

2g
+

1

2
µ(ϕ̃+ ϕ̃†)2 +O(ϕ̃3, ϕ̃4) (11.45)

Let us now quantize the scalar field ϕ̃, by requiring standard commutation
relations ak e a†k. By substituting the normal mode series and integrating in
d3x the Hamiltonian density, one obtains

Heff =
∑
k ̸=0

[(
µ+

ℏ2k2

2m

)
a†kak +

µ

2
(aka−k + a†ka

†
−k)

]
+ E0 (11.46)
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where

E0 = −µ
2

2g
V +

µ

2

∑
k ̸=0

1 (11.47)

In eq.(11.47), V denotes the space volume.

The Hamiltonian (11.46) is not diagonal in the basis of occupation num-
bers because of the bi-linear terms a e in a†. However it is possible to find
a transformation (Bogoliubov transformation, see Appendix K) from ak(a

†
k)

to the operators Ak(A
†
k), defined as

Ak = cosh(
θk
2
)ak + sinh(

θk
2
)a†−k (11.48)

with
tanh θk =

µ

µ+ ℏ2k2

2m

(11.49)

One has
[Ak, A

†
k′ ] = δk,k′ (11.50)

Furthermore
Heff = Enew

0 +
∑
k ̸=0

ϵ(k)A†
kAk (11.51)

with

Enew
0 = E0 −

∑
k ̸=0

ϵ(k) sinh2(
θk
2
) (11.52)

and

ϵ(k) =

√(
µ+

ℏ2k2

2m

)2

− µ2 =

√
µ

m
ℏ2k2 +

(
ℏ2k2

2m

)2

(11.53)

The fundamental state is defined as

Ak|ϕ̃0 >= 0 (11.54)

Starting from this new vacuum state one can build the new Fock space with
the operators A†

k. For example, the first excited state (or quasi-particle) is
given by

A†
k|ϕ̃0 > (11.55)
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with energy

ϵ(k) =

√
µ

m
ℏ2k2 +

(
ℏ2k2

2m

)2

(11.56)

Therefore the spectrum is linear for small k while for large k behaves as k2.

In conclusion the Ginzburg-Landau approach is able to explain the spec-
trum of the liquid helium at low k but does not reproduce the local minimum
due to the rotons.

The relation of the new vacuum |ϕ̃0 > with the Fock vacuum state |0 >
is given in Appendix J.

11.5 Bogoliubov approach

We are assuming the boson gas in a rarefied state or that the average distance
between the particles

d ∼ (
N

V
)1/3 >> r0 (11.57)

where r0 denotes the range of the interaction. Under this hypothesis we
can consider only two boson in two boson interactions and neglect scattering
involving more than four bosons.26 The Hamiltonian describing the two
boson in two boson interaction is the Bogoliubov Hamiltonian

HI =
1

2

∑
k1+k2=k′

1+k′
2

W (|k1 − k′
1|)a

†
k′
1
a†k′

2
ak1ak2 (11.58)

For T << Tc all bosons tend to belong to the state k = 0, therefore
N0 ∼ N , where N is the total number of bosons, and

N −N0

N0

<< 1 (11.59)

Since N0 ∼ N >> 1 one can assume the operator a0 to be c-number a0 ∼
a†0 ∼

√
N0. So we consider the operators ak and a†k small with respect to

a0 and a†0, expanding the interaction Hamiltonian keeping only the terms

26We have also a cutoff on the momentum p < ℏ
r0
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which are linear or bi-linear in N0. In other words Bogoliubov separates the
condensate in the expansion of the field:

ϕ ∼ 1√
V
(
√
N0 +

∑
k ̸=0

ak exp [i(k · x)]) (11.60)

Let us first rewrite the interaction Hamiltonian by taking into account
the momentum conservation

HI =
1

2

∑
k1,k2,k′

1

W (|k1 − k′
1|)a

†
k′
1
a†k1+k2−k′

1
ak1ak2 (11.61)

Let us first list all the cases where the indices are zero. One has four zero
indices for k1 = k2 = k′

1 = 0. One has two zero indices when (we list also
the transfer momentum)

k1 = k′
1 = 0 k1 − k′

1 = 0

k1 = k2 = 0 k1 − k′
1 = −k′

1

k2 = k′
1 = 0 k1 − k′

1 = k1

k2 = k1 − k′
1 = 0 k1 − k′

1 = 0

k1 = k2 − k′
1 = 0 k1 − k′

1 = −k′
1

k′
1 = k1 + k2 = 0 k1 − k′

1 = k1 (11.62)

Therefore neglecting all terms of order O(a3k) and O(a
4
k) we obtain

HI =
1

2

[
W (0)(a†0a0)

2

+ W (0)a†0a0
∑
k2

a†k2
ak2 + a0a0

∑
k′
1

W (k′1)a
†
k′
1
a†−k′

1

+ a†0a0
∑
k1

W (k1)a
†
k1
ak1 +W (0)a†0a0

∑
k1

a†k1
ak1

+ a†0a0
∑
k′
1

W (k′1)a
†
k′
1
ak′

1
+ a†0a

†
0

∑
k1

W (k1)a−k1ak1

]
=

1

2

[
W (0)N2

0 + 2N0

∑
k ̸=0

(W (0) +W (k))a†kak

+ N0

∑
k ̸=0

W (k)(a†ka
†
−k + aka−k)

]
(11.63)
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Furthermore the number operator

N = a†0a0 +
∑
k ̸=0

a†kak (11.64)

so that neglecting order O(a4k)

N2
0 ∼ N2 − 2N

∑
k ̸=0

a†kak (11.65)

By substituting eq.(11.65) in eq.(11.63) we get

HI =
1

2

[
W (0)N2 + 2N

∑
k ̸=0

W (k)a†kak

+ N
∑
k ̸=0

W (k)(a†ka
†
−k + aka−k)

]
(11.66)

The total Hamiltonian, obtained adding to HI the kinetic term, can be di-
agonalized as shown in Appendix K by the Bogoliubov transformation given
in eq.(K.3)

tanh θk =
NW (k)

NW (k) + ℏ2k2
2m

(11.67)

The total Hamiltonian can be rewritten as∑
k

ϵ(k)A†
kAk (11.68)

with

ϵ(k) =

√[
NW (k) +

ℏ2k2
2m

]2
− [NW (k)]2

=

√[
ℏ2k2
2m

]2
+NW (k)

ℏ2k2
m

(11.69)

With a suitable choice of W (k) one is able to reproduce not only the
phonon part of the spectrum but also the roton part.
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Finally, by comparison with the Ginzburg-Landau Hamiltonian, we ob-
tain the identification

µ ∼ NW (0), g = W (0)V (11.70)

and so if we neglect the interaction, we recover µ = 0, or the vanishing of the
µ parameter below the critical temperature in the free boson gas approach
to superfluidity.
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12 Superconductivity

12.1 BCS Hamiltonian

Let us now consider, as a second application of non relativistic quantum field
theory, the phenomenon of superconductivity. Superconductivity is charac-
terized by two main properties:

• In many metals, for example lead, tin, aluminium, cadmium, niobium...
below a critical temperature Tc ∼ few ◦K, resistivity drops to zero
(the discovery was made working at low temperature with mercury by
Kamerlingh Onnes, 1911)

• Meissner effect: exclusion of magnetic fields from superconducting re-
gions. The magnetic field decreases exponentially over distances of

order 500
◦
A (Meissner, Ochsenfeld 27, 1933)

The theoretical explanation is based on the formation of Cooper28 pairs:
below the critical temperature the interaction between electrons close to the
Fermi surface and the phonons of the ion lattice can compensate for the
Coulomb repulsion and provides the mechanism for the formation of Cooper
pairs. Cooper showed (1956) that the Fermi sea of electrons is unstable
against the formation of Cooper pairs.

One can show that the excitations of such a system have a spectrum
which has a minimum corresponding to a finite energy gap and therefore an
electron moving in the metal cannot loose energy if its energy is below the
gap. Therefore the current flows without resistivity.

In the following we will follow the Bardeen29, Cooper, Schrieffer30 ap-
proach (1957). We consider a non relativistic spinor field

ψσ(x, t) =
1√
V

∑
k,σ

ck,σuσ exp [−i(ωkt− k · x)] (12.1)

27F.W. Meissner 1882-1974, R. Ochsenfeld, 1901-1993
28L. Cooper, 1930-, Nobel prize in Physics in 1972
29John Bardeen, 1908-1991, Nobel prize in Physics in 1956 and in 1972
30J. R. Schrieffer, 1931-, Nobel prize in Physics in 1972
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where uσ, σ = 1, 2 are the two orthogonal two dimensional spinors and the
operators ck,σ, c

†
k′,σ′ satisfy the anticommutation relations

[ck,σ, c
†
k′,σ′ ]+ = δk,k′δσ,σ′ (12.2)

The Bardeen, Cooper and Schrieffer (1957) Hamiltonian is given by the
grand canonical Hamiltonian which includes a term −µN where µ ∼ µF =
p2F/2m. In other words the chemical potential is approximated by its value
at the Fermi surface. We have

H =
∑
k,σ

ξkc
†
k,σck,σ −

1

V

∑
k,k′

Wk,lc
†
k,↑c

†
−k,↓c−k′,↓ck′,↑ (12.3)

with

ξk = ϵk − ϵF =
ℏ2k2

2m
− ℏ2k2F

2m
(12.4)

and Wkk′ = W ̸= 0 only for electrons close to the Fermi surface

|ξk|, |ξk′| ≤ ℏωD (12.5)

where ωD is the Debye frequency31 and ℏωD can be considered as an estimate
of the phonon energy, otherwise Wkk′ = 0. This can be understood from the
fact that only electrons close to the Fermi states can scatter from a phonon
and find a different and not occupied final state. The shell is very tiny
ωD/µF ∼ 10−3.

