Forma covariante delle equazioni di Maxwell
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1 Introduzione ai tensori

Consideriamo uno spazio vettoriale V' sul campo R. Sia n la sua dimensione e e,, (a =
1,2---,n), una base in tale spazio. Un generico vettore v sara’ allora esprimibile come

v =1, (1.1)

Stiamo usando la convenzione sommatoria ovvero la sommatoria e sottintesa quando un
indice e ripetuto.

Chiameremo i vettori di V' vettori controvarianti e le v* le componenti controvariants.
Dato V' e’ possibile costruire uno spazio vettoriale associato, detto il duale di V' e che
sara’ indicato con V*. Lo spazio V* = L(V,R) ¢’ lo spazio delle applicazioni lineari da

V — R. Se f € L(V,R), avremo
flo) eR Yo eV (1.2)
Poiche’ f ¢ lineare avremo
flav+ pw) =af(v) + Bf(w) Vo, €R Yv,weV (1.3)

Vediamo ora come sia possibile assegnare a V* la struttura di spazio vettoriale. Definiamo
a questo scopo la somma di due applicazioni come quella applicazione tale che

(f +9)(w) =flv) +g(v), fLgeV" YweV (1.4)

ed il prodotto di un’applicazione per un numero reale «
(af)(v) =af(v) feV* YveV (1.5)

Dalle definizioni date di somma di applicazioni e di prodotto di un’applicazione per un
numero e’ immediato verificare che V* soddisfa gli assiomi di spazio vettoriale.

Osserviamo inoltre che V** = L(V* R) ¢’ isomorfo allo spazio V stesso. L’isomorfismo
e’ costruito associando a ciascun v € V v*™* € V**, definito da v**(f) = f(v) Vf € V*.

I vettori dello spazio duale V* saranno chiamati vettori covarianti.

Data una base in V' si puo’ costruire una base in V* nel seguente modo: consideriamo

le applicazioni w® tali che
wi(ep) =0 ab=1,---n (1.6)

Allora il generico f € V* puo esser rappresentato nella forma

f= faw® (1.7)
con f, = f(e,). Infatti
f(v) = f(v'eq) = flea)v” (1.8)
dove v® sono le componenti di v nella base data. D’altra parte
fawa(v) = fawa(vbeb) = favbdg = fqv* (19)
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Questo mostra che in effetti le w* formano una base per V* e quindi anche V* € uno
spazio vettoriale n-dimensionale. Le f, sono le componenti covarianti.

Un vettore ha una definizione intrinseca che quindi non dipende dalla scelta della base.
Naturalmente in una base diversa da quella fissata originariamente le componenti del
vettore saranno diverse. La variazione delle componenti puo’ essere facilmente calcolata
a partire dalla trasformazione della base. Supponiamo allora che la base sia trasformata

nel modo seguente:
eqa — €, = Nfe, (1.10)

con (A)y, = A)* una matrice n x n nonsingolare (b denota le righe ed a le colonne). Per
calcolare la trasformazione delle componenti usiamo il fatto che v non dipende dalla base
e quindi

v =1, =", = v"Ale, (1.11)

e pertanto
v = A" (1.12)

Congiuntamente alla base e,, la base duale w® subira’ una trasformazione, visto che la
base duale e’ definita in riferimento alla base usata per V' (vedi eq.(1.6)). Avremo dunque

w* — W’ = AL w? (1.13)
con /~\ba un’altra matrice nonsingolare. Ma usando la (1.6) nella nuova base si ha
W (€)) = AYAw(ey) = AV A (1.14)

Segue dunque 3
ATAG = o8 (1.15)

Possiamo allora invertire la relazione (1.12), moltiplicando per /~\_Ca e sommando su a
v’ = Ab v (1.16)

Analogamente le componenti di un vettore covariante si trasformano con la matrice A.
Infatti

fo=f(el) = F(AJes) = AL fy (1.17)

Esempio

Se consideriamo il caso V' = R", potremo scrivere il generico elemento come il vettore
colonna

v=| (1.18)



Una base e’ data allora da

1 0
0 0

en=1|"|,,en=1]" (1.19)
0 1

Possiamo allora rappresentare la generica applicazione come

f() = fav" = (f1, for - [a) (1.20)

Un
Pertanto i vettori duali possono essere pensati come vettori riga. Il generico elemento del
duale potra’ allora essere scritto come f = f,w®, con la base duale data da

wh=(1,0,---,0), -+, w" = (0,0,---,1) (1.21)

La relazione (1.16) diventa
v = Av (1.22)

la (1.17) P L

dove AT indica la matrice trasposta della A. Infine la (1.15)

AAT =T (1.24)

Usando una procedura analoga a quella seguita per la costruzione del duale e’ possibile
costruire altri spazi vettoriali che ci permetteranno di definire i tensori di rango (r,s). A
tal fine costruiamo il seguente spazio ottenuto come prodotto cartesiano di r copie di V*
e di s copie di V:

I = (V') (V)" (1.25)

Un tensore € una applicazione multilineare da II? — R (cioe’ lineare in tutti gli argomenti).
Lo spazio di queste applicazioni lineari sara’ indicato con T'(r, s) e sara’ detto lo spazio
dei tensori di rango (r,s). Per esempio T'(0,1) = V* poiche’ questo e’ lo spazio delle
applicazioni da V' — R. Analogamente si ha 7'(1,0) = V, poiche’ le applicazioni da
V* — R danno il duale del duale che come abbiamo visto coincide con lo spazio vettoriale
di partenza. Il generico elemento di T'(r, s) sara’ allora indicato con T' e sara’ un tensore
controvariante di ordine r e covariante di ordine s:

