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1 Funzioni analitiche

1.1 Notazioni e preliminari

R( |C) indica l’insieme dei numeri reali (complessi). |C è uno spazio metrico con la metrica
definita dal modulo di un numero complesso. Ricordiamo la forma trigonometrica o polare
di un numero complesso z = x+ iy = ρeiϕ = ρ(cosϕ+ i sinϕ). ρ = |z| = √

x2 + y2 denota
il modulo, ϕ = arctan y/x l’argomento e i l’unità immaginaria (i2 = −1). Indicheremo
con z̄ = x − iy il coniugato di z, con x = Re z(y = Im z) la parte reale (immaginaria)
del numero complesso.

Per molte applicazioni è utile estendere |C introducendo il simbolo∞ per rappresentare
l’infinito. La sua proprietà è data da a +∞ = ∞ + a = ∞ e ∞a = a∞ = ∞ per ogni
a 6= 0, a ∈ |C. Sarà inoltre a/∞ = 0 e a/0 = ∞. Nella rappresentazione dei numeri
complessi nel piano, il simbolo ∞ corrisponde al punto all’infinito. Si parla allora di
piano complesso esteso.

Proiezione stereografica. E’ possibile introdurre un modello geometrico in cui tutti i
punti del piano complesso esteso hanno un punto rappresentativo (Fig. 1). Consideriamo
una sfera unitaria S con centro nell’origine la cui equazione nello spazio tridimensionale è

x2
1 + x2

2 + x2
3 = 1 (1.1)

Ad ogni punto P = (x1, x2, x3) della sfera (sfera di Riemann) possiamo associare un punto
del piano complesso (il piano equatoriale della sfera)

z =
x1 + ix2

1− x3

(1.2)

eccetto al polo nord della sfera N = (0, 0, 1). Il punto z si trova nel punto intersezione col
piano della retta passante per il polo nord e per il punto P. Se indichiamo le coordinate
di z con (x, y, 0) richiedendo che i punti N,P,z stiano sulla stessa retta si ricava

x

x1

=
y

x2

=
−1

x3 − 1
(1.3)

da cui
x =

x1

1− x3

y =
x2

1− x3

(1.4)

e quindi la eq.(1.2).

La corrispondenza può esser completata associando al polo nord il punto all’infinito.
La corrispondenza è uno a uno e vale

x1 =
z + z̄

1 + |z|2

x2 =
z − z̄

i(1 + |z|2)
x3 =

|z|2 − 1

1 + |z|2
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Figura 1: La sfera di Riemann e il piano complesso

Infatti dalla eq.(1.1) segue, utilizzando le eq. (1.3)

(x2 + y2 + 1)x2
3 − 2(x2 + y2)x3 + (x2 + y2 − 1) = 0 (1.5)

cui corrispondono le radici x3 = 1 cui corrisponde il punto P e la radice

x3 =
x2 + y2 − 1

x2 + y2 + 1
(1.6)

Utilizzando questa radice nelle eq. (1.3) si ottengono le eq. (1.5). L’emisfero x3 < 0
corrisponde al disco |z| < 1.

In definitiva abbiamo una corrispondenza uno a uno tra la sfera e |C ∪ {∞}.
Topologia del piano complesso e notazioni

Per ogni numero complesso z0 e r ∈ R positivo, definiamo il disco (aperto) di raggio r

B(r, z0) = {z ∈ |C| 0 ≤ |z − z0| < r} (1.7)

Analogamente indicheremo con B(r, z0) il disco chiuso

B(r, z0) = {z ∈ |C| 0 ≤ |z − z0| ≤ r} (1.8)

e con B0(r, z0) il disco aperto privato del punto z0.

Un sottoinsieme S ⊆ |C è detto aperto se ogni suo punto ha un corrispondente disco
B(r, z0) che lo contiene e tale che B(r, z0) ⊆ S.

Un insieme S è detto chiuso se il suo complemento in |C, |C \ S, è aperto.

Un altro modo di caratterizzare gli insiemi chiusi è quello di introdurre il concetto di
punto limite o punto di accumulazione.

Un punto z0 è un punto di accumulazione per un insieme S se ogni disco centrato in z0

contiene punti di S distinti da z0 (z0 non appartiene necessariamente ad S). E’ possibile
mostrare che S é chiuso se e solo se contiene i suoi punti di accumulazione.
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Se S è un sottoinsieme di |C (S ⊂ |C), indicheremo con int(S) l’insieme dei punti
interni, ∂S la frontiera, S̄ la chiusura.

Possiamo caratterizzare int(S) come il più grande degli insiemi aperti contenuti in S.
Se esiste esso è l’unione di tutti gli insiemi aperti contenuti in S.

La chiusura S̄ di S è il piú piccolo degli insiemi chiusi che contengono S. La chiusura
è anche l’insieme che ha per elementi i punti di accumulazione di S.

La frontiera ∂S = S̄ \ int(S).

Un insieme è connesso se non può esser rappresentato come unione di due insiemi
aperti relativamente disgiunti nessuno dei quali è vuoto.

Un insieme si dice limitato se esiste un disco che lo contiene.

U indicherà un aperto. Ω indicherà una regione (anche dominio) ovvero un aperto e
connesso di |C. La proprietà di connessione garantirà l’esistenza di un cammino tra due
punti di Ω.

Funzioni

Data una funzione f : A→B, R(f) indicherà il codominio o immagine, ovvero R(f) =
{f(x) |x ∈ A} ⊂ B.

Sia S ⊆ |C. Una legge che ad ogni elemento in S associa un numero complesso è detta
funzione a valori complessi:

f : S→ |C (1.9)

z 7→ f(z) (1.10)

Scriveremo anche z = x+ iy e f(z) = u(x, y) + iv(x, y) con u(x, y) e v(x, y) funzioni reali
di due variabili reali. La funzione u è detta parte reale e la v parte immaginaria.

Le operazioni di derivata rispetto alla variabile x (y) saranno denotate con ∂x (∂y) o

anche ∂
∂x ( ∂∂y ).

Sia z0 un punto di accumulazione per S. Sarà

lim
z→z0

f(z) = A (1.11)

se ∀ε > 0 esiste un disco B(r, z0) tale che per ogni z ∈ B0(r, z0) |f(z)− A| < ε.

Sarà
lim
z→∞ f(z) = A (1.12)

se ∀ε > 0 esiste un k > 0 tale che per ogni z con |z| > k |f(z)− A| < ε.

Nota Nel caso reale si possono considerare sia limx→+∞ che limx→−∞, nel caso com-
plesso solo limz→∞.

La funzione f(z) è continua in z0 se

lim
z→z0

f(z) = f(z0) (1.13)
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Esempio 1 Sia n intero positivo. Consideriamo f(z) = zn. In coordinate polari
z = ρeiϕ e quindi

u = ρn cos(nϕ) v = ρn sin(nϕ) (1.14)

Sia B(1, 0) il disco chiuso con centro nell’origine e raggio unitario:

B̄(1, 0) = {z |0 ≤ |z| ≤ 1} (1.15)

Se z ∈ B(1, 0), allora zn : B(1, 0)→B(1, 0).

Esempio 2 Sia f(z) = z̄. E’ allora u = x e v = −y. Notare come f(z) non è
necessariamente espressa analiticamente in termini di z.

1.2 Serie di potenze

Chiamasi serie di potenze una serie del tipo

a0 + a1z + a2z
2 + ...+ anz

n + ... (1.16)

dove {an} è una successione di costanti reali o complesse.

In generale data una serie
∑
n bn e definito λ = limn→∞

|bn|
|bn−1| vale il seguente criterio

di convergenza:

i) se λ < 1 la serie è assolutamente convergente e quindi convergente

ii) se λ > 1 la serie diverge

iii) se λ = 1 la serie può convergere o divergere.

Vale il seguente risultato.

Teorema Per ogni serie (1.16) esiste un numero R ≥ 0, chiamato raggio di convergenza
con le seguenti proprietà:

i) la serie converge assolutamente per ogni z con |z| < R

ii) se |z| > R la serie diverge

Il cerchio |z| = R è detto cerchio di convergenza. Ricordiamo anche la formula di
Hadamard:

1/R = lim
n→∞

n

√
|an| (1.17)

Ricordiamo che
lim
n→∞bn = lim

n→∞ sup[bk, k ≥ n] (1.18)

Se inoltre esiste limn→∞
|an|
|an+1| si ha allora R = limn→∞

|an|
|an+1| .

Ricordiamo inoltre che se R è il raggio di convergenza la serie converge uniformemente
per |z| < R.
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Esempio 1 La serie geometrica. Consideriamo la serie

1 + z + z2 + ...+ zn + ... (1.19)

Vale

1 + z + · · ·+ zn−1 =
1− zn

1− z
(1.20)

Ma |z|n → 0 se |z| < 1, quindi la serie converge a 1/(1− z) per |z| < 1.

Se calcoliamo
|bn|
|bn−1| = |z| e quindi ritroviamo, utilizzando il criterio di convergenza,

che il raggio di convergenza è uno.

Esempio 2 La serie esponenziale.

Consideriamo la serie

1 + z +
1

2!
z2 + · · · 1

n!
zn + · · · (1.21)

In questo caso
|bn|
|bn−1| =

|z|
n
→ 0 ∀z (1.22)

quindi il raggio di convergenza è infinito.

La funzione a cui converge questa serie definisce l’esponenziale ez o exp z.

1.3 Funzioni analitiche e olomorfe

Definizione Sia f :S→ |C; sia z0 ∈ int(S). Diciamo che f è olomorfa in z0 se esiste un
disco B(r, z0) ed una serie di potenze

∞∑

n=0

an(z − z0)
n (1.23)

con raggio di convergenza maggiore o uguale ad r tale che

f(z) =
∞∑

n=0

an(z − z0)
n ∀z ∈ B(r, z0) (1.24)

f è olomorfa in un insieme S1 ⊂ int(S) se è olomorfa in ogni punto di S1.