Since at low temperature the phonon electron interaction generates a
condensate with pairs of electron of opposite spin and momentum the new
vacuum (fundamental state) of the theory must be such that

< c−k,↓ck,↑ ≯= 0 and < c†−k,↓c
†
k,↑ ≯= 0 (12.6)

Therefore the new vacuum |BCS > ̸= |0 > since the standard vacuum |0 >
satisfies

ck,σ|0 >= 0 (12.7)

31The Debye frequency is defined by the total number of phonon modes: N =
∑

k =

V/(2π)3
∫
d3k = V/2π2v3sℏ3

∫ ℏΩD

0
ϵ2dϵ = V ω3

D/6π
2v3s where we have made use of the

dispersion relation ϵ = vsℏk
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Figure 5: The distribution function of electrons at 4 ◦K, as a function of
ϵk − ϵF . ℏωD is of the order of 102 ◦K.

Let us now see whether it is possible to find a new vacuum |BCS > such
that

< BCS| : c−k,↓ck,↑ : |BCS >= 0 (12.8)

and
< BCS|c−k,↓ck,↑|BCS >= Qk ̸= 0 (12.9)

or
c−k,↑ck,↓ = Qk+ : c−k,↑ck,↓ : (12.10)

As we have done in superfluidity we perform the transformation from ck,↑, c−k,↓
to a new pair of operators Ak, Bk

Ak = ukck,↑ − vkc
†
−k,↓

Bk = ukc−k,↓ + vkc
†
k,↑ (12.11)

where we assume uk, vk real.

By requiring the anticommutation relation for Ak, Bk

[Ak, A
†
k′ ]+ = [Bk, B

†
k′ ]+ = δk,k′ (12.12)

we get
u2k + v2k = 1 (12.13)

which can be satisfied assuming

uk = cos θk , vk = sin θk (12.14)
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We require also
Ak|BCS >= Bk|BCS >= 0 (12.15)

By using the inverse relations

ck,↑ = ukAk + vkB
†
k

c−k,↓ = −vkA†
k + ukBk (12.16)

we get

c−k,↓ck,↑ = (−vkA†
k + ukBk)(ukAk + vkB

†
k) = ukvk+ : c−k↓ck↑ : (12.17)

with

: c−k↓ck↑ : = −ukvk(A†
kAk +B†

kBk)

+ u2kBkAk − v2kA
†
kB

†
k (12.18)

We can now perform the transformation in the Hamiltonian: first the kinetic
term∑

k

ξk(c
†
k↑ck↑ + c†k↓ck↓) = 2

∑
k

ξkv
2
k +

∑
k

ξk(u
2
k − v2k)(A

†
kAk +B†

kBk)

− 2
∑
k

ξkukvk(B
†
kA

†
k + AkBk) (12.19)

and then the interaction term, neglecting terms of order O(c4k),

− 1

V

∑
k,k′

Wkk′c†k,↑c
†
−k,↓c−k′,↓ck′,↑ = − 1

V

∑
k,k′

Wkk′ukvkuk′vk′

− 1

V

∑
k

ukvk
∑
k′

Wkk′(: c†k′,↑c
†
−k′,↓ : + : c−k′,↓ck′,↑ :)

(12.20)

Summing eq.(12.19) and eq.(12.20) we get

2
∑
k

ξkv
2
k +

∑
k

ξk(u
2
k − v2k)(A

†
kAk +B†

kBk)

− 2
∑
k

ξkukvk(AkBk +B†
kA

†
k)
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− 1

V
[
∑
kk′

Wkk′ukvkuk′vk′

+
∑
k,k′

Wkk′(−2)ukvkuk′vk′(A†
k′Ak′ +B†

k′Bk′)

+
∑
k,k′

Wkk′ukvk(u
2
k′ − v2k′)(Bk′Ak′ + A†

k′B
†
k′)] (12.21)

Requiring the vanishing of the term AkBk +B†
kA

†
k one gets

2ξkukvk =
1

V

∑
k′

Wkk′(u2k − v2k)uk′vk′ (12.22)

so that the total Hamiltonian is

H =
∑
k

Ek(A
†
kAk +B†

kBk) + E0 (12.23)

with

Ek = ξk(u
2
k − v2k) +

2

V

∑
k′

Wkk′uk′vk′ukvk (12.24)

and

E0 = 2
∑
k

ξkv
2
k −

1

V

∑
kk′

Wkk′ukvkuk′vk′ (12.25)

The operators A†
k, B

†
k(Ak, Bk) are the creation (annihilation) operators of

quasi-particles.

The eq.(12.22) can be rewritten as

ξk sin 2θk =
1

2V

∑
k′

sin 2θk′Wkk′ cos 2θk (12.26)

The eq.(12.24), using eq.(12.26), can be rewritten as

Ek = ξk cos 2θk + ξk
(sin 2θk)

2

cos 2θk

=
ξk

cos 2θk
(12.27)
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By eliminating ξk in eq. (12.26) using eq.(12.27), we obtain

Ek cos 2θk sin 2θk =
1

2V

∑
k′

sin 2θk′Wkk′ cos 2θk (12.28)

or

Ek sin 2θk =
1

2V

∑
k′

sin 2θk′Wkk′ (12.29)

By defining
∆k = Ek sin 2θk (12.30)

we have

∆k =
1

2V

∑
k′

Wkk′
∆k′

Ek′
(12.31)

with

Ek =
√
ξ2k +∆2

k (12.32)

Using the explicit form of Wkk′ ,

∆k =
W

2V

∑
k′

∆k′

Ek′
(12.33)

we see that ∆ does not depend on k

∆ =
W

2V

∑
k′

∆

Ek′
(12.34)

We can now study the gap equation (12.34) which has the gapless trivial
solution ∆ = 0. Looking for a solution with ∆ ̸= 0, we obtain

1 =
W

2V

∑
k′

1√
ξ2k′ +∆2

(12.35)

This equation can be studied by going into the continuum

1 =
W

2V
V

1

(2π)3

∫
d3k

1√
ξ(k)2 +∆2

=
W

2

1

(2π)3

∫
d3k

1√
ξ(k)2 +∆2

(12.36)
where the integral is performed around the Fermi surface |ξ(k)| ≤ ℏωD.
Notice that there is no solution for W < 0, case corresponding to a repulsive
force.
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12.2 Study of the gap equation

Let us now study the gap equation

1 =
W

2

1

(2π)3

∫
|ξ(k)|≤ℏωD

dΩk2dk
1√

(ϵ(k)− ϵF )2 +∆2

=
W

2

1

(2π)3

∫
|ξ(k)|≤ℏωD

dΩk2
dk

dϵ

dϵ√
(ϵ− ϵF )2 +∆2

∼ W

4
ρF

∫
|ξ(k)|≤ℏωD

dϵ√
(ϵ− ϵF )2 +∆2

=
W

4
ρF

∫ +ℏωD

−ℏωD

dξ√
ξ2 +∆2

=
W

2
ρFarcsinh

ℏωD
∆

(12.37)

where we have introduced the density of states at the Fermi surface

ρF = 2
4π

(2π)3
k2
dk

dϵ
|kF

=
1

π2

k2

dϵ
dk

|kF

=
1

π2

kFm

ℏ2
|kF

(12.38)

where we have introduced the Fermi momentum ℏkF .

Inverting eq.(12.37), we get the gap energy. If WρF/2 << 1,

∆ = 2ℏωD exp (− 2

WρF
) = 2ℏωD exp (− 2π2ℏ2

WmkF
) (12.39)

For typical metals WρF ∼ 0.3− 0.6, see p.448 of ref. [10]. Then, considering
ℏωD ∼ 100 ◦K and WρF ∼ 0.6, we get ∆ ∼ 4 ◦K.

In conclusion the energy of the first excitation is given by

Ek =

√
(
ℏ2k2

2m
− ϵF )2 +∆2 (12.40)
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Figure 6: The energy of the first excitation, Ek, rescaled by ∆, as a function
of p = |p| = ℏk

The spectrum, as shown in Fig. 6, has a gap, meaning that one cannot
create excitations with arbitrary small energy. The magnitude of this gap
is ∆. The quasiparticles are mixture of electrons and holes (see eq.(12.11)).
Furthermore since the quasiparticles have spin 1/2 the quasiparticles must
appear in pairs, so the minimim energy is 2∆.