77177727""77T7Y17}/27'”7Y5_>T(n17772a"'7777,;}/17Y727"'a}/:3)7 (126)
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COHTI177727'“77TEV*e}/la}/Qa"'}/SEV'

Lo spazio T'(r,s) puo’ essere dotato della struttura di spazio vettoriale cosi’ come
abbiamo fatto per lo spazio duale. Definiremo cioe’ la somma di due elementi T'(r, )

(T+Tl)(77177727'"7nr;1/17}6a"'71/;> =
=T(ntn?, 03 Y1, Yo, oY) + T/ (0 2, 73 YA, Yo, -+, ) (1.27)

ed il prodotto di un elemento di 7'(r, s) per un numero reale «

(aT)(n177727 T anr;Yh}/% T 7YS) = aT(nlan27 T ’nr; }/17}/% e 7Y9) (128)

Consideriamo ora lo spazio T costituito dall’insieme di tutti gli spazi T'(r, s). E’ allora
possibile definire in questo spazio una operazione che prende il nome di prodotto tensoriale.

Dato il tensore T' € T'(r, s) e il tensore e T" € T'(r', s') il prodotto tensoriale di 7" e T"
¢ il tensore T ®T" € T(r + s,r" + &) definito dalla relazione

(T@T’)(’f}17 o .. 7,’77‘4-1”/;}/1’ “ e 7}/:94-8’) —
=T, Ve, Y - T (- T Yo, Yiero) (1.29)

Introduciamo ora un insieme speciale di elementi di T'(r, )

tb1b2mbs Eeal ®6a2®"'®ear®wbl®wb2®"'®wbs akabk‘: 1n (]‘30)

a1ag-Qr

Questi sono n" ¢ elementi di T'(r, s), definiti come quelle applicazioni che mappano

(7717772’"'777T;Y717Y727"'aY:9) (131)
in
' (€ar) -+ 1" (€a, )™ (Y1) - - " (Y5) (1.32)
Ovvero
tzlll;é'f.'.bjr(??l, 772, . ’777"; Y’l’ }/’27 .. 7}/'8) — 77(11 .. ngr}/lbl . Y;bs (133>

dove abbiamo introdotto le componenti degli n',---,n" e degli Y7,---,Y,:

771 :ncluwalv"'anr :ngrwwa Yi= )qaleala"'7)/:@ :}/Saseas (134>

In particolare

bi1ba---b c1 [ cr. _gc1 Seo cr b1 ¢ba b
tmazwt;r(w y W W gy, Byt 7ed5) - 5a15a2 e 5a:5d15d2 e 5dsg (135)

Possiamo vedere facilmente che questi n"** elementi di T'(r, s) costituiscono una base.
Infatti essi sono linearmente indipendenti perché
frunarghibe b — (1.36)

b1--bs “araz--ar

implica f,''";"" = 0 (come segue utilizzando la (1.35)).
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Inoltre il generico tensore T € T'(r, s) puo’ essere decomposto come

__ raiaz---ar4b1ba---bs
T - Tb1b2~~~bs talagmar (137)
con
aras--ar _ o, a ar
Tblbgmbs _T(w 17("') 27”.7(*) 7€b17€b27"'7€bs) (138)
Infatti

T(7717772a e 7,’71”;}/1’}/27 e a}{s) = T(walywa27 T awar;ebpebza e 7eb5)
Mooy =+ M, Y1 Y Y (1.39)

D’altra parte per la (1.33)

T(Ulﬂﬂ e ’771”; Y1, YQ’ . ’Y;) — Tlilb(;?-‘:z;jrtblb%’bs (n1’772’ L. 777T§ Y4, Yg, . 7Ys)

ajaz-ar

= Tyaeorpl 2 coomn YPYRR Y (1.40)

Qp

Le quantita’ T;'}"2 3" sono le componenti del tensore T'. E’ ovvio dalle definizioni date
che:

(T+ 1500050 = Too + Tiaes, (1.41)
e
(@), = T3, (1.42)
Per esempio
v @ w = v'w’e, ® e (1.43)
da cui, come deve essere
(v@w)™ = v w (1.44)

La formula (1.16) puo’ anche essere ottenuta osservando che in generale le componenti
di un tensore possono essere ottenute valutando il tensore sulla base duale, cioe’

arag-ar __ a1 , a2 a
Tb1b2---bs - T(w y W W, €y Gy 76175) (145)

Per esempio
v = w(v) (1.46)

Usando quest’ultima relazione si ha

a a __Aa, b o a b
v = w(v) = Aje’(v) = Ao (1.47)
Segue allora
rar’ag’ar’ rar’ a2’ rar’ / /
by by’ s’ = T(UJ , W S, W T 7651/7 €b2’7 e 7eb3’)
— Aa’ Aa2’ | Aar ADLAb2 A cbsparaz-ar
= AN - NG A AT (1.48)



Un esempio di tensore ¢ il tensore § di Kronecker. Questo appartiene a T'(1,1) ed e
definito da
n,Y)=nY)=nY"* neV* YeV (1.49)

Le sue componenti sono

S(wh eq) = 00

a

(1.50)