Definizione Sia f :S→ |C; sia z0 ∈ int(S). Diciamo che f è analitica in z0 se esiste
(finito)

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

(1.25)

f ′(z0) è detta derivata di f in z0. Analogamente la f è derivabile in un insieme
S1 ⊂ int(S) se è analitica in ogni punto di S1. Per la differenziabilità valgono le consuete
proprietà

(f + g)′ = f ′ + g′ (fg)′ = f ′g + fg′ (f/g)′ = · · · (1.26)
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Se f è analitica in z0 essa è anche continua in z0.

Definizione Una funzione definita ed analitica in tutto |C si dice intera.

Esempio La funzione f(z) = zn con n intero. E‘ f ′(z) = nzn−1.

Teorema Sia f :U→ |C;

i) se f è analitica in z0 = x0 + iy0 allora valgono le equazioni di Cauchy-Riemann
(CR):

∂xu(x0, y0) = ∂yv(x0, y0) ∂yu(x0, y0) = −∂xv(x0, y0) (1.27)

ii) Viceversa se u e v soddisfano le condizioni di Cauchy-Riemann in (x0, y0) e sono
C1 in un intorno di x0, y0, allora f è analitica e vale

f ′(z0) = ∂xf(z0) = −i∂yf(z0) (1.28)

Dimostrazione.

i) Se f è analitica, allora calcolando il rapporto incrementale con ∆z = h e con ∆z = ik
con h, k reali si ha:

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
= ∂xu(x0, y0) + i∂xv(x0, y0)

f ′(z0) = lim
k→0

f(z0 + ik)− f(z0)

ik
=

1

i
[∂yu(x0, y0) + i∂yv(x0, y0)]

e quindi uguagliando si ottengono le condizioni (1.27).

ii) Sotto le ipotesi fatte è

u(x0 + h, y0 + k)− u(x0, y0) = h∂xu(x0, y0) + k∂yu(x0, y0) + ε1 (1.29)

e
v(x0 + h, y0 + k)− v(x0, y0) = h∂xv(x0, y0) + k∂yv(x0, y0) + ε2 (1.30)

con ε1/(h+ ik) → 0 e ε2/(h+ ik) → 0 quando h+ ik → 0.

Quindi

f(z0 + h+ ik)− f(z0)

h+ ik
=

u(x0 + h, y0 + k)− u(x0, y0) + i[v(x0 + h, y0 + k)− v(x0, y0)])

h+ ik

=
h∂xu+ k∂yu+ ih∂xv + ik∂yv

h+ ik
+
ε1 + iε2
h+ ik

Pertanto, utilizzando le (1.27)

f ′(z0) = lim
h+ik→0

(h+ ik)∂xu+ i(h+ ik)∂xv

h+ ik
= ∂xf(z0)

= lim
h+ik→0

−i[(h+ ik)∂yu+ i(h+ ik)∂yv]

h+ ik
= −i∂yf(z0)
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Nota Se f è analitica, dimostreremo che u, v ∈ C∞. Quindi derivando ∂u/∂x una
seconda volta ed utilizzando le (1.27), si ottiene

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
(1.31)

e pertanto

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (1.32)

ed analogamente

∆v =
∂2v

∂x2
+
∂2v

∂y2
= 0 (1.33)

ovvero u e v sono funzioni che soddisfano l’equazione di Laplace e sono dette armoniche.

Se due funzioni u e v soddisfano le condizioni di Cauchy-Riemann, v è detta funzione
armonica coniugata di u.

Consideriamo una funzione complessa g(x, y). Possiamo pensare g funzione delle
variabili z e z̄ = x− iy

g(x, y) = f(z, z̄) (1.34)

In realtà queste due variabili non sono variabili indipendenti. Possiamo scrivere anche

x =
z + z̄

2
y =

z − z̄

2i
(1.35)

e quindi, trattando le variabili z e z̄ come indipendenti ed utilizzando le condizioni di
Cauchy-Riemann

∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
) = 0 (1.36)

Quindi la condizione di analiticità si può anche riscrivere come

∂f

∂z̄
= 0 (1.37)

Esempio f(z) = z2. E’ u = x2− y2, v = 2xy e quindi ∂xu = 2x = ∂yv e ∂yu = −2y =
−∂xv.

Teorema Se f(z) =
∑∞
n=0 anz

n ha raggio di convergenza R:

i) la serie
∑∞
n=1 nanz

n−1 ha raggio di convergenza R

ii) f ′(z) =
∑∞
n=1 nanz

n−1

Dimostrazione. (vedi [2])
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1.4 Le funzioni esponenziale, logaritmo, potenza

Abbiamo gia visto la definizione di exp(z).

La funzione exp(z) è derivabile ed è f ′(z) = exp(z). Questo può esser visto derivando
la serie di potenze termine a termine:

(exp(z))′ = 1 + z +
1

2!
z2 + · · · 1

n!
zn + · · · (1.38)

La funzione esponenziale soddisfa il teorema di addizione:

ez1ez2 = ez1+z2 (1.39)

Infatti (ezec−z)′ = ezec−z − ezec−z = 0. Quindi la funzione ezec−z = costante. Il valore
della costante è trovato per z = 0. Quindi ezec−z = ec, da cui segue la proprietà per
z = z1 e c = z1 + z2.

Segue anche eze−z = 1 e quindi ez non è mai zero. Inoltre se z = x+ iy

ez = ex+iy = exeiy = ex(cos y + i sin y) (1.40)

Da ez = ez1 segue
z = z1 + 2kπi con k ∈ ZZ (1.41)

Infatti da ez = ez1 segue, prendendo il modulo x1 = x e eiy = eiy1 da cui

y = y1 + 2kπ (1.42)

Utilizzando la funzione ez è possibile definire le funzioni seno e coseno

sin z =
eiz − e−iz

2i
cos z =

eiz + e−iz

2
(1.43)

e le funzioni seno e coseno iperbolici

sinh z =
ez − e−z

2
cosh z =

ez + e−z

2
(1.44)

Dalla (1.43) segue la formula di Eulero

eiz = cos z + i sin z (1.45)

Le funzioni (1.43-1.44) sono funzioni intere e soddisfano le consuete proprietà di derivazione:

(sin z)′ = cos z (cos z)′ = − sin z (1.46)

etc.

Insieme con la funzione esponenziale possiamo studiare la sua funzione inversa, il
logaritmo. Dato che la funzione esponenziale non è iniettiva (z1 6= z2 non implica f(z1) 6=
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y

Figura 2: Il piano complesso con un taglio lungo l’asse reale negativo

f(z2)) la funzione logaritmo non è una funzione monodroma. Definiamo il logaritmo log z
come

elog z = z ∀z 6= 0 (1.47)

Essendo
elog z = |z|ei arg z = elog |z|+i arg z (1.48)

segue
log z = log |z|+ i arg z + 2kπi k ∈ ZZ (1.49)

Il logaritmo è quindi una funzione polidroma.

Ogni k individua un ramo della funzione. Fissato un punto z0 su un ramo k, facendo
un giro intorno all’origine in senso positivo (antiorario) e tornando nel punto z0 si passa
al ramo k + 1 e cosi via.

Se limitiamo | arg z| < π otteniamo il valore principale del logaritmo. In modo analogo
possiamo pensare di tagliare il piano complesso lungo l’asse negativo delle x e considerare
il taglio come avente due bordi distinti (Fig. 2). Allora fissato il valore di log z in un
punto, in tutti gli altri punti log z è determinato con continuità. Sui bordi del taglio
si hanno per log z due valori che differiscono di 2πi. Il punto z = 0 è detto punto di
diramazione.

Con questa convenzione all’interno del piano tagliato log z è funzione analitica e vale
il solito risultato

(log z)′ =
1

z
(1.50)

Possiamo poi definire la potenza ad esponente complesso:

zα = eα log z = eα(log |z|+i arg z)e2kαπi ∀z 6= 0, α ∈ |C (1.51)
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Pertanto in generale anche la potenza è una funzione polidroma. Il punto z = 0 è un
punto di diramazione salvo nel caso in cui α sia un intero. Se α è razionale α = m/n (con
m e n primi) allora la potenza ha n valori distinti, se α è irrazionale o complesso i valori
distinti sono infiniti. Nel piano tagliato la funzione zα è analitica ed è

(zα)′ = (eα log z)′ =
α

z
eα log z = αzα−1 (1.52)

Esempio La radice n−esima di 1. 11/n = exp(2πik/n) con k = 0, 1, ..., n− 1.

2 Integrazione nel piano complesso

2.1 Curve e cammini

Cominciamo col definire una curva in |C come una applicazione γ: [a, b]→ |C, che ad ogni
numero reale t ∈ [a, b] associa il numero complesso γ(t), e tale che Re γ(t) e Im γ(t) siano
funzioni di classe C1. I punti γ(a) e γ(b) sono detti estremi della curva (o punto iniziale
e punto finale). Il numero

Lγ =
∫ b

a
|γ′(t)|dt =

∫ b

a

√
Reγ′(t)2 + Imγ′(t)2dt (2.53)

è detto lunghezza della curva. Una curva è chiusa se il punto iniziale e il punto finale
coincidono.

E’ conveniente introdurre anche una generalizzazione delle curve.

Definiamo cammino un insieme ordinato di curve γ = {γ1, γ2, · · · γn}, in modo che per
ciascuna curva il punto finale della γj coincide col punto iniziale della γj+1.

Il numero Lγ =
∑n
i=1 Lγi

è detto lunghezza del cammino γ.