12.3 Finite temperature

Let us now compute how the gap ∆ depends on the temperature. Starting
again from the gap equation, recall that

∆k =
1

V

∑
k′

Wkk′uk′vk′

=
1

V

∑
k′

Wkk′ < BCS|c−k′,↓ck′,↑|BCS >

=
1

V

∑
k′

Wkk′uk′vk′ < BCS|[1− (A†
k′Ak′ +B†

k′Bk′)]|BCS >

(12.41)

At T = 0, since there is no quasi particles, we recover eq.(12.33) and the
formula for ∆ ≡ ∆(T = 0). However this method can be extended at finite
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temperature T . Taking the average over a statistical ensemble at temperature
T we have

∆k =
1

V

∑
k′

Wkk′uk′vk′ < [1−(A†
kAk+B

†
kBk)] >=

1

V

∑
k′

Wkk′uk′vk′(1−2f(Ek′))

(12.42)
where f(Ek) is the probability to have an excitations with energy Ek at
temperature T :

f(Ek) =
1

1 + eβEk
(12.43)

Therefore the gap equation at finite temperature becomes

∆k =
1

2V

∑
k′

Wkk′
∆k′

Ek′
(1− 2f(Ek′)) (12.44)

Using the explicit expression for W one gets

1 =
W

2V

∑
k′

1

Ek′
(1− 2f(Ek′)) (12.45)

or

−1 +
W

2V

∑
k′

1

Ek′
=
W

V

∑
k′

f(Ek′)

Ek′
(12.46)

Passing to the continuum

−1 +
1

2V

V

(2π)3
W

∫
d3k

1√
ξ2(k) + ∆(T )2

=
1

V

V

(2π)3
W

∫
d3kf(E(k))

1

E(k)

(12.47)
Let us first compute the l.h. side. Proceeding as before, we get

l.h.side = −1 +
1

2
WρFasinh

ℏωD
∆(T )

= −1 +
1

2
WρF ln

2ℏωD
∆(T )

=
1

2
WρF (ln

2ℏωD
∆(T )

− 2

WρF
)

=
1

2
WρF (ln

2ℏωD
∆(T )

+ ln
∆(0)

2ℏωD
)

=
1

2
WρF ln

∆(0)

∆(T )
(12.48)
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Figure 7: The gap ∆, rescaled by KBTc as a function of T/Tc for T < Tc.

Summing up we have

1

2
WρF ln

∆(0)

∆(T )
=

1

2
WρF

∫ ℏωD

−ℏωD

dξ
1√

ξ2 + (∆(T ))2
1

eβ
√
ξ2+(∆(T ))2 + 1

∼ 1

2
WρF

∫ ∞

−∞
dx

1√
x2 + u2

1

e
√
x2+u2 + 1

(12.49)

with u = β∆(T ), x = βξ. The integral has been extended to (−∞,∞)
because of its rapid convergence. So:

ln
∆(0)

∆(T )
= 2

∫ ∞

0

dx
1√

x2 + u2
1

e
√
x2+u2 + 1

(12.50)

This integral is discussed in [9]. For small ∆,

ln
∆(0)

∆(T )
∼ ln

πkBT

γ∆(T )
+

7ζ(3)

8π2

(∆(T ))2

(kBT )2
(12.51)

where γ/π ∼ 0.57 and ζ(3) ∼ 1.2. For ∆ = 0 we get the critical temperature:

kBTc =
γ

π
∆(0) ∼ 0.57∆(0) (12.52)

Using eq. (12.51), expanding for small T −Tc, one gets that by increasing
the temperature the gap becomes smaller and vanishes at TC as

∆(T ) =

√
8π

7ζ(3)
kBTc(1−

T

Tc
)
1
2 ∼ 3.07kBTc(1−

T

Tc
)
1
2 (12.53)
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Tc(
◦K) ℏωD/kB (◦K) TF × 104 (◦K) Wρ/2 ∆(T = 0)/kBTc

BCS 1.76
Cd 0.56 164 8.7 0.18 1.60 ± 0.05
Al 1.2 375 13.6 0.18 1.68 ± 0.05
Sn 3.75 195 11.8 0.25 1.73± 0.05
Pb 7.22 96 11.0 0.39 2.15± 0.02

Table 1: Some superconductor properties (From [10, 12, 25])

As shown in Table 12.3, the prediction of BCS theory ∆(T = 0) ∼
1.76kBTc is quite well satisfied.

Let us finally show that E0 < 0, so that |BCS > is the real ground state.
Using (12.27) we can write

ξk = Ek cos 2θk (12.54)

and using (12.29) we can rewrite E0:

E0 = 2
∑
k

ξkv
2
k −

1

V

∑
kk′

Wkk′ukvkuk′vk′

= 2
∑
k

Ek cos 2θk sin
2 θk −

1

2

∑
k

Ek sin
2 2θk

= 2
∑
k

Ek(cos 2θk sin
2 θk − sin2 θk cos

2 θk)

= −2
∑
k

Ek sin
4 θk (12.55)

12.4 The BCS ground state

Let us now study the BCS ground state. It is based on the idea that electrons
form Cooper pairs. The BCS vacuum is given by

|BCS >= Πk(uk + vkc
†
k↑c

†
−k↓)|0 > (12.56)

Thus it is a superposition of states of Cooper pairs.
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This state is normalized:

1 =< BCS|BCS > (12.57)

and
< BCS|c†k↑c

†
−k↓|BCS >= vkuk (12.58)

Proof:

< BCS|BCS > = < 0|Πk(uk + vkc−k↓ck↑)Πk′(uk′ + vk′c†k′↑c
†
−k′↓)|0 >

= < 0|ΠkukΠk′uk′ +Πkvkc−k↓ck↑Πk′vk′c†k′↑c
†
−k′↓|0 >

= Πku
2
k+ < 0|Πk v

2
kc−k↓ck↑Πk′vk′c†k′↑c

†
−k′↓δk,k′ |0 >

= Πk(u
2
k + v2k) = 1 (12.59)

where use has been made of anticommutation relations:

< 0|c−k↓ck↑c
†
k↑c

†
−k↓|0 >=< 0|c−k↓(1−c†k↑ck↑)c

†
−k↓|0 >=< 0|c−k↓c

†
−k↓−c−k↓c

†
k↑ck↑c

†
−k↑|0 >= 1

(12.60)
Furthermore

< BCS|c†k↓c
†
−k↑|BCS > = < 0|Πk′(uk′ + vk′c−k′↓ck′↑)c

†
k↑c

†
−k↓

Πk′′(uk′′ + vk′′c†k′′↑c
†
−k′′↓)|0 >

= vkuk (12.61)

The same result can be obtained by the observation that the ground state
must satisfy

Ak|BCS >= 0, Bk|BCS >= 0, ∀k (12.62)

and therefore
|BCS >∼ ΠkAkBk|0 > (12.63)
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A Conventions and units

In theoretical and experimental particle physics it is common to use The
System of Natural Units which correspond to use

c = 1, ℏ = 1 (A.1)

These two conditions reduce the three independent quantities, mass, time and
length to one, usually the energy. Dimensional analysis of physical quantities
are evaluated in terms of energy and all quantities are measured in eV (KeV,
MeV, GeV,...).

From c = 1 using for example

E =
√
p2 +m2 (A.2)

we deduce that dimensions of momentum and mass are [E]1, from ℏ = 1 and
c = 1 since [p][x] = [E]0 we get

[x] = [t] = [E]−1 (A.3)

Useful conversion factors are listed here [18]:

1 eV = 1.602176487 1012 erg (A.4)

1 eV

c2
= 1.782661758 10−33 g (A.5)

ℏc = 197.3269631 MeV fm (A.6)

where 1 fm (fermi)= 10−13 cm.

(ℏc)2 = 0.389379338 GeV2 mbarn (A.7)

Let us now discuss the dimensions of the fields. Since the action has
the same dimension of ℏ, in natural units the action is dimensionless. As a
consequence since

S =

∫
d4xL (A.8)

the Lagrangian has dimensions [E]4. By looking at the corresponding la-
grangians, it is easy to find that the dimensions of the Klein-Gordon and
electromagnetic fields are [E]1 while the ones of the Dirac field are [E]3/2.
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In these lectures we use the Heaviside-Lorentz system of electromagnetic
units [6], which corresponds to choose ϵ0 = 1 and µ0 = 1. In this system the
Hamiltonian in the vacuum is

H =
1

2

∫
d3x(E2 +B2) (A.9)

The non homogeneous Maxwell equations are

∇ · E = ρ, ∇×B− 1

c

∂E

∂t
= j (A.10)

The structure constant is

α =
e2

4πℏc
(A.11)

or in natural units simply

α =
e2

4π
(A.12)

120



B Fourier transform of the Heaviside distri-

butions 1, δ and θ.

In this section we review the definition of Fourier transform of a temperate
distribution [22]. For any distribution temperate T , defined by the linear and
continuous functional

T : φ→ (T, φ) (B.1)

where φ belong to the Schwartz space, the Fourier transform FT is defined
by

(FT, φ) = (T, Fφ) (B.2)

Fourier transform of the distribution 1. For every test function φ
we have

(F1, φ) = (1, Fφ) =

∫
Fφ(p)dp = (2π)n/2φ(0) = ((2π)n/2δ, φ) ∀φ ∈ S

or
F1 = (2π)n/2δ (B.3)

Fourier transform of the distribution δ.