Dato un tensore in T'(r, s) con r > 1, s > 1 €’ possibile definire un tensore appartenente
aT(r—1,s—1) tramite la cosi’ detta operazione di contrazione C}. C] e’ una applicazione
T(r,s) = T(r—1,s — 1) cosi’ definita: dato un tensore 7" di T'(r, s)

T =T e ®egy @ ®eq, QW' @w? @ @w (1.51)
CHT)eT(r—1,s—1) ¢ dato da

CHT) =T g @+ @ €q, QW+ @ w™ (1.52)

abg--

Affinche’ la contrazione sia ben definita e’ necessario verificare che la definizione data sia
indipendente dalla base. Infatti si ha

(1) =T e @@, 0w @w”
= AN, T2 12, @ -+ @ €, @ -~ @b = CY(T) (1.53)

Altre operazioni che si possono definire su un tensore sono le operazioni di simmetriz-
zazione ed antisimmetrizzazione. Per esempio, dato un tensore di tipo (2,0), T'(m,72), la
sua parte simmetrica €’ data da

1
(ST) (1) = 5 (T (s 112) + T (012, 11)) (1.54)
e la sua parte antisimmetrica da
1
(AT)(m,n2) = 5 (T(m,m2) = T(n2,m)) (1.55)

Si verifica immediatamente che ST ed AT sono tensori (cioe’ che le definizioni date non
dipendono dalla base). Le componenti di questi tensori sono rispettivamente
(ST)* =

(T +1"), (AT)* == (T*—-1™) (1.56)

N[ —

1
2

Un altro tensore che ci sara’ utile nel seguito e’ il tensore metrico. Questo e’ un tensore
simmetrico di rango (0,2), cioe’ una applicazione g di VxV — R. Le componenti di g si
ottengono valutandolo su una base

g(eiaej) =0ij 1,]= I,--n (1-57)

e quindi potremo scrivere
g=giw QW  gij = Ggji (1.58)
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Se det |g;;| # 0 si dice che la metrica e’ non degenere. L’assegnazione di un tensore metrico
permette di definire un’applicazione da V' — V* che indicheremo ancora con g, definito
come

g9(v,w) = g(v)(w) (1.59)
Le componenti di g(v) possono essere calcolate immediatamente notando che si puo’

scrivere o .
g(v,w) = gi;v'w! = g(v),;uw’ (1.60)

dove nell’ultimo passaggio abbiamo usato la definizione di g(v). Per confronto vediamo
che

g(v); = giv’ (1.61)
e quindi g(v) = g(v);w’ = g;;v'w’. Le quantita in (1.61) sono anche dette le componenti
covarianti del vettore v (mentre le v* sono le componenti controvarianti) e saranno indicate
con l'indice in basso:

Si ha anche immediatamente che '
g(e;) = gy’ (1.63)
Notiamo che se g €’ non degenere allora il mapping tra V' e V* definito dalla metrica e’
invertibile, e si puo’ introdurre il mapping inverso ¢g~': V* — V. La sua azione sulla base
duale sara’ . -
g (W) = gY¢; (1.64)
dove ¢ €’ la matrice inversa di g,

gijgjk = 5}€ (1.65)

Infatti
k

9(g7 (") = g(g7¢;) = g7 gjw" = ' (1.66)
Tramite la matrice inversa possiamo definire le componenti controvarianti di un vettore
covariante come

n'=g7'(n)" = g"n (1.67)
Infatti
g~ () =g~ (nw') = mig ™ (") = mig”e; (1.68)
Chiaramente il mapping g, quando e’ non degenere, stabilisce un isomorfismo tra V' e V*.
Notiamo infine che possiamo definire un tensore g=! di rango (2,0),

9 m,m) = mg~ () = g%mn; m.m eV” (1.69)
Se introduciamo 'elemento di linea come un vettore covariante
dr = drw' i=1,---n (1.70)

possiamo introdurre la distanza infinitesima tra due punti usando l'inverso del tensore
metrico:

ds* = g~ H(dw,dz) = g~ (drw', dv;jw’) = g dv;dz; (1.71)
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nel caso in cui
ds’ =) dw;da; (1.72)
(cioe’ g;; = 6;;) si dice che si ha una metrica euclidea.

Un altro tensore importante e’ il cosi’ detto tensore di Ricci Levi-Civita, che puo’
essere definito a partire dall’elemento di volume in uno spazio n-dimensionale

dV = " indxy - dal (1.73)

in

Il tensore €1"in ¢’ definito essere zero quando una o piu’ coppie di indici sono uguali,
e’ completamente antisimmetrico ed e’ uguale a +1 quando gli indici sono in una per-
mutazione pari rispetto alla permutazione fondamentale (1,2,---,n). Si vede allora
facilmente che data una matrice A,jl-, il tensore di Ricci Levi-Civita soddisfa la relazione

e AL Al = det A (1.74)
Le proprieta di trasformazione di questo tensore sono

et R RS = det Aet (1.75)

Appendice. Alcune proprieté del tensore di Ricci €% in R?.
Se €;,7=1,2,3 sono i versori di una terna possiamo porre
It = (& x &) - & (1.76)

Il tensore €% & invariante sotto rotazioni in R* e cambia segno sotto inversioni spaziali;

¢ quindi uno pseudotensore. Vale inoltre

dikgiik  _ g
ikl oghkl
giikgiml  _ simgkl _ 5il skm (1.77)