Analogamente il cammino sarà chiuso se il suo punto iniziale coincide col punto finale.

2.2 Integrali su cammini

Sia f una funzione continua su un aperto U e γ: [a, b]→ |C una curva in U (in realtà basta
che la funzione sia continua su R(γ), l’immagine di γ). Possiamo definire l’integrale di f
lungo γ come ∫

γ
f =

∫ b

a
f(γ(t))γ′(t)dt (2.54)

E’ anche scritto frequentemente come
∫
γ f(z)dz.
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Si può verificare che l’integrale definito dalla (2.54) è invariante per riparametriz-
zazione. Sia g : [a, b] 7→ [c, d] una funzione C1 tale che g(a) = c, g(b) = d e sia ψ: [c, d] 7→ |C
una curva. Supponiamo inoltre

γ(t) = ψ(g(t)) (2.55)

Si ha
∫

γ
f =

∫ b

a
f(γ(t))γ′(t)dt

=
∫ b

a
f(ψ(g(t))ψ′(g(t))g′(t)dt

=
∫ d

c
f(ψ(g))ψ′(g)dg

=
∫

ψ
f

Quindi l’integrale è invariante per riparametrizzazione.

Se γ è un cammino allora
∫
γ f =

∑n
i=1

∫
γi
f .

Esempi

Arco di circonferenza con centro in z0 e raggio r da z1 a z2:

γ(t) = z0 + reit t ∈ [t1, t2] (2.56)

con t1(2) = arg(z1(2) − z0)

Segmento da z1 a z2

γ(t) = z1 + t(z2 − z1) t ∈ [0, 1] (2.57)

Esempi

Sia f(z) = zn. Calcoliamo
∫
γ z

n, nel caso in cui n sia intero positivo o negativo ma
diverso da -1, lungo una circonferenza di raggio unitario intorno all’origine:

∫

γ
zndz = i

∫ 2π

0
ei(n+1)tdt = 0 (2.58)

Sia f(z) = 1
z − a . Sia γ una circonferenza di raggio unitario intorno al punto a. Questa

circonferenza corrisponde a γ(t) = a + eit 0 ≤ t ≤ 2π. Quindi γ′(t) = ieit. Vogliamo
calcolare ∫

γ

1

z − a
dz =

∫ 2π

0

1

eit
eitidt = 2πi (2.59)

Esempio Sia φ il segmento da z0 a z0 +h (h è qui un numero complesso). L’equazione
del segmento è φ(t) = z0 + th, 0 ≤ t ≤ 1. Pertanto

∫

φ
dz = h

∫ 1

0
dt = h (2.60)
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Data una curva γ: [a, b] 7→ |C definiamo la curva opposta

γ−: [−b,−a] 7→ |C (2.61)

che a t associa γ(−t). Quindi abbiamo

∫

γ−
f =

∫ −a

−b
f(γ(−t))dγ(−t)

dt
dt = −

∫ b

a
f(γ(s))γ′(s)ds (2.62)

dove abbiamo fatto il cambiamento di variabile s = −t. Pertanto
∫

γ−
f = −

∫

γ
f (2.63)

Vale il seguente teorema.

Teorema di Darboux Sia γ un cammino e f continua su R(γ). Allora vale la
disuguaglianza (di Darboux):

|
∫

γ
f | ≤ Lγ sup

z∈R(γ)
|f(z)| (2.64)

Dimostrazione. Infatti è, nel caso in cui γ sia una curva,

|
∫

γ
f | ≤

∫ b

a
|f(z)γ′(t)|dt ≤ Lγ sup

z∈R(γ)
|f(z)| (2.65)

La dimostrazione si generalizza facilmente al caso di un cammino.

Valgono anche i teoremi seguenti:

Teorema Sia {fn} una successione di funzioni continue su R(γ), convergenti uni-
formemente a una funzione f . Allora

lim
n→∞

∫

γ
fn =

∫

γ
f (2.66)

ed f è continua. Se
∑∞
n=0 fn è una serie uniformemente convergente ad una funzione f ,

vale ∞∑

n=0

∫

γ
fn =

∫

γ

∞∑

n=0

fn (2.67)

ed f è continua.

Dimostrazione. La prima asserzione segue da

|
∫

γ
fn −

∫

γ
f | ≤

∫

γ
|fn − f | ≤ Lγε (2.68)
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dove abbiamo sfruttato l’uniforme convergenza delle fn ovvero l’esistenza di un n0 tale
che per n > n0 |f(z)− fn(z)| < ε per ogni z in R(γ). La continuità di f segue da

|f(z)− f(z0)| ≤ |f(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− f(z0)| (2.69)

Sia f :U 7→ |C e g una funzione analitica tale che

g′ = f in U (2.70)

Allora g è detta primitiva di f in U .

Data una regione Ω indichiamo con Γ0(Ω) l’insieme dei cammini chiusi γ tali che
R(γ) ⊂ Ω e con Γ(z1, z2,Ω) l’insieme dei cammini γ tali che R(γ) ⊂ Ω e che vanno da z1

a z2.

Vale il seguente:

Teorema della primitiva Data una f : Ω 7→ |C continua, le seguenti proposizioni sono
equivalenti:

i)
∫
γ f = 0 ∀γ ∈ Γ0(Ω)

ii) ∀z1, z2 ∈ Ω ∫

γ1
f =

∫

γ2
f ∀γ1, γ2 ∈ Γ(z1, z2,Ω) (2.71)

iii) f ammette primitiva in Ω

Dimostrazione.

i)→ii) Se consideriamo il cammino γ = (γ1, γ
−
2 ) ∀γ1, γ2 ∈ Γ(z1, z2,Ω), questo è un

cammino chiuso e quindi ∫

γ
f = 0 ⇒

∫

γ1
f +

∫

γ−2
f = 0 (2.72)

da cui segue ii).

ii)→iii) Fissato z0 in Ω consideriamo

g(z) =
∫

γ
f (2.73)

in cui γ è un cammino in Γ(z0, z,Ω). Abbiamo allora

g(z + h)− g(z)

h
=

1

h

[∫

γ+φ
f −

∫

γ
f

]
=

1

h

∫

φ
f(z′)dz′ (2.74)

dove φ è il segmento da z a z + h. Per la continuità di f in z possiamo scrivere

f(z′) = f(z) + ψ(z′) (2.75)
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con limz′→z ψ(z′) = 0. Quindi

1

h

∫

φ
f(z′)dz′ =

1

h

∫

φ
f(z)dz′ +

1

h

∫

φ
ψ(z′)dz′ = f(z) +

1

h

∫

φ
ψ(z′)dz′ (2.76)

dove abbiamo utilizzato
∫
φ dz

′ = h (ovvero la (2.60)). Dalla (2.74) e dalla (2.76), segue

|g(z + h)− g(z)

h
− f(z)| ≤ 1

|h| |h| sup
φ
|ψ(z′)| (2.77)

Ma supφ |ψ(z′)| tende a zero come h→ 0 e quindi la proposizione è dimostrata.

iii)→ i) Se g è primitiva allora

∫

γ
f =

∫ b

a
f(γ(t))γ′(t)dt =

∫ b

a
g′γ′dt = g(γ(b))− g(γ(a)) = 0 (2.78)

dato che il cammino è chiuso.

Esempio Sia f(z) = zn con n intero diverso da -1. zn ammette primitiva (zn+1/(n+
1)), quindi per ogni cammino γ chiuso (non passante per l’origine nel caso in cui n sia
negativo) ∫

γ
zn = 0 (2.79)

2.3 Teorema di Goursat

R denoterà il rettangolo e ∂R la frontiera del rettangolo.

Teorema (di Goursat) Sia R un rettangolo e sia f una funzione analitica su R.
Allora ∫

∂R
f = 0 (2.80)

Dimostrazione. Decomponiamo il rettangolo in quattro rettangoli bisecando i lati di
R. Quindi è ∫

∂R
f =

4∑

i=1

∫

∂Ri

f (2.81)

dato che gli integrali sui lati coincidenti dei quattro rettangoli si cancellano. Pertanto

|
∫

∂R
f | ≤

4∑

i=1

|
∫

∂Ri

f | (2.82)

Quindi esisterà un rettangolo, diciamo Rk, tra gli R1, R2, R3 e R4, per cui

|
∫

∂Rk

f | ≥ 1

4
|
∫

∂R
f | (2.83)
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Altrimenti sarebbe ∀k
|
∫

∂Rk

f | < 1

4
|
∫

∂R
f | (2.84)

e sommando su k = 1, ...4

|
∫

∂R
f | ≤

4∑

k=1

|
∫

∂Rk

f | < |
∫

∂R
f | (2.85)

Indichiamo Rk con R(1). Decomponiamo ora R(1) ancora in quattro rettangoli uguali
bisecando i lati. Tra questi ne troveremo un altro, denotiamolo con R(2), tale che

|
∫

∂R(2)
f | ≥ 1

4
|
∫

∂R(1)
f | (2.86)

Procedendo in questo modo troviamo una successione di rettangoli

R(1) ⊃ R(2) ⊃ R(3) ⊃ · · · (2.87)

tali che

|
∫

∂R(n+1)
f | ≥ 1

4
|
∫

∂R(n)
f | (2.88)

Pertanto

|
∫

∂R(n)
f | ≥ 1

4n
|
∫

∂R
f | (2.89)

Sarà inoltre Ln+1 = 1
2
Ln, se Ln denota il perimetro di R(n), e quindi Ln = 1

2nL se L è
il perimetro di R.