(Fδ, φ) = (δ, Fφ) = Fφ(0) =
1

(2π)n/2

∫
φ(x)dx = (

1

(2π)n/2
, φ) (B.4)

therefore

Fδ =
1

(2π)n/2
(B.5)

Fourier transform of the distribution θ. Let us compute the Fourier
transform of the Heaviside distribution θ:

Fθ(p) =
1√
2π

∫ +∞

0

θ(x)e−ipxdx =
1

i
√
2π

1

p− i0
(B.6)
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Using the definition of Fourier transform of a temperate distribution, we
have

(Fθ, φ) = (θ, Fφ) =

∫ +∞

0

(Fφ)(p)dp

= lim
ϵ→0+

∫ +∞

0

e−ϵp(Fφ)(p)dp

= lim
ϵ→0+

∫ +∞

0

e−ϵp
1√
2π

∫ +∞

−∞
φ(x)e−ixpdxdp

= lim
ϵ→0+

1√
2π

∫ +∞

−∞
φ(x)

∫ +∞

0

e−(ϵ+ix)pdpdx

= lim
ϵ→0+

1√
2π

∫ +∞

−∞
φ(x)

1

ϵ+ ix
dx

=
1

i
√
2π

lim
ϵ→0+

∫ +∞

−∞

1

x− iϵ
φ(x)dx (B.7)

where use has been made of the Fubini theorem.

We have also

Fθ =
1

i
√
2π

1

p− i0
= − i√

2π
Pv

1

p
+

√
π

2
δ(p). (B.8)

where we have made use of

1

p− i0
= Pv

1

p
+ iπδ(p) (B.9)
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C The distribution 1
p−i0

Let us considered the tempered distribution log(x+ iy). We have

d

dx
log(x+ iy) =

1

x+ iy
(C.1)

Therefore

lim
y→0+

1

x+ iy
= lim

y→0+

d

dx
log(x+ iy) (C.2)

On the other hand we have

lim
y→0+

log(x+ iy) = lim
y→0+

[log |x+ iy|+ iArg(x+ iy)]

= log |x|+ iπθ(−x) (C.3)

By considering the corresponding distributions se have

lim
y→0+

∫
log(x+ iy)φ(x)dx =

∫
[log |x|+ iπθ(−x)]φ(x)dx (C.4)

Therefore using (C.3) we obtain

1

x+ i0
= lim

y→0+

1

x+ iy
= lim

y→0+

d

dx
log(x+ iy)

=
d

dx
lim
y→0+

log(x+ iy) =
d

dx
[log |x|+ iπθ(−x)]

= Pv
1

x
− iπδ(x) (C.5)

In analogous way we have

1

x− i0
= Pv

1

x
+ iπδ(x) (C.6)
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D Coherent states

Aim of this Appendix is the definition and the study of the properties of
the coherent states. The coherent states |c > are defined as eigenvectors of
the annihilation operator of the harmonic oscillator a. Their explicit from is
given by

|c >= A1/2

∞∑
n=0

cn√
n!
|n > (D.1)

where

|n >= (a†)n√
n!

|0 > (D.2)

and
A = exp (−|c|2) (D.3)

c is a complex number since the operator a is not hermitian. These states
satisfy the following properties:

< c|c >= 1 (D.4)

|c >= A1/2 exp (ca†)|0 > (D.5)

a|c >= c|c > (D.6)

< c|N |c >=< c|a†a|c >= |c|2 (D.7)

In fact we have

< c|c > = A
∑
n

∑
n′

< n|n′ >
1√

n!
√
n′!

(c∗)ncn

= exp (−|c|2) exp (|c|2) = 1 (D.8)

|c >= A1/2

∞∑
n=0

cn√
n!

(a†)n√
n!

|0 >= A1/2 exp (ca†)|0 > (D.9)

a|c >=
∞∑
n=1

cn√
(n− 1)!

|n− 1 >= c|c > (D.10)

Finally eq.(D.7) derives directly from eq.(D.6).
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As an application let us build the coherent states for the electromag-
netic field using the creation operator of a photon with momentum k and
polarization α

|cαk >= A1/2

∞∑
n=0

(cαk)
n

√
n!

|n > (D.11)

with

|n >= (aα†k )n√
n!

|0 > (D.12)

We can then compute the expectation value of the electric field in the
radiation gauge, E(t,x) = −Ȧ(t,x), which turns out to be equal to

< cαk|E(t,x)|cαk > = − < cαk|
∑
k′

∑
α′=1,2

1√
2V ωk′

(−iωk′)ϵα
′

k′ [aα
′

k′e−ik
′x − h.c.]|cαk >

= iϵαk

√
ωk
2V

[cαke
−ikx − c.c.]

= −ϵαk

√
2ωk
V

|cαk| sin (k · x− ωkt+ δαk) (D.13)

where
cαk = |cαk| exp (iδαk) (D.14)

If we instead consider the expectation value of the electric field E(t,x) on a
state with a definite number of photons |Nα1

k1
>, the result is zero

< Nα1
k1
|E(t,x)|Nα1

k1
>= 0 (D.15)

In conclusion the coherent state is the quantum state which is closer to a
classical electromagnetic wave.
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E Path integral for field theory

Path integral for field theory is constructed by using the same procedure of
path integral for quantum mechanics. It is convenient, since the quantum
fields are expressed in terms of creation and annihilation operators, to con-
sider the eigenvectors of such operators, the coherent states. Let us consider
a set of creation operators a†i and build the coherent state

|ϕ >= exp (
∑
i

ϕia
†
i )|0 > (E.1)

where ϕi are a set of complex numbers. As we have seen in the Appendix D
we have

ai|ϕ >= ϕi|ϕ > (E.2)

Notice that, taking the hermitian conjugate, we obtain

< ϕ|a†i =< ϕ|ϕ̄i (E.3)

where ϕ̄i denotes the complex conjugate of ϕi, and

< η|ϕ >= exp (
∑
i

η̄iϕi) (E.4)

These states are not normalized

< ϕ|ϕ >= exp (
∑
i

ϕ̄iϕi) (E.5)

We have

< ϕ|ϕ > = < 0| exp (
∑
j

ϕ̄jaj) exp (
∑
i

ϕia
†
i )|0 >

= < 0| exp (
∑
i

ϕia
†
i ) exp (

∑
j

ϕ̄jaj)|0 > exp (
∑
i

ϕ̄iϕi)

= exp (
∑
i

ϕ̄iϕi) (E.6)

where we have used

exp (A) exp (B) = exp (A+B) exp (
1

2
[A,B]) = exp (

1

2
[A,B]) exp (B) exp (A)

(E.7)
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which holds provided the commutator be a c-number.

The coherent states satisfy also a completeness relation∫
Πi

1

π
dϕ̄idϕi exp (−

∑
i

ϕ̄iϕi)|ϕ >< ϕ| = I (E.8)

where dϕ̄idϕi = dReϕid Imϕi. The proof of (E.8) is based on Schur’s
Lemma32. First we note that ai, a

†
i act irreducibly on the Fock space.Then

we need to show that the left hand side of eq. (E.8) commute with ai and
a†i . We have

ai

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi)|ϕ >< ϕ| =

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi)ϕi|ϕ >< ϕ|

= −
∫
dϕ̄dϕ

∂

∂ϕ̄i
[exp (−

∑
i

ϕ̄iϕi)]|ϕ >< ϕ|

=

∫
dϕ̄dϕ[exp (−

∑
i

ϕ̄iϕi)]|ϕ >
∂

∂ϕ̄i
< ϕ|

=

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi)|ϕ >< ϕ|ai

(E.9)

where we have set dϕ̄dϕ ≡= Πi
1
π
dϕ̄idϕi. Taking the adjoint one can also

check that also a†i commute with the left hand side of eq. (E.8). The Schur’s
Lemma then guarantees that the left hand side of eq. (E.8) is multiple of the
identity operator.