Il prodotto vettoriale tra due vettori v e @ pud scriversi come
(v x w)' = €kpiwk (1.78)
Inoltre si verifica
V x (V x @) =V(V-7) - V¥ (1.79)
Infatti
(V x (Vx0) = €*;(V x 5)*
— 6ijkaj‘Elcl771(f91,l}1n
— (5il5jm _ 5im5jl)ajalvk
= 0;(0pv") — V2! (1.80)
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2 Rappresentazione quadridimensionale delle trasfor-
mazioni di Lorentz

Tutti i fenomeni della natura avvengono nello spazio e nel tempo. Ogni fenomeno ¢
una successione di eventi, ovvero cio che succede in un dato istante in un punto dello
spazio. Lo studio dei fenomeni fisici ¢ possibile con riferimento ad un dato sistema di
riferimento. Particolari sistemi di riferimento sono quelli inerziali, ovvero quelli rispetto
ai quali vale il principio di inerzia. E’ noto dalla meccanica classica che le equazioni
della meccanica newtoniana rimangono inalterate passando da un sistema di riferimento
inerziale ad un altro. Cio non significa che le grandezze fisiche rimangono inalterate ma
piuttosto che le stesse equazioni differenziali legano tra loro le stesse grandezze misurate
in ciascun sistema. Le equazioni che mantengono la loro forma rispetto alle trasformazioni
di coordinate sono dette covarianti.

Le corrispondenti trasformazioni, le trasformazioni di Galileo, sono espresse (nel caso
in cui un sistema trasli rispetto all’altro lungo I’asse = con velocita v) da

¥=x—vt, Y=y, F=z2 =t (2.1)

Ovvero nel caso generale
F=rF—ut t' =t (2.2)

La legge di composizione delle velocita e

=/

W=u4—-17 (2.3)

se 4 = dr/dt.

L’assunzione base della teoria della Relativita Speciale e che il principio di relativita,
ovvero quello secondo cui i fenomeni fisici sono descritti dalle stesse leggi in tutti i sistemi
di riferimento inerziali, vale per tutti i fenomeni e non solo quelli meccanici.

Ora il sistema delle equazioni di Maxwell cambia forma sotto le trasformazioni di
Galileo, cioe le equazioni di Maxwell non sono covarianti rispetto a tali trasformazioni.

D’altra parte € una semplice conseguenza delle equazioni di Maxwell la proprieta
delle onde elettromagnetiche di propagarsi nel vuoto con velocita ¢ indipendentemente
dalla velocita della sorgente, in contraddizione con la legge di composizione classica delle
velocita (2.3).

Questo porta ad enunciare il secondo principio della Relativita Speciale (o della costan-
za della velocita della luce), ovvero quello secondo cui la luce nel vuoto si propaga con
velocita pari a ¢ in tutti i sistemi inerziali.

Se consideriamo la propagazione di un’ onda, in un sistema inerziale S, partita da
x=0at=0,il fronte d’onda raggiunge un punto di coordinate (z,y, z) al tempo t tale
che

0=ct"—a*—y*—2° (2.4)

11



In modo simile la propagazione del fronte d’onda nel sistema S’ che coincide al tempo
t' =t =0 col sistema S, ¢ descritta da

0 — CQt/Q _ l’/2 _ y/2 . Z/2 (25)

Tenendo conto dell’isotropia e dell’omogeneita dello spazio ¢ naturale assumere una
relazione lineare tra i due insiemi di coordinate. Supponendo che il sitema S’ trasli con
velocita v lungo 'asse x, e possibile determinare la trasformazione tra i due insiemi di
coordinate

t = A(t—-a)
c

¥ = y(z—vt)

v o=y

2 = z

Queste sono un esempio particolare delle trasformazioni di Lorentz. Queste trasformazioni
lasciano invariata in generale la forma

At —a? — oy — 2P (2.6)

Possiamo allora riassumere: in un sistema di riferimento inerziale S un evento arbi-
trario é caratterizzato dai quattro numeri (¢, x, y, z). In un altro sistema S’ lo stesso evento
sard caratterizzato da altri quattro numeri (¢',2',y/, 2’). Se assumiamo che le origini dei
due sistemi cartesiani coincidano al tempo ¢ = ¢ = 0 la connessione tra le coordinate
spaziotemporali degli eventi é data da una trasformazione omogenea di Lorentz, cioé una
trasformazione lineare che lascia invariato

P=A ==yt (2.7)

Siamo quindi portati a considerare uno spazio quadridimensionale con coordinate

0

(2% =ct,o' =2, 2> = y,2° = 2) (2.8)

e metrica pseudo-Euclidea definita dalla forma quadratica

2 2 2 2 2
%" — 2! — 2 - 23 =20 - P (2.9)

Possiamo riscrivere la (2.9) come

s* = g ata’ (2.10)
dove
+1 0 0 0
0 -1 0 0
W
w=0"=0 o _1 o (2.11)
0 0 0 -1



sono le componenti del tensore metrico e g,,¢"” = ¢f. Ricordiamo che stiamo utilizzando
la convenzione sommatoria (indici uguali ripetuti sottintendono una sommatoria). User-
emo indici greci per indici che assumono i valori 0,1, 2,3 e indici latini per indici che
assumono i valori 1,2, 3. Dati due vettori z* e ¢, il prodotto scalare in questo spazio é
definito da

(,y) = gua"y” (2.12)

Se adesso indichiamo la trasformazione delle componenti controvarianti con x* =
A#x¥, avremo (notiamo che la matrice g non cambia con il riferimento)

G’ = g,pxP2’” = Gpo N NG, 32" (2.13)

da cui
G = Gpa N AT, (2.14)

Ricordiamo che nella notazione A’ , v individua le righe e u le colonne della matrice A,
ed in conseguenza (AT): = A”,. E’ possibile quindi scrivere la relazione precedente nella
forma matriciale

ATgh =g (2.15)
Segue da (2.15) e da det g = —1 che det A = +1.