Sia αn la successione dei centri dei rettangoli. E’ facile dimostrare che questa succes-
sione è una successione di Cauchy, e quindi converge ad un punto z0 ∈ R. Infatti fissato
ε > 0 possiamo trovare un N tale che la diagonale di R(N) sia minore di ε. Allora se
n,m > N αn ed αm stanno in R(N) ed inoltre

|αn − αm| < diagR(N) < ε (2.90)

Sia z0 = limn→∞ αn. z0 sta in ciascun rettangolo, perchè ciascun rettangolo è chiuso, e
quindi sta nell’intersezione dei rettangoli R(n).

Poichè f è differenziabile in R, ∀ε > 0 esiste un B(r, z0) tale che

f(z) = f(z0) + f ′(z0)(z − z0) + h(z)(z − z0) (2.91)

con |h(z)| < ε per ogni z ∈ B(r, z0). Per n sufficientemente grande R(n) ⊂ B(r, z0) e
quindi

∫

∂R(n)
f(z)dz =

∫

∂R(n)
f(z0)dz + f ′(z0)

∫

∂R(n)
(z − z0)dz +

∫

∂R(n)
(z − z0)h(z)dz (2.92)

Ma i primi due integrali per la (2.79) sono nulli, quindi
∫

∂R(n)
f(z)dz =

∫

∂R(n)
(z − z0)h(z)dz (2.93)
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Otteniamo allora (utilizzando il teorema di Darboux)

1

4n
|
∫

∂R
f | ≤ |

∫

∂R(n)
(z − z0)h(z)dz| ≤ sup |(z − z0)h(z)|Ln ≤ dnLn sup |h(z)| ≤ 1

4n
Ldε

(2.94)
dove dn (d) denota la lunghezza della diagonale del rettangolo R(n) (R) e quindi

|
∫

∂R
f | ≤ Ldε (2.95)

da cui segue, essendo ε arbitrario, ∫

∂R
f = 0 (2.96)

Definizione Data f : S 7→ |C un punto z0 (non necessariamente appartenente ad S)
si dice singolarità isolata se esiste un intorno B(r, z0) tale che f è definita ed analitica
nell’intorno di z0, ma non in z0.

Una singolarità isolata si dice

i) una singolarità eliminabile se

lim
z→z0

(z − z0)f(z) = 0 (2.97)

ii) un polo se
lim
z→z0

f(z) = ∞ (2.98)

iii) una singolaritá essenziale se limz→z0 f(z) non esiste né finito né infinito.

Esempio La funzione f(z) = sin z
z . Questa funzione ha una singolarità eliminabile

in z = 0. In z = 0 la funzione non è definita pero’ vale limz→0zf(z) = 0. Inoltre
limz→0 f(z) = 1 e quindi possiamo estendere la f(z) in zero in modo che assuma il valore
1.

Il teorema di Goursat rimane valido anche in presenza di un numero finito di singolarità
eliminabili all’interno del rettangolo.

Teorema di Cauchy per il disco Data f :S 7→ |C, analitica su D, disco contenuto
all’interno di S. Allora ∀γ ∈ Γ0(D) è

∫

γ
f = 0 (2.99)

Dimostrazione. Sia z0 il centro del disco. Definiamo

F1(z) =
∫

γ1
f F2(z) =

∫

γ2
f (2.100)

dove γ1 = (γ1v, γ1o) è un cammino da z0 a z composto da un cammino parallelo all’asse
immaginario γ1v seguito da uno parallelo all’asse reale γ1o e γ2 = (γ2o, γ2v) un cammino
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Figura 3: I cammini per la dimostrazione del Teorema di Cauchy per il disco

da z0 a z composto da un cammino parallelo all’asse reale γ2o seguito da uno parallelo
all’asse immaginario γ2v come in Fig. 3.

Il cammino γ = (γ1v, γ1o, γ
−
2v, γ

−
2o) è quindi un cammino chiuso rettangolare e il teorema

di Goursat applicato a γ da
F1(z) = F2(z) ∀z ∈ D (2.101)

Poniamo F = F1 = F2. Se consideriamo poi un incremento reale h è

F (z + h)− F (z)

h
=

1

h

∫ 1

0
f(z + th)hdt = f(z + t0h) (2.102)

utilizzando il teorema della media. Quindi passando a limite troviamo

∂xF (z) = f(z) (2.103)

Analogamente considerando un incremento ik con k reale troviamo

∂yF (z) = if(z) (2.104)

Quindi le condizioni di Cauchy Riemann sono soddisfatte, F è analitica ed è primitiva di
f in D. Pertanto, per il teorema della primitiva,

∫

γ
f = 0 (2.105)

per ogni cammino chiuso γ ∈ D.

Il teorema di Cauchy rimane valido in presenza di singolarità eliminabili per cammini
chiusi non passanti per tali singolarità.

2.4 Indice

Vogliamo generalizzare il teorema di Cauchy. Per prima cosa definiamo l’indice ovvero
quante volte una curva (cammino) gira intorno ad un punto.
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Abbiamo visto in un esempio che

1

2πi

∫

γ

1

z
= 1 (2.106)

se γ è una circonferenza intorno all’origine in senso antiorario.

E’ naturale quindi definire l’indice di un cammino chiuso γ rispetto ad un punto
z0 /∈ R(γ)

n(γ, z0) =
1

2πi

∫

γ

1

z − z0

(2.107)

Teorema Se γ è un cammino che non passa per z0, n(γ, z0) è un intero.

Dimostrazione Sia γ un cammino γ = (γ1, γ2, · · · , γn). Sia γ(t) con t ∈ [a, b] la
parametrizzazione del cammino. Consideriamo

F (t) =
∫ t

a

γ′(t)
γ(t)− z0

dt (2.108)

F è continua e differenziabile in tutti i punti, salvo al più nei punti di raccordo tra le
curve che costituiscono il cammino.

F ′(t) =
γ′(t)

γ(t)− z0

(2.109)

Se calcoliamo

d

dt
[e−F (t)(γ(t)− z0)] = e−F (t)γ′(t)− F ′(t)e−F (t)(γ(t)− z0) = 0 (2.110)

Pertanto la funzione e−F (t)(γ(t) − z0) essendo continua e costante a tratti è costante.
Valutandola, in b ed a, otteniamo

e−F (b)(γ(b)− z0) = 1(γ(a)− z0) (2.111)

Ma γ(a) = γ(b) (il cammino è chiuso) e quindi e−F (b) = 1 da cui

F (b) = 2πik (2.112)

e
n(γ, z0) = k k ∈ ZZ (2.113)

L’insieme dei punti R(γ) è chiuso e limitato. Il suo complemento in |C è aperto e può
esser rappresentato come unione di regioni disgiunte (le componenti). Una sola contiene
il punto all’infinito (componente illimitata).

Si dimostra anche che n(γ, z0) è una funzione continua di z0. Poiché n può assumere
solo valori interi,sarà costante in ciascuna delle componenti connesse di |C \R(γ). Inoltre
se z0 ∈ S ed S è la componente illimitata n(γ, z0) = 0. In questo caso basta prendere
z − z0 arbitrariamente grande per dimostrarlo.
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2.5 Formula Integrale di Cauchy

Teorema Sia f definita ed analitica su un disco D. Per ogni z ∈ D e che non sta sul
cammino γ ∈ Γ0(D) vale

n(γ, z)f(z) =
1

2πi

∫

γ

f(w)

w − z
dw (2.114)

Dimostrazione. Basta applicare il teorema di Cauchy alla funzione
f(w)− f(z)

w − z . Ques-

ta funzione è definita ed analitica per w 6= z e vale limw→z
f(w)− f(z)

w − z (w−z) = 0, ovvero
ha una singolarità eliminabile in w = z. Pertanto

∫

γ

f(w)− f(z)

w − z
dw = 0 ∀γ ∈ Γ0(D) (2.115)

da cui segue la formula integrale.

L’applicazione più comune è quella al caso n(γ, z) = 1:

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw (2.116)

Se fosse possibile derivare la (2.116) sotto il segno di integrale troveremmo:

f ′(z) =
1

2πi

∫

γ

f(w)

(w − z)2
dw (2.117)

Il seguente teorema lo permette:

Teorema Supponiamo che g(w) sia una funzione continua su un cammino (non ne-
cessariamente chiuso) γ ∈ U . Allora la funzione

F (z) =
∫

γ

g(w)

(w − z)
dw (2.118)

è analitica nel complemento di γ in U e vale

F (n)(z) = n!
∫

γ

g(w)

(w − z)n+1
dw (2.119)

Dimostrazione. [1] [2]

Derivando n volte la (2.116), si ottiene la formula integrale per la derivata n-esima

f (n)(z) =
1

2πi
n!

∫

γ

f(w)

(w − z)n+1
dw (2.120)

Segue il
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Teorema di Liouville Una funzione analitica e limitata in tutto |C è costante.

Dimostrazione. Infatti se |f(z)| ≤ M ∀z, considerando per γ una circonferenza di
raggio r e centro in z, abbiamo

|f ′(z)| ≤ 1

2π
|
∫

γ

f(w)

(w − z)2
dw| ≤ 1

2π

M

r2
2πr =

M

r
(2.121)

e poichè possiamo scegliere r arbitrariamente grande segue il teorema.

Abbiamo quindi visto che una funzione analitica ha derivate di tutti gli ordini che sono
analitiche. Possiamo ora mostrare il

Teorema di Morera Se f(z) è definita e continua su una regione Ω e se
∫
γ f = 0 per

tutti i cammini chiusi in Ω, allora f(z) è analitica in Ω.

Dimostrazione. Avevamo già visto che sotto queste ipotesi f ammette una primitiva
analitica g. Abbiamo visto che la derivata di una funzione analitica è analitica, quindi f
è analitica.

Il teorema di Liouville porta anche ad una semplice dimostrazione del Teorema fon-
damentale dell’algebra.