The normalization is chosen so that∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi) < 0|ϕ >< ϕ|0 >=
∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi) = 1

(E.10)
Notice that we have also

a†i |ϕ >=
∂

∂ϕi
|ϕ > (E.11)

32Schur Lemma. Let S(G) be an irreducible representation of a group G on the vector
space V and A an operator on V . If [A,S(g)] = 0 ∀g ∈ G then A is multiple of the identity
operator, A = λI. For the proof, see [24]
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Let us now consider the partition function:

Z = Tr exp[−βH] =
∑
n

< n| exp[−βH]|n >= (E.12)

where β = 1/kBT . Using eq.(E.8) we can pass to the coherent state repre-
sentation

Z =

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi)
∑
n

< n|ϕ >< ϕ| exp[−βH]|n >

=

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi)
∑
n

< ϕ| exp[−βH]|n >< n|ϕ >

=

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi) < ϕ| exp[−βH]|ϕ > (E.13)

Notice that in order to use the completeness relation∑
n

|n >< n| = 1 (E.14)

we have commuted < n|ϕ > with < ϕ|n >. In the case of fermions this (anti)
commutation gives a minus sign. We can now repeat the derivation of path
integral. Let us assume the following Hamiltonian

H =
∑
ij

kija
†
iaj +

∑
ijkl

Vijkla
†
ia

†
jakal (E.15)

and divide the time interval β in N interval of length δ. Then we have (ϕ ≡ ϕi
and the sum over i is understood)

Z =

∫
dϕ̄dϕ exp (−

∑
i

ϕ̄iϕi) < ϕ| exp[−βH]|ϕ >

= lim
δ→0

∫
ΠN−1
n=0 dϕ̄

ndϕn exp (−ϕ̄nϕn) < ϕ0| exp[−δH]|ϕ1 > . . . < ϕN−1| exp[−δH]|ϕN >

(E.16)

where ϕ0 = ϕN = ϕ.
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Now

< ϕn+1| exp[−βH]|ϕn > ∼ < ϕn+1|ϕn > −δ < ϕn+1|H|ϕn >

= < ϕn+1|ϕn > (1− δ
< ϕn+1|H|ϕn >
< ϕn+1|ϕn >

)

= < ϕn+1|ϕn > (1− δH(ϕ̄n+1, ϕn))

= exp (ϕ̄n+1ϕn)(1− δH(ϕ̄n+1, ϕn))

∼ exp (ϕ̄n+1ϕn) exp [−δH(ϕ̄n+1, ϕn)] (E.17)

where H(ϕ̄n+1, ϕn) is the function obtained by the substitution a† → ϕ̄,
a→ ϕ.

By substituting eq.(E.17) in eq.(E.16), we obtain

Z = lim
δ→0

∫
ΠN−1
n=0 dϕ̄

ndϕn exp [((ϕ̄n+1 − ϕ̄n)]ϕn] exp [−δH(ϕ̄n+1, ϕn)]

= lim
δ→0

∫
ΠN−1
n=0 dϕ̄

ndϕn exp+[δ((
(ϕ̄n+1 − ϕ̄n)ϕn

δ
−H(ϕ̄n+1, ϕn)]

≡
∫

Dϕ̄Dϕ exp[−
∫ β

0

dτL] (E.18)

where

L = − ˙̄ϕϕ+H(ϕ̄, ϕ)

=
∑
i,j

[− ˙̄ϕiϕj +
∑
i,j

kijϕ̄iϕj +
∑
ijkl

Vijklϕ̄iϕ̄jϕkϕl] (E.19)

By going back to the configuration space we obtain

Z =

∫
Dϕ̄(τ, x)Dϕ̄(τ, x)e−S (E.20)

where

S =

∫ β

0

dτ

∫
d3x[ϕ̄∂τϕ+

1

2m
(∇ϕ)∗(∇ϕ) + V (x− y)ϕ̄(x)ϕ(x)ϕ̄(y)ϕ(y)]

(E.21)
The functional integration is performed over all the fields satisfying periodic
boundary conditions

ϕ(τ, x) = ϕ(τ + β, x) (E.22)
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which imply

ϕ(τ, x) =
∞∑

n=−∞

eiωnτϕ(ωn, x) (E.23)

where

ωn =
2πn

β
(E.24)

As we have already noticed for fermions, we require antiperiodic boundary
conditions

ψ(τ, x) = −ψ(τ + β, x) (E.25)

which imply

ϕ(τ, x) =
∞∑

n=−∞

eiωnτϕ(ωn, x) (E.26)

where

ωn =
π(2n+ 1)

β
(E.27)
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F Yukawa potential

Let us consider the static equation for the Klein-Gordon field in presence of
a point-like source

(−∇2 +m2)E(x) = δ3(x) (F.1)

By Fourier transforming, we obtain

(q2 +m2)FE(q) = (2π)−3/2 (F.2)

where FE(q) denotes the Fourier transform of E. Therefore

FE(q) =
1

(2π)3/2
1

q2 +m2
(F.3)

where q = |q|, and

E(x) =
1

(2π)3/2

∫
d3qFE(q) exp (iq · x) (F.4)

Therefore

E(x) =
1

(2π)3

∫
d3q

1

q2 +m2
exp (iq · x)

=
1

(2π)3

∫ ∞

0

dq
q2

q2 +m2

∫ 1

−1

d cos θ

∫ 2π

0

dϕ exp (iqx cos θ)

=
1

2π2

∫ ∞

0

dq
q2

q2 +m2

sin qx

qx

=
1

2π2

∫ ∞

−∞
dq

q

q2 +m2

sin qx

x

(F.5)

where we recall x = |x|. The integral can be compute in the complex plane
by using sin qx = (2i)−1(eiqx − e−iqx) and closing the contour above for the
first exponential or below for the second. By using the residue theorem we
get

E(x) =
e−m|x|

4π|x|
(F.6)

In conclusion we get a screened Coulomb potential with a range of order
m−1. For m = 0 we recover, apart the sign, the Coulomb potential.
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G Dirac equation solutions and their proper-

ties

G.1 Spinors

Solutions of the Dirac equations can be written, using the solutions in the
rest frame of the electrons, as

ur(p) =
p̂+m√

2m(E +m)
ur(0), vr(p) =

−p̂+m√
2m(E +m)

vr(0), r = 1, 2 (G.1)

i) the solutions are normalized

ūr(p)us(p) = δrs, v̄r(p)vs(p) = −δrs (G.2)

In fact we have

ūr(p)us(p) =
1

2m(m+ E)
u†(0)r(p̂

† +m)γ0(p̂+m)us(0)

=
1

2m(m+ E)
ū(0)γ0(p̂† +m)γ0(p̂+m)us(0)

=
1

2m(m+ E)
ū(0)(p̂+m)2us(0)

=
1

(m+ E)
ūr(0)(p̂+m)us(0)

= ūr(0)us(0)

= δrs (G.3)

where we have used
ūr(0)γ

ius(0) = 0 (G.4)

We have in fact

ūr(0)γ
ius(0) = ur(0)

†γius(0) = u†r(0)γ
iγ0us(0) = −ūr(0)γius(0) = 0

(G.5)
In similar way one can prove the normalization for the v.
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ii) By introducing the two-component non relativistic spinors

χ1 = η1 =

(
1
0

)
, χ2 = η2 =

(
0
1

)
(G.6)

the solutions can be written using the Dirac-Pauli representation of the Dirac
matrices as

ur(p) = A

(
χr

Bp · σχr

)
, vr(p) = A

(
Bp · σηr

ηr

)
, (G.7)

with

A =

(
E +m

2m

)1/2

, B =
1

E +m
(G.8)

The explicit form is

u1(p) = A


1
0
Bp3

B(p1 + ip2)

 , u2(p) = A


0
1

B(p1 − ip2)
−Bp3

 (G.9)

v1(p) = A


B(p1 − ip2)

−Bp3
1
0

 , v2(p) = A


Bp3

B(p1 + ip2)
0
1

 (G.10)

In fact we have

ur(p) =
p̂+m√

2m(E +m)
ur(0)

=
1√

2m(E +m)

(
E +m −p · σ
p · σ −E +m

)(
χr
0

)
=

(
Aχr

ABp · σχr

)
(G.11)

iv) The spinors satisfy

u†r(p)us(p) = δrs
E

m
= v†r(p)vs(p) (G.12)
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In fact we have

u†r(p)us(p) =
1

2m(m+ E)
u†r(0)(p̂

† +m)(p̂+m)us(0)

=
1

2m(m+ E)
ūr(0)(p̂+m)γ0(p̂+m)us(0)

=
1

m(m+ E)
ūr(0)E(m+ p̂)us(0)

=
1

m(m+ E)
ūr(0)E(m+ E)us(0)

=
E

m
δrs (G.13)

where we have used

(p̂+m)γ0(p̂+m) = (p̂+m)(γ0γµpµ + γ0m)

= (p̂+m)(2g0µpµ − p̂γ0 + γ0m)

= (p̂+m)(2E − p̂γ0 + γ0m)

= 2E(p̂+m) + (p̂+m)(−p̂+m)γ0

= 2E(p̂+m) (G.14)

Similarly for v.

v) The spinors satisfy also

u†(p)v(−p) = 0 = v†(p)u(−p) (G.15)

and
ū(p)v(p) = 0 (G.16)

In fact

u†(p)v(−p) = u†(0)(p̂† +m)(−Eγ0 − pkγk +m)v(0)

= ū(0)γ0(p̂† +m)(−Eγ0 − pkγk +m)v(0)

= ū(0)(p̂+m)γ0(−Eγ0 − pkγk +m)v(0)

= ū(0)(p̂+m)(−Eγ0 + pkγk +m)γ0v(0)

= −ū(0)(E2 − p2 −m2)γ0v(0)

= 0 (G.17)
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ū(p)v(p) = u†(0)(p̂† +m)γ0(−p̂+m)v(0)

= u†(0)γ0(p̂+m)(−p̂+m)v(0)

= −ū(0)(E2 − p2 −m2)v(0)

= 0 (G.18)

Solutions of the Dirac equation can also be built using the helicity oper-
ator defined as

h(p) =
σ · p
|p|

(G.19)

where σ is the 4 by 4 matrix

σ =

(
σ 0
0 σ

)
(G.20)

This operator, which commutes with the Hamiltonian H = α · p + βm,
corresponds to the projection of twice the spin of the particle in the direction
of motion. Since

h(p)2 = 1 (G.21)

the eigenvalues of the elicity operator are ±1. Solutions of the Dirac equation
in terms of helicity spinors can be found in [5].