Esempio Una trasformazione di Lorentz speciale che corrisponde alla trasformazione
da un sistema S ad un sistema S’ che sta traslando con velocitd v = ¢ lungo 'asse = é
data, in queste notazioni, da

v =By 0 0
By v 00
0 0 1 0 (2.16)
0 0 0 1
dove 1
N = — (2.17)

Vi

Possiamo quindi rappresentare la generale trasformazione di Lorentz come una trasfor-
mazione lineare

o = A x” (2.18)

che lascia invariato la (2.9) o il prodotto scalare (2.12).

Le componenti 2* sono le componenti controvarianti, mentre la componenti covarianti

sono definite da
Ty = Gur” (2.19)

Vi L son mponenti nsore metrico inverso. Quindi z° = x = —x;
dove g, sono le componenti del tensore metrico erso di 0 o e xt
quando ¢ = 1,2,3. Utilizzando le componenti covarianti il prodotto scalare pué anche
riscriversi come

(z,y) = z.y" = 2"y, (2.20)
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Utilizzando il tensore metrico possiamo trasformare un tensore controvariante in co-
variante

Toey = GapGpy - - Gy I"7° (2.21)

Le proprieta di trasformazione dei vettori covarianti sono

2y = g’ = g’ =Nz, (2.22)
dove abbiamo definito la matrice
Ay =gy (2.23)

La matrice A2 ¢ tale che, per la (2.14),

AJAL, = g7 (2.24)
Come conseguenza della (2.24) si ha
vyt = 1wy (2.25)

per ogni coppia di quadrivettori.

Possiamo quindi invertire la (2.18), moltiplicando per A? e sommando su p

: Ho_ A v
AP = APALx (2.26)
ovvero, utilizzando la (2.24),
xf = A'jm'“ (2.27)
Consideriamo 'operatore
0
i 2.28
py (2.28)
Sotto trasformazioni di Lorentz
0 0 ox¥ 0 0
ox+ — Ox'™  QJx' dxv " oxv ( )
Quindi, confrontando con (2.22) si vede che % é un quadrivettore covariante che in-
dicheremo con 9
Useremo quindi gli operatori
0 0 =
= — (Vv 2.31
H Ot <85L‘0 ’ ) ( )
0 0 -
oM =—=(=—,-V 2.32
0z, (8930 ) ( )
La quadridivergenza di un quadrivettore v* é quindi invariante
o’ -
6//0# = @ Vv (233)
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Nel seguito utilizzeremo anche 'operatore d’Alembertiano

1 02

che é anch’esso invariante.

Questo spazio quadridimensionale con metrica pseudoeuclidea é stato introdotto per
primi da Poincaré (1906) e Minkowski (1909).

Un quadrivettore é detto di tipo tempo se 2% = g, 2" > 0, di tipo luce se 2? =0 e
di tipo spazio se 2% < 0.

3 Cinematica relativistica

Consideriamo adesso il moto di una particella relativistica di massa m nello spazio-tempo.
Possiamo usare una rappresentazione parametrica della sua traiettoria come

xH(s) (3.1)

dove s ¢ la lunghezza della curva descritta dalla particella nello spazio tempo

s = / ds (3.2)

9

ds® = da®® — da'® — dz®® — da® = Pd*(1 - U—) (3.3)

c2

dove

Definiamo a partire da ds il tempo proprio della particella, ovvero il tempo misurato da
un orologio che segue il moto della particella,

_Q
1
ar=% IV24t = ~dt (3.4)
c c 0%
dove ]
Y= _ (3.5)
-2

Poiché dr é un invariante rispetto a trasformazioni di Lorentz e dz* un quadrivettore
(controvariante), definiamo come quadrivelocitd

dzt
P= 3.6
“ dr (36)
Le quattro componenti della quadrivelocita sono
d 0
W0 =2 e (3.7)

_?:
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o d dz?
- = 3.8
Y dr " dt (3.8)

dove abbiamo fatto uso della (3.4). Dalla definizione di quadrivelocitd segue inoltre

uut =y — ) = c? (3.9)

La quadrivelocitd é quindi un vettore tangente alla traiettoria della particella, di tipo
tempo e di norma costante. Pertanto

dut
T

=0 (3.10)

Il quadrivettore
_du

Codr

w (3.11)

é detto quadriaccelerazione.

Le componenti della quadriaccelerazione risultano essere, come segue dalla (3.11),
usando (3.7) e (3.8),
w =y — (3.12)
W= 726%—74%17 (3.13)
c

Nel sistema di riposo della particella v = 0 e quindi

—,

uly = (¢;0) (3.14)

= (0; dr) (3.15)

La quadriaccelerazione é quindi un vettore di tipo spazio, ortogonale alla quadrivelocita,
come risulta dalla (3.10)
whu, =0 (3.16)

Il quadrimomento é definito come un quadrivettore proporzionale alla quadrivelocita:
P! =mut (3.17)

dove m é la massa a riposo della particella (ovvero misurata nel sistema di riposo della
particella). Dalla (3.9) segue che

2

pup’ = p°" = pF = m* (3.18)

e quindi il quadrimomento é un vettore di tipo tempo.