Supponiamo che P (z) sia un polinomio di grado n. Se P (z) non fosse mai zero, la
funzione 1/P (z) sarebbe una funzione analitica in tutto il piano complesso. Sappiamo poi
che limz→∞P (z) = ∞, quindi 1/P (z) tende a zero. Pertanto 1/P (z) é piccolo al di fuori
di un diso di raggio R e assumerà un massimo all’interno del disco. Ma questo implica
limitatezza e per il teorema di Liouville 1/P (z) sarebbe una costante. Pertanto P (z) = 0
deve avere una radice, che supponiamo di ordine m. E’ quindi P (z) = (z− a)mP1(z), con
P1(z) polinomio di grado n−m. Riapplicando il ragionamento, si ottiene il teorema.

2.6 Sviluppo di Taylor

Teorema Sia f definita ed analitica in un intorno B(r, a) di a. Allora ∀z ∈ B(r, a) è

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n (2.122)

con

f (n)(a) = n!
1

2πi

∫

γ

f(w)

(w − a)n+1
dw (2.123)

e γ è una circonferenza con centro in a.

Questa espressione è detta sviluppo di Taylor nell’intorno di a.

Dimostrazione. ∀z ∈ B(r, a) sia γ una circonferenza con centro in a e raggio ρ tale
che |z − a| < ρ < r. Evidentemente

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw (2.124)
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Ma 1/(w − z) può esser espresso come la serie geometrica (uniformemente convergente
per w ∈ R(γ))

1

w − z
=

1

(w − a)− (z − a)
=

1

w − a

∞∑

n=0

(
z − a

w − a

)n
(2.125)

Sosituendo nella (2.124) e integrando termine a termine si ottiene

f(z) =
∞∑

n=0

[
1

2πi

∫

γ

f(w)

(w − a)n+1
dw

]
(z − a)n (2.126)

e quindi la (2.122).

2.7 Sviluppo di Laurent

Si chiama serie di Laurent di potenze di z una serie del tipo

∞∑

n=−∞
anz

n (2.127)

dove gli an ∈ |C. La serie convergerà in una regione R1 ≤ |z| ≤ R2. Nell’intorno di una
singolarità isolata a una funzione può essere espressa come serie di Laurent di z − a.

Teorema Sia f definita ed analitica in un intorno B0(r, a) di a, dove f ha una
singolarità isolata. Allora ∀z ∈ B0(r, a) vale

f(z) =
∞∑

p=−∞
cp(z − a)p (2.128)

con

cp =
1

2πi

∫

γ
f(w)(w − a)−p−1dw (2.129)

essendo γ una qualunque circonferenza con centro in a e raggio minore di r.

Dimostrazione. Sia z ∈ B0(r, a). Fissiamo ε > 0, in modo che presi i cerchi ϕ1

e ϕ2 con centro in a e di raggio rispettivamente |z| − ε e |z| + ε, si possa trovare una
circonferenza ϕ ⊂ B0(r, a) con centro in z tale che il cammino γ1 di Fig. 4 sia contenuto
nella circonferenza ϕ e cosi via. Possiamo trovare in questo modo un numero finito di
cammini γ1, γ2, · · · γn in modo che per qualunque funzione g continua su ∪nj=1R(γj), è

∫

ϕ2

g −
∫

ϕ1

g =
n∑

j=1

∫

γj

g (2.130)

Sia adesso g(w) = f(w)/(w − z). Per il teorema di Cauchy

∫

ϕ2

g −
∫

ϕ1

g =
∫

γ1
g (2.131)
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Figura 4: Cammini per la dimostrazione dello sviluppo di Laurent

dato che la funzione f(w)/(w − z) è analitica all’interno di γ2, · · · γm. Pertanto

1

2πi

∫

ϕ2

f(w)

w − z
dw − 1

2πi

∫

ϕ1

f(w)

w − z
dw =

1

2πi

∫

γ1

f(w)

w − z
dw = f(z) (2.132)

Ma

1

2πi

∫

ϕ2

f(w)

w − z
dw =

1

2πi

∫

ϕ2

f(w)

(w − a)− (z − a)
dw

=
1

2πi

∫

ϕ2

f(w)

w − a

1

1− z − a
w − a

dw

=
∞∑

n=0

1

2πi

∫

ϕ2

f(w)

(w − a)n+1
dw(z − a)n (2.133)

Analogamente per
∫
ϕ1

:

− 1

2πi

∫

ϕ1

f(w)

w − z
dw =

1

2πi

∫

ϕ1

f(w)

(z − a)− (w − a)
dw

=
1

2πi

∞∑

p=0

∫

ϕ1

f(w)
(w − a)p

(z − a)p+1
dw

=
1

2πi

∞∑

p=1

∫

ϕ1

f(w)
(w − a)p−1

(z − a)p
dw (2.134)

Dalle (2.132), (2.133) e (2.134) segue il teorema. Infatti

cp =
1

2πi

∫

ϕ1

f(w)(w − a)−p−1dw

=
1

2πi

∫

ϕ2

f(w)(w − a)−p−1dw − 1

2πi

n∑

j=1

∫

γj

f(w)(w − a)−p−1dw
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=
1

2πi

∫

ϕ2

f(w)(w − a)−p−1dw

dove abbiamo fatto uso del teorema di Cauchy per il disco per calcolare ciascuno degli∫
γj

. Quindi la circonferenza intorno a cui calcolare cn può essere una qualsiasi con raggio
minore di r.

La parte
∑∞
p=1 c−p(z − a)−p è detta parte caratteristica di Laurent in un intorno di a

(p.c.L. in a).

Esempio La serie di Laurent nell’intorno di z = 0 di f(z) = 1

z(z − 1)
.

E’

f(z) =
1

z(z − 1)
=

1

z − 1
− 1

z
= −1

z
− 1

1− z
(2.135)

e pertanto

f(z) = −1

z
− 1− z − z2 − . . . (2.136)

2.8 Singolarità

Teorema Data una funzione f con una singolarità isolata in a le seguenti proposizioni
sono equivalenti:

i) f ha in z = a una singolarità eliminabile

ii) la p.c.L. in a è zero

iii) esiste finito limz→a f(z)

iv) esiste un r > 0 tale che f è limitata su B0(r, a).

Dimostrazione. i)→ ii). La funzione f(w)(w − a)n−1 n ≥ 1 è definita ed analitica
tranne in a dove ha una singolarità eliminabile, quindi

c−n =
1

2πi

∫

γ
f(w)(w − a)n−1dw = 0 (2.137)

ii) → iii). Dallo sviluppo di Laurent con c−n = 0 n ≥ 1, segue limz→a f(z) = c0.

iii) → iv). Ovvio.

iv) → i). Se f è limitata in B0(r, a), segue

lim
z→a

f(z)(z − a) = 0 (2.138)

Teorema Data una funzione f con una singolarità isolata in a le seguenti proposizioni
sono equivalenti:

i) f ha in z = a un polo
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ii) la funzione 1/f(z) ha in z = a una singolarità eliminabile e una volta eliminata
tale singolarità, esiste un intero m ≥ 1 tale che 1/f(z) ha in z = a uno zero di un certo
ordine m.

iii) limz→a f(z)(z − a)m esiste finito e diverso da zero.

iv) la p.c.L. in a di f é un polinomio di grado m in (z − a)−1.

Dimostrazione. i)→ ii). In un conveniente B0(r, a) f è analitica e diversa da zero.
Quindi sullo stesso insieme 1/f è analitica e 1/f(z) → 0 per z → a. Una volta eliminata
tale singolarità eliminabile,ridefinendo 1/f(a) = 0, 1/f(z) ha in z = a uno zero di ordine
m ≥ 1.

ii) → iii) Se 1/f(z) ha in z = a uno zero di ordine m,

1

f(z)
= (z − a)mg(z) (2.139)

con g analitica in un intorno di a e tale che g(a) 6= 0. Quindi

lim
z→a

f(z)(z − a)m = lim
z→a

1

g(z)
=

1

g(a)
6= 0 (2.140)

iii) → iv). f(z)(z − a)m ha in a una singolarità eliminabile, quindi

f(z)(z − a)m =
∞∑

n=0

cn(z − a)n (2.141)

da cui segue iv).

iv) → i). E’

f(z) =
1

(z − a)m
[c−m + c−m+1(z − a) + · · ·] (2.142)

da cui segue limz→a f(z) = ∞.

m è l’ordine del polo.

Teorema di Casorati Weierstrass Sia z0 una singolarità essenziale per la funzione
f e sia B0(r, z0) un disco centrato in z0. Allora f(B0(r, z0)) è denso in |C ∀r.

Dimostrazione. Supponiamo il teorema falso. Allora esiste un numero complesso w e
un numero positivo ε tali che

|f(z)− w| > ε ∀z ∈ B0(r, z0) (2.143)

Ma allora

lim
z→z0

f(z)− w

z − z0

= ∞ (2.144)

e quindi la funzione
f(z)− w
z − z0

ha un polo e pertanto anche la f(z) avrebbe un polo o una

singolarità eliminabile contrariamente all’ipotesi.
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E’ facile dimostrare inoltre che se z0 è una singolarità essenziale per la funzione f la
p.c.L. ha infiniti termini. Infatti se la p.c.L. si riducesse ad un polinomio esisterebbe finito
o infinito il limz→z0 f(z), contrariamente all’ipotesi.

E’ stato inoltre mostrato da Picard che f(z) in ogni intorno della singolarità essenziale
assume ogni valore di |C eccetto al più uno. Per esempio la funzione exp(1/z) in B0(r, 0)
prende ogni valore eccetto il valore 0.