G.2 Projection operators

The energy projection operators are

Λ±(p) =
±p̂+m

2m
(G.22)

They satisfy

(Λ±(p))2 = Λ±(p), Λ+(p) + Λ−(p) = 1, Λ+(p)Λ−(p) = 0 (G.23)

They project out positive and negative energy states

Λ+(p)ur(p) = ur(p), Λ
−(p)vr(p) = vr(p) (G.24)
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One can easily show that

Λ+
αβ(p) =

∑
r

urα(p)ūrβ(p), (G.25)

In fact, in the rest frame, we have

∑
r

ur(0)ūr(0) =


1
0
0
0

 ( 1 0 0 0 ) +


0
1
0
0

 ( 1 0 0 0 )

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


=

1 + γ0

2
(G.26)

Therefore

Λ+ =
∑
r

ur(p)ūr(p) =
1

2m(m+ E)
(p̂+m)

∑
r

ur(0)u
†
r(0)(p̂

† +m)γ0

=
1

2m(m+ E)
(p̂+m)

∑
r

ur(0)u
†
r(0)γ

0γ0(p̂† +m)γ0

=
1

2m(m+ E)
(p̂+m)

1 + γ0

2
(p̂+m)

=
1

4m(m+ E)
[(p̂+m)2 + (p̂+m)γ0(p̂+m)]

=
1

2m(m+ E)
(m2 + p̂m+ E(p̂+m))

=
p̂+m

2m
(G.27)

where we have used (G.14). In analogous way

Λ−
αβ(p) = −

∑
r

vrα(p)v̄rβ(p) =
−p̂+m

2m
(G.28)
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One can build also spin projectors. In the rest frame they are simply

P±
S =

1± σ12
2

=
1

2

(
1± σ3 0

0 1± σ3

)
(G.29)

with σ12 given by eq.(10.58). They project spin ±1/2 solutions in the 3d di-
rection. In particular P+

S projects u1(0), v1(0) while P
−
S projects u2(0), v2(0).

In a general frame one prefers to consider

P̃±
S =

1± γ5n̂

2
(G.30)

where nµ is a space like four vector orthogonal to pµ

n2 = −1, nµpµ = 0 (G.31)

Now, in the rest frame

P̃S =
1± σ12γ0

2
=

1

2

(
1± σ3 0

0 1∓ σ3

)
(G.32)

and therefore P̃+
S projects u1(0), v2(0) while P̃

−
S projects u2(0), v1(0) .

In the rest frame one has n0 = 0 and therefore one can always choose
n = (0, 0, 1).

G.3 Trace theorems

i) tr γµ = 0, ii) tr γ5 = 0, iii) tr γµγν = 4gµν (G.33)

iv) tr γµγνγρ = 0, v) tr γµγνγργσ = 4(gµνgρσ − gµρgνσ + gµσgνρ) (G.34)

vi) tr γ5γ
µγν = 0 vii) tr γ5γ

µγνγργσ = 4iϵµνρσ (G.35)

In general the trace of an odd numbers of γ’s is zero.

Proofs:

i)

tr γi = tr (γ0)2γi = tr γ0γiγ0 = −tr (γ0)2γi = −tr γi = 0 (G.36)
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and

tr γ0 = tr (γi)2γ0 = tr γiγ0γi = −tr (γi)2γ0 = −tr γ0 = 0 (G.37)

ii)

tr γ5 = itr (γ0)2γ5 = itr γ0γ5γ
0 = −itr (γ0)2γ5 = tr γ5 = 0 (G.38)

iii)

tr γµγν =
1

2
tr (γµγν + γνγµ) =

1

2
2gµνtr I4 = 4gµν (G.39)

iv)
tr γµγνγρ = tr γ25γ

µγνγρ = tr γ5γ
µγνγργ5 = −tr γµγνγρ (G.40)

v)

tr γµγνγργσ = 2gµνtr γργσ − tr γνγµγργσ

= 8gµνgρσ − 2gµρtr γνγσ + tr γνγργµγσ

= 8gµνgρσ − 8gµρgνσ + 2gµσtr γνγρ − tr γνγργσγµ

= 8gµνgρσ − 8gµρgνσ + 8gµσgνρ − tr γµγνγργσ

(G.41)

or
tr γµγνγργσ = 4(gµνgρσ − gµρgνσ + gµσgνρ) (G.42)

vi) When µ = ν vi) is equivalent to ii). For µ ̸= ν, using

γ5 =
i

4!
ϵαβγδγ

αγβγγγδ (G.43)

we can show that

γµγν = −iγ5ϵµνρσγργσ no sum on ρ, σ (G.44)

Then

tr γ5γ
µγν = −iϵµνρσtr (γ5)2γργσ = −iϵµνρσtr γργσ = 0 (G.45)

where we have used tr γργσ = 0 since ρ ̸= σ.

vii) When µ = ν = ρ = σ vii) is equivalent to ii); when two indices are
equal vii) is equivalent to vi). Let us consider all four indices different. Then

γµγνγργσ = iϵµνρσγ5 (G.46)

and
tr γ5 = tr γ5γ

µγνγργσ = iϵµνρσtr γ
2
5 = 4iϵµνρσ (G.47)

138



H Calculation of µ→ eν̄eνµ decay squared am-

plitude

Aim of this Appendix is the calculation of the sum over the final spins and
the average of the initial spin of the squared amplitude

1

2

∑
ri,rf

|Mfi|2 (H.1)

where

Mfi = ūrνe (pe)γλ(1− γ5)vrν̄e (pν̄e)ūrνµ (pνµ)γ
λ(1− γ5)urµ(pµ) (H.2)

We have

1

2

∑
ri,rf

|Mfi|2 =
1

2

∑
ri,rf

ūre(pe)γλ(1− γ5)vrν̄e (pν̄e)ūrνµ (pνµ)γ
λ(1− γ5)urµ(pµ)

u†rµ(pµ)(1− γ5)γ
†
σγ0urνµ (pνµ)vrν̄e (pν̄e)

†(1− γ5)γ
σ†γ0ure(pe)

=
1

2

∑
ri,rf

v̄rν̄e (pν̄e)γ0(1− γ5)γ
σ†γ0ure(pe)ūre(pe)γλ(1− γ5)vrν̄e (pν̄e)

ūrνµ (pνµ)γ
λ(1− γ5)urµ(pµ)ūrµ(pµ)γ0(1− γ5)γ

†
σγ0urνµ (pνµ)

=
1

2
Tr[(−Λ−(pν̄e))γ0(1− γ5)γ

σ†γ0Λ
+(pe)γλ(1− γ5)]

Tr[Λ+(pνµ)γ
λ(1− γ5)Λ

+(pµ)γ0(1− γ5)γ
†
σγ0

=
1

2
Tr[(−Λ−(pν̄e))γ

σ(1− γ5)Λ
+(pe)γλ(1− γ5)]

Tr[Λ+(pνµ)γ
λ(1− γ5)Λ

+(pµ)γσ(1− γ5)]

=
1

2

1

16mµmνemνµme

Tr[p̂νeγσ(1− γ5)p̂eγ
λ(1− γ5)]

Tr[p̂νµγλ(1− γ5)(p̂µ +mµ)γ
σ(1− γ5)] (H.3)

where in the projection operators Λ we have neglected the masses of th
electron and neutrinos with respect to the µ mass.

Now

Tr[p̂νeγσ(1− γ5)p̂eγ
λ(1− γ5)] = 2Tr[p̂νeγσp̂eγ

λ]− 2Tr[p̂νeγσγ5p̂eγ
λ] (H.4)
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Therefore we need v) of (G.34)

Tr[γαγσγδγλ] = 4(gασgδλ − gαδgσλ + gαλgσδ) (H.5)

and vii) of (G.35)
Tr[γαγσγ5γδγλ] = 4iϵασδλ (H.6)

Therefore

Tr[p̂νeγσ(1− γ5)p̂eγ
λ(1− γ5)] = 2Tr[p̂νeγσp̂eγ

λ]− 2Tr[p̂νeγσγ5p̂eγ
λ]

= 8pανep
δ
eχ

λ
ασδ (H.7)

where
χασδλ = gασgδλ − gαδgσλ + gαλgσδ + iϵασδλ (H.8)

Furthermore we have

Tr[p̂νµγλ(1− γ5)(p̂µ +mµ)γ
σ(1− γ5)] = Tr[p̂νµγλ(1− γ5)p̂µγ

σ(1− γ5)]

+ Tr[p̂νµγλ(1− γ5)mµγ
σ(1− γ5)]

= Tr[p̂νµγλ(1− γ5)p̂µγ
σ(1− γ5)]

+Tr[p̂νµγλmµγ
σ]− Tr[p̂νµγλγ5mµγ

σ]

−Tr[p̂νµγλmµγ
σγ5] + Tr[p̂νµγλγ5mµγ

σγ5]

= Tr[p̂νµγλ(1− γ5)p̂µγ
σ(1− γ5)]

= pτνµp
ρ
µχ

σ
τλρ (H.9)

where we have used
Tr[γµγνγρ] = 0 (H.10)

and the properties of the γ5 matrix. Using

χ λ
ασδ χ

σ
τλρ = 4gαρgστ (H.11)

and substituting in (H.3), we obtain

1

2

∑
ri,rf

|Mfi|2 =
1

2

1

16mµmνemνµme

Tr[p̂νeγσ(1− γ5)p̂eγ
λ(1− γ5)]

Tr[p̂νµγλ(1− γ5)(p̂µ +mµ)γ
σ(1− γ5)]

= 8
1

mνµmνemµme

(pµ · pν̄e)(pνµ · pe) (H.12)
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I Bose Einstein and Fermi Dirac statistics

Let us now review the quantum statistics. We know from Quantum Mechan-
ics that there are two types of particles, bosons and fermions. Single states
can be occupied by any number of bosons while for fermions a single state
can be occupied at most by one fermion.