Le componenti del quadrimomento sono

p’ = mye (3.19)
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p=myv (3.20)

L’energia relativistica é definita a partire dalla componente temporale del quadrimomento
come
E = p’c = mc?y (3.21)

Utilizzando la (3.18) si ottiene la relazione tra energia e momento
E = \/p?c® + m?ct (3.22)
Quindi a riposo la particella ha una energia pari a mc?.

Con la definizione (3.21), nel limite non relativistico v << ¢ si ottiene
2, L 9
E ~mc + gmv (3.23)

ovvero la somma dell’energia cinetica non relativistica e dell’energia di riposo.

Nella dinamica relativistica vale il principio di conservazione del quadrimomento.
Questa legge di conservazione insieme alla relazione tra massa ed energia é ormai ver-
ificata quotidianamente negli esperimenti di collisione e nei processi di decadimento di
particelle ad alta energia.

La generalizzazione della legge di Newton é

dpt

— =F" 3.24

dr ( )
dove F* é la quadriforza. Dalla (3.16) segue che la quadriforza deve esser ortogonale alla
quadrivelocita

Fru, =0 (3.25)

La (3.24) é il primo esempio di una legge scritta in forma covariante ovvero come
uguaglianza tra due quantita tensoriali, in questo caso vettori. In un altro sistema inerziale
la legge mantiene la stessa forma, ma con i quadrivettori trasformati con la trasformazione
di Lorentz corrispondente

dp’*

5—7 = (3.26)
con

Pt =AY (3.27)

e analogamente per F'.

Vedremo in seguito come applicazione dell’equazione di Newton (3.24), 'equazione di
una particella di carica e in un campo elettromagnetico.
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4 Equazioni di Maxwell in forma covariante (gauge
di Lorentz)

E’ un risultato sperimentale l'invarianza della carica elettrica rispetto a trasformazioni
di Lorentz, ovvero l'indipendenza della carica di una particella dalla sua velocita. Se p
denota la densitd di carica in un volume d3z, sard

pd*x = p'd*z’ (4.1)

se d®x e d*x’ sono gli elementi di volume in S e S’ e p e p’ le corrispondenti densitd di
. . . o, 2 . 12 . . . . ’
carica. Consideriamo allora la quantita j# = cp%. Nel sistema di riferimento S’ sara

7z 1 1 1
" dx s s, dx 5 dz dz

I =l g = P i = P gy — Vg M (42)

dove abbiamo fatto uso della (4.1) e della invarianza dell” elemento di volume nello spazio
quadridimensionale rispetto a trasformazioni di Lorentz

d*z’ = do’’da’ daPda”® = | det Ald'z = d*x (4.3)

Pertanto j* é un quadrivettore. Le sue componenti sono

3° = pe (4.4)
e la densita di corrente
j=pv (4.5)
Vale
Jui" = p*(c* = v?) (4.6)
Se quindi indichiamo con pg la densitéd di carica nel sistema di riposo, dalla (4.6) segue
P = p(c — 0% (4.7)
e pertanto
P = VPR (4.8)

Cominciamo col considerare ’equazione di continuité

0 -

—f +V-j=0 (4.9)
Questa pud riscriversi nella forma

97°

4+ 9" =0 4.10

920 + OkJ ( )
ovvero nella forma covariante

85" =0 (4.11)



In conclusione dall’invarianza della carica elettrica rispetto a trasformazioni di Lorentz
segue che j# é un quadrivettore e I'equazione di continuita e scritta in forma invariante.

Consideriamo le equazioni di Maxwell nel vuoto, nel sistema di unitda di Heaviside-
Lorentz:

VxE+-=— = 0
X c ot
V-B =0
V-E = p
. - 19E 1-
VXB—-— = —j 4.12
. c ot c] ( )
Dalla seconda equazione di Maxwell segue
B=VxA (4.13)

dove A ¢ il potenziale vettore. Sostituendo la (4.13) nella prima equazione di Maxwell si
ottiene

- o 104
E+-—)=0 4.14
Vx (B+-20) (414)
e pertanto
- -~ 10A
E=— e 4.15
Vo -5, (4.15)
dove ¢ € il potenziale scalare. Quindi
n . 104
E = — _ -
v c Ot
B = VxA (4.16)

Notiamo che ¢ e A non sono univocamente determinati. Infatti se facciamo la trasfor-
mazione

A A = A-Vy
o=

10x
= -—= 4.17
o (4.17)
con x = x(t,Z) funzione arbitraria, i campi EeB rimangono invariati. Queste trasfor-

mazioni si chiamano trasformazioni di gauge.