Esempio La funzione exp 1
z ha in z = 0 una singolarità essenziale. Infatti

lim
x→0+

exp
1

x
= ∞ lim

x→0−
exp

1

x
= 0 (2.145)

Lo sviluppo di Laurent è dato da

exp
1

z
= 1 +

1

z
+

1

2!

1

z2
+ · · · (2.146)

Esempio La funzione sin 1
z ha in z = 0 una singolarità essenziale. Infatti se conside-

riamo le due successioni

{xn} =
1

nπ
{xn} =

2

(4n+ 1)π
(2.147)

tendenti a zero per n→∞ abbiamo nel primo caso

lim
n→∞ sin

1

xn
= 0 (2.148)

e nel secondo

lim
n→∞ sin

1

xn
= 1 (2.149)

Data una funzione definita ed analitica nell’intorno di ∞, cioè per |z| > k > 0,
trattiamo l’infinito come una singolarità isolata. Il tipo di singolarità è quello di f ◦ i dove
i: |C \ {0} ∈ |C associando a z→f(z) = 1/z.

Quindi per esempio z = ∞ è una singolarità essenziale per le funzioni exp(z), sin z,
cos z, è un polo di ordine m per un polinomio di grado m.

2.9 Zeri di una funzione analitica

Sia f : Ω 7→ |C una funzione analitica in Ω. Sia a uno zero per f(z). Espandiamo f in serie
di Taylor nell’intorno dello zero

f(z) =
∞∑

n=0

cn(z − a)n (2.150)

Se a è uno zero due casi possono presentarsi. Tutti i cn sono zero, nel qual caso f(z) = 0
identicamente su Ω, oppure esiste un m tale che

c1 = c2 = · · · = cm−1 = 0 (2.151)
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e quindi vale
f(z) = (z − a)mg(z) (2.152)

con g(z) analitica e g(a) 6= 0. Vale allora il seguente

Teorema Uno zero di ordine finito è isolato.

Dimostrazione. Dall’ipotesi segue che possiamo scrivere f(z) = (z − a)mg(z) con
g(a) 6= 0. g(z) è analitica e quindi continua, quindi posto ε = 1

2
|g(a)|, esiste un δ tale che

|z − a| < δ ⇒ |g(z)− g(a)| < ε (2.153)

Pertanto
|g(z)| ≥ ||g(a)| − |g(a)− g(z)|| > 2ε− ε = ε (2.154)

ovvero g(z) 6= 0.

Quindi se |z − a| < δ f(z) = g(z)(z − a)m 6= 0.

Vale il teorema seguente:

Teorema Sia S un insieme di zeri per una funzione analitica f : Ω 7→ |C, aventi punto
di accumulazione a ∈ Ω. Allora in ogni intorno B(r, a), f è identicamente zero.

Dimostrazione. Poichè a è punto di accumulazione possiamo scegliere una successione
di zeri {zn} → a. Per la continuità di f si ha

f(a) = lim
n→∞ f(zn) = 0 (2.155)

Ma f(z) =
∑∞
n=0 cn(z − a)n, quindi f(a) = 0 implica c0 = 0. Supponiamo che il primo

coefficiente non nullo sia cm. E’ quindi

f(z) = (z − a)m[cm + cm+1(z − a) + · · · (2.156)

Ma se fosse vero questo esisterebbe un intorno B(r, a) in cui f(z) è non nullo, contraria-
mente all’ipotesi che a sia un punto di accumulazione. Pertanto f(z) = 0 identicamente
in B(r, a).

La dimostrazione si può estendere a tutto Ω.

Segue allora il

Teorema di identità. Se f e g sono analitiche su Ω e uguali su un insieme di punti
aventi punto di accumulazione in Ω, allora f = g su Ω.

Questo teorema è alla base della teoria del prolungamento analitico. Se f e g sono
analitiche in Ω1 e Ω2 (che hanno una parte comune in Ω1∩Ω2) e se f(z) = g(z) ∀z ∈ Ω1∩Ω2,
allora la funzione F (z) = f(z) se z ∈ Ω1 e F (z) = g(z) se z ∈ Ω2 è analitica in Ω1 ∪ Ω2 e
costituisce il prolungamento analitico della funzione f (g) dalla regione Ω1 (Ω2) a Ω1∪Ω2.
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Figura 5:

3 Formulazione generale del teorema di Cauchy

Abbiamo visto finora il teorema di Cauchy per un disco, ovvero se f è analitica su un
disco D ∫

γ
f = 0 ∀γ ∈ Γ0(D) (3.1)

Sia Ω un insieme su cui f è analitica. Vogliamo generalizzare tale teorema in due direzioni.
Da una parte per cammini più complicati, anche sconnessi, come in Fig. 5 i cammini
γ1, γ2, · · · γn intorno ai punti z1, z2, · · · zn ∈ Ω. Se γ è un cammino che gira intorno a
z1, z2, · · · zn, ci aspettiamo che

∫

γ
f =

∫

γ1
f +

∫

γ2
f + · · ·+

∫

γn

f (3.2)

sia se la f è analitica ma anche nel caso in cui f non sia analitica in z1, z2, · · · zn. Dall’altra
parte vogliamo generalizzare il teorema a regioni semplicemente connesse.

E’ conveniente introdurre il concetto di catena.

Siano in generale γ1, γ2, · · · , γn dei cammini e m1,m2, · · · ,mn degli interi (non neces-
sariamente positivi) corrispondenti alla molteplicità del cammino. Una catena sarà scritta
nella forma

γ = m1γ1 +m2γ2 + · · ·mnγn (3.3)

Diciamo che la catena è chiusa se ogni cammino in essa è chiuso.

Definiamo l’integrale lungo la catena γ

∫

γ
f =

∑

i

mi

∫

γi

f (3.4)

Definiamo l’indice del punto a rispetto ad una catena chiusa γ,

n(γ, a) =
1

2πi

∫

γ

1

z − a
dz (3.5)
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Ω
γ

η

Figura 6: La curva η è omologa a zero, mentre la curva γ non lo è

Se γ, η sono catene chiuse in Ω, diciamo che γ è omologa a zero (γ ≈ 0) in Ω, se

n(γ, a) = 0 ∀a /∈ Ω (3.6)

Diciamo che γ è omologa a η (γ ≈ η) in Ω, se

n(γ, a) = n(η, a) ∀a /∈ Ω (3.7)

Riportiamo due esempi in Fig. 6.

Una regione Ω è semplicemente connessa se e solo se n(γ, a) = 0 per tutte le catene
chiuse γ ∈ Ω e per tutti i punti a /∈ Ω (ovvero tutte le catene chiuse sono omologhe a
zero).

Teorema di Cauchy per regioni semplicemente connesse Se f : Ω 7→ |C è
analitica su una regione semplicemente connessa Ω

∫

γ
f = 0 (3.8)

per ogni catena chiusa γ ∈ Ω.

Ecco infine la forma più generale.

Teorema di Cauchy Sia f : Ω 7→ |C analitica in Ω. Allora

∫

γ
f = 0 (3.9)

per tutte le catene chiuse omologhe a zero in Ω.

Dimostrazione. [1].

Teorema Sia f : Ω 7→ |C analitica in Ω. Se γ e η sono catene chiuse omologhe in Ω è

∫

γ
f =

∫

η
f (3.10)
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Dimostrazione. Basta applicare il teorema precedente alla catena γ, η− che è omologa
a zero.

Il teorema di Cauchy continua a valere in presenza di un numero finito di singolarità
eliminabili. Tutti i risultati dimostrati come conseguenza del teorema di Cauchy per il
disco si possono generalizzare alle catene chiuse omologhe a zero.

Teorema Sia f : Ω 7→ |C analitica in Ω salvo un numero finito di punti z1, z2, · · · , zn.
Sia γ una catena chiusa omologa a zero in Ω e siano γi ∈ Ω delle circonferenze intorno a
zi orientate in senso antiorario e tali che γi contiene zi ma non zj j 6= i. Sia mi = n(γ, zi).
Sia Ω∗ l’insieme Ω \ {z1, z2, · · · , zn}. Allora γ è omologa a

∑
miγi in Ω∗ e

∫

γ
f =

n∑

i=1

mi

∫

γi

f (3.11)

Dimostrazione. Consideriamo la catena Γ = γ −∑
miγi. Se a /∈ Ω è

n(Γ, a) = n(γ, a)−∑
min(γi, a) = 0 (3.12)

Se a = zk
n(Γ, a) = n(γ, zk)−mk = 0 (3.13)

Applicando il teorema di Cauchy alla catena Γ si ottiene il risultato.

In particolare, utilizzando questo risultato nello sviluppo di Taylor e di Laurent (2.128),
possiamo sostituire alla circonferenza γ una qualsiasi curva omologa a γ.

3.1 Residuo

Diamo la definizione di residuo. Data una funzione f analitica in Ω, sia z0 una singolarità
isolata. Definiamo residuo

Resz0f =
1

2πi

∫

γ
f (3.14)

dove γ è un cammino chiuso con R(γ) ⊂ Ω tale che n(γ, z0) = 1 e n(γ, w) = 0 se
w /∈ Ω ∪ {z0}.

Ricordando la definizione di c−n,

c−n =
1

2πi

∫

γ
f(w)(w − z0)

n−1dw (3.15)

segue che
Resz0f = c−1 (3.16)

Utilizzando il teorema precedente è possibile allora, utilizzando la definizione di resid-
uo, enunciare il seguente
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Teorema del residuo Sia f : Ω 7→ |C analitica in Ω salvo un numero finito di punti
z1, z2, · · · , zn, in cui ha singolarità isolate. Allora

1

2πi

∫

γ
f =

∑

i

n(γ, zi)Reszi
f (3.17)

per ogni catena γ omologa a zero in Ω.