Since atoms are composed of spin 1/2 particles (neutrons, protons and
electrons) there are atoms which are bosons (H1, He4) and atoms which are
fermions (H2, He3). Let us now compute the gran partition function for
free bosons and fermions.Thermodynamic quantities are derived by the gran
partition function Z, since Z is connected with the thermodynamic potential
via

Ω = −kBT logZ (I.1)

and the average number of particles and the gas pressure are given by:

N = −∂Ω
∂µ

, p = −∂Ω
∂V

(I.2)

Let H be the Hamiltonian for N free particles

H =
N∑
i=1

p2
i

2m
(I.3)

Let us suppose that for every momentum p there are np particles with
such momentum. Since we are working in a box, p = 2π/Lm with m =
(mx,my,mz) integers. Therefore we have

E =
∑
p

npϵp ≡ E(np) N =
∑
p

np (I.4)

The gran partition function is given by

Z(µ, V, T ) =
∑
N

∑
{np}

g(np) exp(−βE(np) + βµN) (I.5)
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with g(np) = 1 since all particles are identical. Fer fermions np = 0, 1 while
for bosons np = 0, 1, 2, · · ·. So we have

Z(µ, V, T ) =
∞∑
N=0

∑
{np}

exp(−βE(np) + βµN)

=
∞∑
N=0

∑
{np}

exp[−β
∑
p

(npϵp − µnp)]

=
∞∑
N=0

∑
{np}

Πp [exp(β(µ− ϵp))]
np

=
∑
n0

∑
n1

[exp(β(µ− ϵ0))]
n0 [exp(β(µ− ϵ1))]

n1 · · ·

= Πp

∑
np

[exp(β(µ− ϵp))]
np

= ΠpZp (I.6)

Let us now consider a gas of fermions, then

ZF
p =

∑
np=0,1

[exp(β(µ− ϵp))]
np = 1 + exp[β(µ− ϵp)] (I.7)

For a boson gas we have

ZB
p =

∑
np=0,1,2,...

[exp(β(µ− ϵp))]
np =

1

1− exp[β(µ− ϵp)]
(I.8)

Note that in the boson case the series converges only if

exp β(µ− ϵp) < 1 (I.9)

Therefore if the ground level is for ϵ0 = 0 the chemical potential must be
negative. Finally we can calculate the thermodynamic potential:

ΩF = −kBT
∑
p

ln[1 + exp(β(µ− ϵp))]

ΩB = kBT
∑
p

ln[1− exp(β(µ− ϵp))] (I.10)
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Given the energy ϵp we can calculate all the thermodynamic quantities. Let
us first compute the average number:

NF = −∂Ω
F

∂µ
≡

∑
p

< np >=
∑
p

1

exp(β(ϵp − µ)) + 1

NB = −∂Ω
B

∂µ
≡

∑
p

< np >=
∑
p

1

exp(β(ϵp − µ))− 1
(I.11)

At low temperature bosons tend to accumulate in the ground state (p = 0),
only thermal fluctuations can invert the process. In fact NB increases when
ϵp − µ→ 0.

The classical limit, the Boltzmann distribution, is obtained for exp(β(ϵp−
µ)) >> 1 or exp(β(µ − ϵp)) << 1. This corresponds to exp(µ/kBT ) <<
exp(ϵp/kBT ) or large T and µ/kBT → −∞.

Let us now compute the fermion partition function ΩF for a free particle
gas by going in the continuum (V → ∞):

ΩF = −kBT
4πV

h3

∫ ∞

0

p2dp ln[1 + exp((β(µ− p2

2m
))] (I.12)

We can now derive average pressure and number of fermions as

p = −∂Ω
F

∂V
= kBT

4π

h3

∫ ∞

0

p2dp ln[1 + exp(β(µ− p2

2m
))] (I.13)

N =
4πV

h3

∫ ∞

0

p2dp
1

1 + exp(β(−µ+ p2

2m
))

(I.14)

All the results can be expressed in terms of the functions

f3/2(z) = z
d

dz
f5/2(z) =

∞∑
l=1

(−)l+1 z
l

l3/2

f5/2(z) =
4√
π

∫ ∞

0

dxx2 ln(1 + z exp(−x2)) =
∞∑
l=1

(−)l+1 z
l

l5/2
(I.15)

where z = exp (βµ):

p

kBT
=

1

λ3
f5/2(z)

N

V
=

1

λ3
f3/2(z) (I.16)
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where

λ =

√
2πℏ2
mkBT

(I.17)

For a Bose gas the partition function is singular when p = 0 and µ → 0
or z → 1. Therefore it is convenient to separate in the sum the term with
p = 0 before passing to the continuum.

We get

p = −kBT
4π

h3

∫ ∞

0

p2dp ln[1−exp(β(µ− p2

2m
))]− kBT

V
ln[1−exp(βµ))] (I.18)

N = V
4π

h3

∫ ∞

0

p2dp
1

−1 + exp(β(−µ+ p2

2m
))

+N0 (I.19)

where

N0 =
exp(βµ)

1− exp(βµ)
≡ z

1− z
(I.20)

N0 denotes the number of particles in the p = 0 state.

The results can now be written in terms of the functions

g3/2(z) = z
d

dz
g5/2(z) =

∞∑
l=1

zl

l3/2

g5/2(z) = − 4√
π

∫ ∞

0

dxx2 ln(1− z exp(−x2)) =
∞∑
l=1

zl

l5/2
(I.21)

We have
p

kBT
=

1

λ3
g5/2(z)−

1

V
ln(1− z)

N

V
=

1

λ3
g3/2(z) +

N0

V
(I.22)

I.1 A gas of free fermions

Let us now rewrite the equations (I.16) for the pressure and concentration
for a gas of fermions:

p

kBT
=

1

λ3
f5/2(z)

N

V
=

1

λ3
f3/2(z) (I.23)
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The equation of state is obtained by eliminating z from the two equations.
Let us start with the equation

λ3

v
= f3/2(z) (I.24)

Therefore it is convenient to study the function f3/2 as a function of z. f3/2
is a function monotone in z. For small z

f3/2(z) = z − z2

23/2
+

z3

33/2
− z4

43/2
+ · · · (I.25)

For large z (Huang p.246)

f3/2(z) =
4

3
√
π
[(ln z)3/2 +

π2

8

1

(ln z)1/2
] +O(1/z) (I.26)

Therefore for every positive value of λ a solution for z exists.

Low density and high temperature, λ3/v << 1

In this case the thermal length λ ∼ ℏ/p ∼ ℏ/
√
mkBT is much smaller

than the average distance among the particles v1/3, therefore quantum effects
are negligible. From

λ3

v
= z − z2

23/2
+ . . . (I.27)

one gets

z =
λ3

v
+

1

23/2
(
λ3

v
)2 + . . .) (I.28)

and the equation of state becomes

pV

kBTN
=

v

λ3
(z − z2

25/2
+ . . . = 1 +

1

25/2
λ3

v
+ . . . (I.29)

Therefore one obtains quantum corrections to the classic case. Recalling the
virial expansion

p

kBT
=
N

V
(1 +B(T )

N

V
+ C(T )

(
N

V

)2

+ . . .) (I.30)

one can identify the virial coefficients.
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High density and low temperature, λ3/v >> 1

In this case the thermal distance is much larger than the average distance
so the quantum effects become relevant. The leading term is now

λ3

v
=

4

3
√
π
(ln z)3/2 (I.31)

Therefore we get
z = exp (βϵF ) (I.32)

where the chemical potential ϵF is called Fermi energy

ϵF =
ℏ2

2m

[
6π2

v

]2/3
(I.33)

Let us now consider < np >, defined in eqs.(I.11)

< np >=
1

eβ(ϵp−ϵF ) + 1
(I.34)

When T → 0, β → +∞ we have

< np >T=0= 1 (I.35)

for ϵp < ϵF and
< np >T=0= 0 (I.36)

for ϵp > ϵF .