Sostituendo le (4.16) nelle ultime due equazioni di Maxwell, tenuto conto che

Vx(VxA)=V(V-4) -AA (4.18)
si ottiene
10 -5 -
AQD‘FZQVA = —p
1 1 82 e ]-_.‘ —d 18()0 = =



Possiamo utilizzare I'invarianza rispetto a trasformazioni di gauge per imporre una
condizione sui potenziali, il cosiddetto gauge di Lorentz

—2P VA= (4.20)

In questo gauge le (4.19) divengono

Op = p

— 1—»

04 = = (4.21)
C

dove abbiamo utilizzato 'operatore d’Alembertiano (2.34). Poiché 'operatore d’Alember-
tiano é invariante rispetto a trasformazioni di Lorentz, essendo (cp, j) le componenti di un
quadrivettore, anche (¢, A) saranno le componenti di un quadrivettore che indicheremo
con

A* = (p, A) (4.22)

Quindi le equazioni (4.21) si riscrivono nella forma manifestamente covariante
L.
OA* = —j5+ (4.23)
c

e la condizione gauge di Lorentz (4.20), ricordando (2.33),
9, A" =0 (4.24)

ovvero in una forma manifestamente invariante. Le trasformazioni di gauge (4.17) si
riscrivono in modo compatto come

AP s A = ARy gy (4.25)
Infatti, per p = 0, la (4.25) diventa

p—¢ = o+

= @+ dox

10
= @ + E&X (4.26)

Per p =1,
At — (A) = A+ 0%
= A'—09;x (4.27)
ovvero la componente i-esima della trasformazione (4.17) su A.

Notiamo anche che per trovare la trasformazione che porta nel gauge di Lorentz par-
tendo da un quadripotenziale A*, tale che 9, A" = —1 basta fare una trasformazione (4.25)
con [y = —. Notiamo inoltre che, all’interno del gauge di Lorentz, una trasformazione
di gauge (4.25) con Oy = 0 mantiene ancora all’interno del gauge di Lorentz.
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5 Equazioni di Maxwell in forma covariante

Consideriamo poi il tensore del secondo ordine
Fr = 9rAY — 9V A* (5.1)
Questo é invariante sotto le trasformazioni di gauge (4.25),
Fr — PR 010"y — 070!y = F* (5.2)
Inoltre é un tensore antisimmetrico
Fr = —Fv# (5.3)
e quindi F'° = F% = (0 per i = 1,2, 3. Si ha inoltre
Fii=9'Al — A = 9, A7 + 9,A' = —€9* Bk (5.4)

dove €% ¢ il tensore di Ricci, tensore antisimmetrico nello scambio di ogni coppia di
indici, con la convenzione €23 = 1. Quindi F*? = —-B* = —-B, , F® = -B' = —B, e
F3 = —B? = —B,. Analogamente

FO — 904" — 9PA° — 9,A° + Al = —F¢ (5.5)

Quindi i campi elettrico e magnetico sono le sei componenti di questo tensore antisim-
metrico

0 -E, —-E, —E,
E., 0 -B., B,
E, B, 0 —B,
E., -B, +B; 0

P = (5.6)

Utilizzando questo tensore é possibile riscrivere le ultime due equazioni di Maxwell in
un gauge generico nella forma covariante

1
O F" = —3¥ (5.7)
c
e le prime due nella forma
OMF"P + Q" FPH 4+ OPFH = () (5.8)

in cui p, v, p sono tre dei quattro numeri 0, 1, 2, 3.

Verifichiamo le (5.7). Ripartiamo dalle (4.19) che possiamo riscrivere nella forma
1
DAY — §*(9,A") = ~j" (5.9)
c

e quindi
1
0,0t AY — 0"(0,A") = 0, = Ej” (5.10)
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Verifichiamo la (5.8) per u =0,v =1i,p = j; €

0 = FI+0F°+dF”
1.9 A ,
= —EEZ]kaBk — OZEJ + @-EZ (511)

Moltiplicando per €' e sommando su i, j ricordando che

eIlelik = ot (5.12)
si ottiene
10 iy . . 10 y . 10 I,
= 2-_—B' - N —9,E") = —2= —B' - 2699, = —2- _—B'—2 E) (5.1
0 5B e (0 O;E") T o) 7 (VxE) (5.13)

da cui segue la componente [—esima della prime delle equazioni (4.12). In modo analogo
si verificano le altre. Scegliamo = i,v = j, p = k; abbiamo

0 = Rk gipki o gk i
MO B+ oI B! €99 B (5.14)
Moltiplicando per /%" e sommando su 7 si ottiene
0B =0 (5.15)
ovvero la seconda equazione di Maxwell.

La eq.(5.8) puo anche esser riscritta utilizzando il tensore duale di campo elettromag-

netico, definito come
1

FH §€MVPUFpU (5.16)
Si ha . ) )
fOi — §€0ip0'FpU — EGOIJkF]k — —éﬁijkejlel — _Bz (517>
¢ | 1 1
FV = Sl Fyy = S Fy + SN = =P = M B (5.18)

Ovvero le componenti del tensore duale si ottengono mandando E—+BeB— —F.

L‘eq. (5.8) in termini del tensore duale diventa

Do FP =0 (5.19)
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6 Trasformazioni di Lorentz del campo elettromag-
netico

Dopo aver identificato i campi elettrico e magnetico come le componenti del tensore an-
tisimmetrico F'*” possiamo facilmente studiarne le trasformazioni di Lorentz. In generale

sara
F'™ = NN PP (6.1)

se A denota la trasformazione di Lorentz. Se A ¢ la trasformazione speciale (2.16), ovvero
un boost lungo 'asse x con velocita B¢, avremo

B, =F" = ALA%F = AYAGFO + AN FY = B, (6.2)
E, = F"™ = N2 \%F* = y(E, - BB,) (6.3)
E. = F™ = N} A F* = y(E. + B,) (6.4)
Analogamente
B, =B, (6.5)
B, =~(B, + BE:) (6.6)
B, =~(B. — BE,) (6.7)

Le trasformazioni inverse sono trovate mandando g — —p.