Teorema Sia a un polo di f ; allora

i) Se a è di ordine m

Resaf =
1

(m− 1)!
lim
z→a

dm−1

dzm−1
[f(z)(z − a)m] (3.18)

ii) Se a è di ordine 1 è dalla i)

Resaf = lim
z→a

f(z)(z − a) (3.19)

o anche

Resaf =
1

limz→a

(
1
f

)′
(z)

(3.20)

Dimostrazione. Dallo sviluppo di Laurent segue

f(z)(z − a)m = c−m + · · ·+ c−1(z − a)m−1 +
∞∑

k=0

ck(z − a)k+m = g(z) (3.21)

e quindi

c−1 =
g(m−1)(a)

(m− 1)!
(3.22)

Per z ∈ B0(r, a) è g(k)(z) = [f(z)(z − a)m](k)(z) e pertanto

c−1 =
1

(m− 1)!
lim
z→a

dm−1

dzm−1
[f(z)(z − a)m] (3.23)

ii) Per z ∈ B0(r, a) è

f(z) =
g(z)

z − a
(3.24)

con g(z) = c−1 +
∑∞
k=0 ck(z − a)k+1. Quindi

g(a) = c−1 = Resaf = lim
z→a

f(z)(z − a) (3.25)

D’altra parte (
1

f

)′
(z) =

d

dz

z − a

g(z)
=
g(z)− (z − a)g′(z)

g2(z)
(3.26)

e passando a limite si ottiene la (3.20).
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Figura 7: Archi γk per la dimostrazione del Lemma di Jordan

3.2 Lemma di Jordan

Lemma Sia a un polo di ordine uno per f e sia γr: [c, d] 7→ |C un arco di circonferenza
con centro in a e raggio r, con argγr(c) = θ e argγr(d) = θ + α. Allora

lim
r→0

∫

γr

f = iαResaf (3.27)

Dimostrazione. Posto g(z) = f(z)(z − a) per z 6= a e g(a) = Resaf , g è olomorfa in
a. Usando il teorema della media

lim
r→0

∫

γr

f = lim
r→0

∫

γr

g(z)

z − a
dz

= lim
r→0

∫ θ+α

θ
g(a+ reit)idt

= i lim
r→0

g(a+ reit0)α = iαg(a)

da cui segue il lemma.

Lemma di Jordan Sia γk una successione di archi di circonferenza di raggio Rk come
in Fig. 7. Posto θk = arcsin a

Rk
(a > 0) è

γk: [−θk, π + θk] 7→ |C (3.28)

Sia limk→∞Rk = ∞. Sia f continua su R(γk)∀k e posto Mk = supz∈R(γk) |f(z)| sia
limk→∞Mk = 0. Allora ∀λ > 0 è

lim
k→∞

∫

γk

f(z)eiλzdz = 0 (3.29)

Dimostrazione. Dimostriamo prima che sono zero i contributi degli archi AkBk e BkCk.
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Su AkBk vale
|f(z)eiλz| ≤Mke

−λ sin tRk ≤Mke
λa (3.30)

e perciò

|
∫

AkBk

f(z)eiλzdz| ≤MkRkθke
λa (3.31)

Per k →∞ Rkθk → a quindi il limite del secondo membro della (3.31) è zero.

Su BkCk, utilizzando la disuguaglianza,

2

π
≤ sin t

t
≤ 1 0 ≤ t ≤ π

2
(3.32)

abbiamo

|
∫

BkCk

f(z)eiλzdz| = |
∫ π/2

0
f(Rke

it) exp [iλRk(cos t+ i sin t)]iRke
itdt|

≤ MkRk

∫ π/2

0
exp(− 2

π
Rkλt)dt

=
π

2
Mk

1− exp(−λRk)

λ

Ma il risultato va a zero per k →∞ e quindi è nullo il contributo dell’arco BkCk.

Per simmetria sono zero anche i contributi di CkDk e DkEk.

Lemma Se sulla successione di archi γk è |zf(z)| ≤Mk ed è limk→∞Mk = 0, allora

lim
k→∞

∫

γk

f = 0 (3.33)

Dimostrazione. Infatti |f(z)z| ≤Mk implica |f(z)| ≤Mk/Rk e pertanto

|
∫

γk

f | ≤ Mk

Rk

Rk(π + 2θk) (3.34)

Il secondo membro va a zero per k →∞.

3.3 Teorema dell’indicatore logaritmico

Una funzione f in Ω è detta meromorfa in Ω se è analitica in Ω eccetto che per la presenza
di poli. Una funzione meromorfa ha in ogni regione limitata un numero finito di poli. Se ve
ne fossero infiniti essi ammetterebbero (per il teorema di Bolzano-Weierstrass) un punto
di accumulazione z0 ∈ Ω e questo non sarebbe una singolarità isolata. I poli possono
invece aver punto di accumulazione all’infinito (Esempio 1/ sin z. Questa funzione ha poli
in z = nπ, e in z = ∞ una singolarità essenziale ma non isolata).
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Teorema Sia f una funzione meromorfa in Ω. Allora se z0 è uno zero

Resz0
f ′

f
= ordz0f (3.35)

Se z0 è un polo

Resz0
f ′

f
= −ordz0f (3.36)

Dimostrazione. Se z0 è uno zero (polo) di ordine m,

f(z) = (z − z0)
m(−m)g(z) (3.37)

con g(z) analitica nell’intorno di z0 e g(z0) 6= 0. Quindi

f ′(z)
f(z)

=
m(−m)

z − z0

+
g′(z)
g(z)

(3.38)

da cui, ricordando la definizione di residuo, segue il teorema.

Vale quindi il

Teorema Sia γ una catena omologa a 0 in Ω e f una funzione meromorfa in Ω, con
zeri in aj e poli in bk allora

1

2πi

∫

γ

f ′

f
=

∑

j

n(γ, aj)ordaj
f −∑

k

n(γ, bk)ordbkf (3.39)

Nelle applicazioni spesso gli indici saranno uguali a uno, la catena sarà semplicemente
una curva e quindi

1

2πi

∫

C

f ′

f
= (numero di zeri − numero di poli) (3.40)

dove poli e zeri sono all’interno della curva C e contati col loro ordine.

3.4 Problema di Dirichlet

Come applicazione della formula integrale di Cauchy, studiamo il problema di Dirichlet.

Sia Ω una regione con frontiera ∂Ω = γ e g(x, y) sia una funzione continua reale
definita su γ. Consideriamo il problema di trovare una funzione u(x, y) tale che

i) u(x, y) è armonica su Ω e continua su Ω̄

ii) u(x, y) coincide con g(x, y) su γ.

Un problema fisico che corrisponde al problema di Dirichlet è quello che corrisponde
alle configurazioni di equilibrio di una membrana elastica in assenza di forze esterne e
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Figura 8: La membrana con una cornice rigida

trascurandone il peso. Supponiamo di considerare una membrana, con una cornice rigida
g(x, y), come in Fig. 8. La membrana, pensata come superficie, avrà una equazione

u = u(x, y) (3.41)

dove u(x, y) è continua su Ω̄. Riferendo lo spazio ad un sistema cartesiano avente sull’
asse z u, sia γ la proiezione di g(x, y) sul piano (x, y).

Si dimostra nella teoria dell’elasticità che la posizione di equilibrio della membrana in
assenza di forze esterne e trascurandone il peso, è soluzione dell’equazione di Laplace

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (3.42)

con la condizione al contorno

u(x, y) = g(x, y) su γ (3.43)

Il seguente teorema assicura l’unicità della soluzione:

Teorema del massimo modulo Se f è una funzione analitica su una regione Ω
limitato) e continua su Ω̄ e non è costante, |f | assume il massimo in un punto della
frontiera ∂M .

Dimostrazione. Infatti essendo |f(z)| una funzione reale e continua su Ω̄ ammettera’
un massimo in un punto z0. Supponiamo z0 ∈ Ω. Allora esiste un disco B(z0, r0) tale che
∀z ∈ B(z0, r0)

f(z) = c0 + c1(z − z0) + c2(z − z0)
2 · · · (3.44)

Allora ∀r < r0
1

2π

∫ 2π

0
|f(z0 + reiθ)|2dθ =

∞∑

n=0

|cn|2r2n (3.45)
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D’altra parte essendo z0 massimo

|f(z0 + reiθ| ≤ |f(z0)| = |c0| (3.46)

pertanto
∞∑

n=0

|cn|2r2n =
1

2π

∫ 2π

0
|f(z0 + reiθ)|2dθ ≤ |c0|2 (3.47)

che implica c1 = c2 = · · · = 0 e quindi f(z) = c0 ovvero costante. Quindi se f non e’
costante z0 ∈ ∂M .

Esempio f(z) = z2 definita sul disco di raggio 1 B(1, 0). Il modulo è |f(z)| = x2 + y2

che assume il massimo valore sull cerchio.

C’è un teorema analogo per funzioni armoniche.

Teorema Se u(x, y) è una funzione reale armonica su una regione limitata Ω e continua
sulla regione chiusa Ω̄, essa assume massimo sulla frontiera.

Dimostrazione. (Data la u si può costruire una fnzione armonica v coniugata, tale che
la φ = u + iv sia analitica). se poniamo f = expφ sappiamo che |f | = exp u è massimo
sulla frontiera, pertanto anche il massimo di u sara‘a assunto sulla frontiera.)

Si vede quindi che il problema di Dirichlet ha una unica soluzione. Infatti se u1 e u2

fossero due soluzioni, anche la differenza u1 − u2 è armonica ed assume il massimo su γ.
Pertanto

0 ≤ |u1(x, y)− u2(x, y)| ≤ 0 (3.48)

dato che sulla frontiera le due funzioni coincidono. Pertanto u1 = u2.