Therefore at zero temperature the fermions occupy all the lowest levels up
to ϵF . Because of the Pauli principle they cannot occupy all the ground state
and therefore they fill all the states up to the highest energy ϵF . Such a state
is called a degenerate Fermi gas. In the momentum space the particles fill a
sphere of radius pF , the Fermi surface. One defines also a Fermi temperature
or degeneracy temperature TF such that

kBTF = ϵF (I.37)

Finally we can compute the internal energy

U =
∑
p

ϵpnp =
V

h3
4π

2m

∫ ∞

0

dpp4 < np > (I.38)
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By part integration we get

U =
V

4π2mℏ3

∫ ∞

0

dp
p5

5

(
− ∂

∂p
np

)
=

βV

20π2m2ℏ3

∫ ∞

0

dp
p6eβϵp−βµ

(eβϵp−βµ + 1)2

(I.39)

The integrand has a peak at p = pF . The asymptotic behavior of the
integral is (see [?])

U =
3

5
NϵF

[
1 +

5

12
π2(

kBT

ϵF
)2
]

(I.40)

From the internal energy one can derive the specific heat

CV = NkB
π2

2

kBT

ϵF
(I.41)

which goes to zero when T → 0 (Third law of thermodynamics) and the
pressure

p =
2

3

U

V
=

2

5

ϵF
v

[
1 +

5

12
π2(

kBT

ϵF
)2
]

(I.42)

Notice that even at T = 0 as a consequence of Pauli principle the gas has
a non vanishing pressure. This pressure is responsible for the gravitational
stability of white dwarfs and neutron stars. A white dwarf can be thought as a
gas of ionized helium and electrons. The gravitational stability is guaranteed
by the degenerate electron pressure. In the case of neutron stars the stability
is guaranteed by the pressure of the degenerate gas of neutrons.

Note Alternative way to compute ϵF .

An alternative way of computing ϵF is to fill all the states in the momen-
tum space up to pF :

N =
4πV

h3

∫ pF

0

p2dp =
4πV

3h3
p3F =

V

6π2ℏ3
p3F (I.43)

or

pF = (
N

V
)1/3(6π2)1/3ℏ (I.44)

ϵF =
1

2m
(
N

V
)2/332/3h2 =

ℏ2

2m

[
6π2

v

]2/3
(I.45)
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I.2 A gas of free bosons

Let us now study with some detail the Bose case. The function g3/2 for z
small can be studied as a series

g3/2(z) = z +
1

23/2
z2 +

1

33/2
z3 + · · · (I.46)

with

g3/2(1) =
∞∑
l=1

1

l3/2
= ζ(

3

2
) = 2.612... (I.47)

where ζ is the Riemann function. As we have already noticed for a boson gas
µ < 0 then 0 ≤ z ≤ 1 and g3/2 ≤ 1. Rewriting the eq.(I.22) for the average
number

λ3
N0

V
=
λ3

v
− g3/2(z) (I.48)

with

v =
V

N
(I.49)

we see that N0/V > 0 if temperature and specific volume v are such that

λ3

v
> g3/2(1) (I.50)

In fact

0 <
λ3

v
− g3/2(1) <

λ3

v
− g3/2(z) (I.51)

This means that the ground state is occupied by a macroscopic fraction of
bosons. The critical temperature for the Bose condensation is defined by

λ3c
v

=
1

v

(
2πℏ2

mkBTc

)3/2

= g3/2(1), or µ = 0, N0 = 0 (I.52)

or

Tc =
1

kB

2πℏ2/m
[vg3/2(1)]2/3

=
1

kB

2πℏ2/m
[ζ(3/2)]2/3

(
N

V
)2/3 (I.53)

At the critical temperature the bosons start to occupy the p = 0 state and
if the temperature decreases more and more bosons occupy such a state. For
T < Tc the chemical potential µ remain zero. Inserting the values ρHe4 =
0.145g/cm3 ∼ mHe4N/V with mHe4 = 4mp, mp = 4 × 1.67 × 10−27Kg,
ℏ = 1.05510−34 J s, the Boltzmann constant k = 1.38 10−23J/◦K) we get
Tc ∼ 3.14 ◦K. This temperature is very close to the critical temperature of
liquid Helium, Tλ = 2.17 ◦K, below which the helium becomes superfluid.
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J Fundamental state of the superfluidity the-

ory

Let us now discuss the properties of the new vacuum state |ϕ̃0 > of the
Hilbert space of quantum states of superfluidity. The usual form of quantum
field theory vacuum cannot be used since the fundamental state for a system
of N bosons is given by

|ϕ0(N) >= |N, 0, · · · 0 > (J.54)

that means that all the particles are in the lowest energy state (k = 0).
Therefore the annihilation operator a0 does not annihilate the minimum en-
ergy state

a0|0 >= 0 (J.55)

but
a0|ϕ0(N) >= N1/2|ϕ0(N − 1) > (J.56)

e
a†0|ϕ0(N) >= (N + 1)1/2|ϕ0(N + 1) > (J.57)

To find the minimum energy state, it is necessary to consider first the coher-
ent state

|ϕ0 >= A1/2 exp[
√
V ϕ0a

†
0]|0 > (J.58)

which satisfies
a0|ϕ0 >=

√
V ϕ0|ϕ0 > (J.59)

and
ak|ϕ0 >= 0 k ̸= 0 (J.60)

n0 =
< N(k = 0) >

V
=

1

V
< ϕ0|a†0a0|ϕ0 >=

1

V
V ϕ2

0 (J.61)

In other words the expectation value of N is V ϕ2
0. The normalization is given

by

A1/2 = exp[−1

4
V ϕ2

0] (J.62)

Therefore n0 is the boson density in the state k = 0. The vacuum expectation
value of the field ϕ(x) on the state |ϕ0 > is given by

< ϕ0|ϕ(x)|ϕ0 >= ϕ0 =
√
n0 =

√
< N(k = 0) >

V
(J.63)
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and it is related to the density of the condensate. The true vacuum state is
however defined as we have found in Section 11.4 by the condition (11.54)

Ak|ϕ̃0 >=

[
cosh(

θk
2
)ak + sinh(

θk
2
)a†−k

]
|ϕ̃0 >= 0 (J.64)

The solution is given by

|ϕ̃0 >= Ñ exp [−1

2

∑
k ̸=0

tanh(θk/2)a
†
ka

†
−k]|ϕ0 > (J.65)

This means that the true vacuum state contains pair of bosons with opposite
momenta.

Exercise. Verify the at eq. (J.64) is satisfied by the new vacuum (J.65).

Exercise. Verify that the state |ϕ̃0 > corresponds to a lower value of the
energy with respect to |ϕ0 >.

K Bogoliubov transformation

Let us now derive the Bogoliubov transformation. Let us start considering∑
k ̸=0

[
αka

†
kak +

µ

2
(aka−k + a†ka

†
−k)

]
(K.1)

where

αk = µ+
ℏ2k2

2m
(K.2)

Let us consider
Ak = βkak + γka

†
−k (K.3)

with βk, γk ∈ R. Then we get

[Ak, A
†
k′ ] = [βkak + γka

†
−k, βka

†
k′ + γka−k′ ] = (β2

k − γ2k)δkk′ (K.4)

In order to get standard commutation relations, let us require

β2
k − γ2k = 1 (K.5)
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It is convenient to define

βk = cosh

(
θk
2

)
, γk = sinh

(
θk
2

)
(K.6)

The inverse transformations are

ak = βkAk − γkA
†
−k, a†k = βkA

†
k − γkA−k (K.7)

In fact

βkAk − γkA
†
−k = βk(βkak + γka

†
−k)− γk(βka

†
−k + γkak) = ak (K.8)

Substituting in eq.(K.1) one obtains∑
k ̸=0

[
αka

†
kak +

µ

2
(aka−k + a†ka

†
−k)

]
=

∑
k ̸=0

[
αk(βkA

†
k − γkA−k)(βkAk − γkA

†
−k)

+
µ

2

(
(βkAk − γkA

†
−k)(βkA−k − γkA

†
k)

+(βkA
†
k − γkA−k)(βkA

†
−k − γkAk)

)]
=

∑
k ̸=0

[(
(β2

k + γ2k)αk − 2βkγkµ
)
A†
kAk +(

− βkγkαk +
µ

2
(β2

k + γ2k)
)
(AkA−k + A†

kA
†
−k)

+αkγ
2
k − βkγkµ

]
(K.9)

By requiring the vanishing of the coefficient of AkA−k + A†
kA

†
−k we get

tanh θk =
2βkγk
β2
k + γ2k

=
µ

αk
(K.10)

Then the coefficient of A†
kAk becomes, using (K.10) and (K.6)

(β2
k + γ2k)αk − 2βkγkµ = (β2

k + γ2k)αk −
4β2

kγ
2
kαk

β2
k + γ2k

=
(β2

k − γ2k)
2αk

β2
k + γ2k

=
αk

β2
k + γ2k

=
αk

cosh θk
= αk

√
1− tanh2 θk =

√
α2
k − µ2

≡ ϵ(k) (K.11)

with ϵ(k) given by eq.(11.56). Finally

αkγ
2
k − βkγkµ = αkγ

2
k

γ2k − β2
k

β2
k + γ2k

= − αkγ
2
k

β2
k + γ2k

= −ϵ(k) sinh2

(
θk
2

)
(K.12)

where use has been made of eq.(K.11).
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