Se il sistema S’ si muove con velocita con direzione arbitraria Sc rispetto al sistema
S le leggi di trasformazione divengono

2

= . — - —»_ ”y —»—»‘—o
E" = y(E+ % B) P (8- E)
s 5 3 N 72 23 A
B = (B fxB)- 54 B (6.8)

Come conseguenza di queste leggi, un campo, che in un sistema di riferimento appare come
un campo puramente elettrico o puramente magnetico, in un altro sistema di riferimento
e’ una miscela di campo elettrico e magnetico.

7 Equazione di Lorentz in forma covariante

Concludiamo scrivendo ’equazione di Lorentz per una particella di carica e in un campo
elettromagnetico esterno. Possiamo costruire la quadriforza, F, utilizzando la proprieta

(3.16), che riscriviamo
Fuy =0 (7.1)

Se utilizziamo il tensore F*#, possiamo costruirci il quadrivettore

Faﬁuﬂ (7.2)
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Data lantisimmetria di F*°, la (7.1) & soddisfatta:
FPugu, = FPuyup = —FPugus = —F*Pugu, = 0 (7.3)
Se consideriamo la parte spaziale di F*ug ¢
F*uy = EFey — FRayl = y[EFc + €M B™!| = y[Efe 4 (7 x B)F] (7.4)

ovvero, a parte il fattore e/cy la forza di Lorentz non relativistica. La quadriforza, ovvero
il quadrivettore tale che, nel limite non relativistico, le sue componenti spaziali si riducono
alla forza di Lorentz, ¢

T (7.5)
c
e quindi 'equazione di Lorentz relativistica
dp® e
E e 7.6
dr c e (7.6)
Le componenti spaziali danno
d D — -
d—f = ¢[E + 7 x B] (7.7)

dove p’ e il momento relativistico della particella; la componente temporale

dp® e .

— = %, 7.8

dr ¢ “ (78)
da cui segue

dE -

dove E e 'energia relativistica della particella. Le due eq. (7.7) e (7.9) sono le equazioni
che descrivono il moto di una particella carica relativistica in un campo elettromagnetico
esterno.

8 Lagrangiana per una particella relativistica

Se vogliamo una formulazione covariante l'azione dovra essere invariante rispetto a trasfor-
magzioni di Lorentz, quindi ricordando la relazione del tempo proprio

dt = vdr (8.1)

S = / gt — / dryL (8.2)

o0 [e.9]
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essendo 7 invariante anche vL dovra esserlo. Per una particella libera L e funzione solo
della velocita, e quindi, dovrendo essere invariante, vL sara funzione dell’'unico invariante

utu,, = ¢*. Quindi yL & costante, pertanto L ~ 7! e

o 02
S = —ch/ dt 1—5 (8.3)

o0

= —me / V(dz%)2 — (dZ)? (8.4)

Dalla () segue

o= 7 8.5
5 = M0 (8.5)
e quindi otteniamo le equazioni di una particella relativistica libera in forma non covariante
d OL d
(0= — U 8.6
dt o5 a9 (8.6)

Osserviamo che la azione si pud riscrivere nella forma

S = —mc/da\/gwi'“(a)x'“(a) (8.7)

in termini di un parametro arbitrario ¢ con

, dz*(o)
H(g) =
(o) o (8.8)
La relazione col tempo proprio e
cdr = \/gw,x'“(a):t“(a)da (8.9)
e quindi
d c d
_— = 8.10
dr  /i2do (8.10)
con’

Vi? = \/gw,:i:“(a)gtﬂ(a) (8.11)
Notiamo che questa azione é invariante per riparametrizzazione
o— o = f(o) (8.12)

proprieta riflessa dalla forma della lagrangiana, funzione omogenea di primo grado delle
derivate rispetto ad s. Proviamo a ricavare le equazioni di EL:

d oL oL

4oL ob 1
do 0zt Oxt (8.13)
OVVero J "
Z(m) =0 (8.14)
do Vi



Possiamo quindi identificare

czt dxt
ut = F = o (8.15)
T
dato che
u'u, = (8.16)
Pertanto

Moltiplicando la (8.14) per ¢/v&? otteniamo

d2

Possiamo adesso scrivere la lagrangiana di una particella carica relativistica in inter-
azione col potenziale elettromagnetico richiedendo 'invarianza per riparametrizzazione,
I'invarianza di Lorentz e l'invarianza di gauge. Cé un solo termine di interazione che
possiamo scrivere che e

it A, (8.18)

L’azione, fissando la costante del termine di interazione in modo da ottenere ’equazione
di Lorentz e

S = —/da(mc\/gwi“(a):'v“(a) + %:t“AM) (8.19)
Quindi
% - _Z;;;PaMA,, (8.20)
%% = %(—muu — EA”) = —m%u/L - E@VAMJE” (8.21)
Quindi
%muﬂ - ZF“P:'UP (8.22)

ovvero rispetto al tempo proprio

d
mEu“ = EF“pup (8.23)

dove adesso @, denota la derivata rispetto a 7.
Se 0 =t si ottiene

d - _
am’yﬁ =el + ZU x B (8.24)
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