Teorema Una funzione armonica su una regione semplicemente connessa Ω può esser
considerata la parte reale o la parte immaginaria di una funzione analitica in Ω.

Per ricavare la funzione analitica basta integrare le equazioni di CR

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
(3.49)

In altre parole assegnata la u, è possibile ricavare la v come soluzione data dall’integrale

∫ z

z0

(
−∂u
∂y
dx+

∂u

∂x
dy

)
(3.50)

dove z0 è un punto in Ω. e quindi

v(x, y) =
∫ z

z0

(
−∂u
∂y
dx+

∂u

∂x
dy

)
+ cost (3.51)
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3.5 Problema di Dirichlet per il disco e per il semipiano

Dimostriamo prima il seguente

Teorema Sia f analitica sul disco B(R, 0) con centro nell’origine e raggio R. Allora
∀r < R, ∀θ ∈ [0, 2π) vale

f(reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2f(Reiϕ)dϕ (3.52)

Dimostrazione. Dalla formula integrale di Cauchy (2.116) scegliendo γ = ∂B(R, 0) e
z = reiθ punto interno alla circonferenza γ, si ha

f(reiθ) =
1

2π

∫ 2π

0

Reiϕ

Reiϕ − reiθ
f(Reiϕ)dϕ

=
1

2π

∫ 2π

0

1

1− r

R
ei(θ−ϕ)

f(Reiϕ)dϕ

=
1

2π

∫ 2π

0

R2 − rRe−i(θ−ϕ)

R2 − 2Rr cos(θ − ϕ) + r2f(Reiϕ)dϕ (3.53)

D’altra parte ancora per il teorema di Cauchy prendendo un punto z = R2

r e
iθ all’ester-

no del disco è

0 =
∫

γ

1

w − R2

r e
iθ
f(w)dw

= i
∫ 2π

0

Reiϕ

Reiϕ − R2

r
eiθ
f(Reiϕ)dϕ

= i
∫ 2π

0

r2 − rRe−i(θ−ϕ)

R2 − 2Rr cos(θ − ϕ) + r2f(Reiϕ)dϕ (3.54)

Quindi

∫ 2π

0

rRe−i(θ−ϕ)

R2 − 2Rr cos(θ − ϕ) + r2f(Reiϕ)dϕ =
∫ 2π

0

r2

R2 − 2Rr cos(θ − ϕ) + r2f(Reiϕ)dϕ

(3.55)

Utilizzando la (3.55) nella (3.53) si ottiene il teorema.

Data una funzione armonica u su un dominio semplicemente connesso essa può esser
pensata come la parte reale di una funzione analitica, quindi se u è armonica sul disco
vale la formula di Poisson

u(reiθ) ≡ u(r cos θ, r sin θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2u(Re
iϕ)dϕ (3.56)
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La (3.56) suggerisce come scrivere la soluzione per il problema di Dirichlet per il disco,
ovvero la funzione u armonica in B(r, 0) e tale che u(Reiθ) = g(θ), θ ∈ [0, 2π) con g
funzione assegnata (non necessariamente armonica),

u(reiθ) ≡ u(r cos θ, r sin θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2 g(ϕ)dϕ (3.57)

La (3.57) si può riscrivere introducendo il nucleo di PoissonK (per semplicità poniamo
R = 1):

u(r cos θ, r sin θ) =
∫ 2π

0
K(r, θ − ϕ)g(ϕ)dϕ (3.58)

con

K(r, θ) =
1

2π

1− r2

1− 2r cos θ + r2 (3.59)

Nota Si puo’ dimostrare che

R2 − r2

R2 − 2rR cos (θ − ϕ) + r2 = 1 + 2
∞∑

n=1

(
r

R

)n
cosn(θ − ϕ) (3.60)

Infatti e’ (quando z = r exp iθ)

<
(
Reiϕ + z

Reiϕ − z

)
=

R2 − r2

R2 − 2rR cos (θ − ϕ) + r2 (3.61)

Ma

Reiϕ + z

Reiϕ − z
= −1 + 2

Reiϕ

Reiϕ − z
= −1 + 2

1

1− r
R
ei(θ−ϕ)

= 1 + 2
∞∑

i=1

(
r

R

)n
ein(θ−ϕ) (3.62)

In modo analogo si dimostra che

2Rr sin (θ − ϕ)

R2 − 2rR cos (θ − ϕ) + r2 = 2
∞∑

n=1

(
r

R

)n
sinn(θ − ϕ) (3.63)

Nota. Si può verificare che u è armonica passando a coordinate polari

∆ =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2
(3.64)

e dimostrando che il nucleo di Poisson soddisfa l’equazione

∆K(r, θ) = 0 (3.65)

La verifica che u(θ) quando r → 1 tende a g(ϕ) richiede la seguente proprietà

lim
r→1

∫ 2π

0
K(r, θ − ϕ)g(ϕ)dϕ = g(θ) (3.66)
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Quindi nel limite l’azione dell’integrale col nucleo di Poisson diventa equivalente all’azione
della distribuzione delta di Dirac, che studieremo in seguito.

In modo analogo si dimostra il problema di Dirichlet per il semipiano. Vale infatti il

Teorema Sia f analitica e limitata nel semipiano Imz ≥ 0. Allora ∀z = x + iy con
y > 0 è

f(z) =
y

π

∫ +∞

−∞
1

(t− x)2 + y2
f(t)dt (3.67)

Dimostrazione. Basta applicare il teorema di Cauchy due volte.La prima volta scegliamo
un cammino lungo l’asse reale e lo chiudiamo con un semicirconferenza nel semipiano
superiore, con z all’interno della curva,

f(z) =
1

2πi

∫

γ

1

w − z
f(w)dw (3.68)

Nel secondo caso scegliamo al posto di z z̄, quindi

0 =
1

2πi

∫

γ

1

w − z̄
f(w)dw (3.69)

dato che z̄ sta nel semipiano inferiore. Sottraendo le due equazioni si ottiene

f(z) =
y

π

∫

γ

1

(w − z)(w − z̄)
f(w)dw

=
y

π

∫ R

−R
1

(t− x)2 + y2
f(t)dt

+
iy

π

∫ π

0

1

(Reiθ − z)(Reiθ − z̄)
f(Reiθ)Reiθdθ

Nel limite R→∞ si ottiene la (3.67), tenuto conto che il secondo termine va a zero.

Da questo segue la soluzione per il problema di Dirichlet per il semipiano, ovvero la
funzione u armonica nel semipiano y > 0, e tale che u(x, 0) = g(x) con g(x) funzione
continua assegnata:

u(x, y) =
y

π

∫ +∞

−∞
1

(t− x)2 + y2
g(t)dt (3.70)

Data la funzione y
(t− x)2 + y2 si verifica infatti che

∆
y

(t− x)2 + y2
= 0 (3.71)
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4 Funzioni intere e meromorfe

4.1 Fattorizzazione

Abbiamo visto che una funzione intera è una funzione analitica in tutto |C, e una funzione
meromorfa è analitica eccetto al più dei poli. Si puo’ anche estendere la definizione di
funzione meromorfa al piano complesso esteso. Una funzione è meromorfa in |C ∪∞ se è
meromorfa in |C ed in z0 = ∞ è analitica o ha un polo.

Una caratterizzazione equivalente corrisponde a definire le funzioni meromorfe come
quelle funzioni che sono esprimibili come

f(z) =
g(z)

h(z)
(4.1)

con g e h funzioni analitiche. In particolare se f è una funzione meromorfa in |C essa
è il quoziente di due funzioni intere, se f è una funzione meromorfa in |C ∪ ∞ essa è il
quoziente di due polinomi.

Alcuni teoremi sulle funzioni intere.

Teorema Sia f una funzione intera senza zeri. Allora esiste una funzione intera h
tale che

f(z) = eh(z) (4.2)

Dimostrazione. [2] (Ne segue che f ′/f è analitica, e la funzione h =
∫ z
z0
f ′/fdz+ cost).

Se f intera ha un numero finito di zeri zi di molteplicità ni la funzione

h(z) =
f(z)∏q

i=1(z − zi)ni
(4.3)

è intera e priva di zeri e quindi

f(z) = Aeg(z)
q∏

i=1

(1− z

zi
)ni (4.4)

Se abbiamo una funzione intera con un numero infinito di zeri possiamo pensare di
costruire un prodotto infinito

∞∏

i=1

(z − zi)
ni (4.5)

In generale questo prodotto infinito non convergerà e quindi dovremo aggiungere un fattore
di convergenza.

Diamo l’enunciato del teorema di Weierstrass

Teorema Sia f una funzione intera tale che f(0) 6= 0; se z1, z2, .. sono gli zeri di f
elencati con la loro molteplicità esiste una funzione intera g e una successione di interi
non negativi {pi} tali che

f(z) = eg(z)
∞∏

i=1

Epi
(
z

zi
) (4.6)
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Gli Ep sono i fattori elementari

Ep(z) = (1− z) exp(z +
z2

2
+ · · ·+ zp

p
) p = 1, 2... (4.7)

con E0 = 1− z.

Se f ha in z = 0 uno zero di ordine k basta applicare il teorema a f(z)/zk.

Questa fattorizzazione non è unica.

La convergenza del prodotto infinito è definita nel modo seguente.

Sia {ai} una successione di numeri complessi (ai 6= −1). Il prodotto infinito converge
se converge la successione dei prodotti parziali

{
n∏

i=1

(1 + ai)

}
(4.8)

Condizione necessaria e sufficiente affinchè il prodotto infinito converga è che converga∑
i |ai|.
Esempio sin πz. La funzione sin πz ha zeri del primo ordine in tutti i punti di ZZ.

Vale il seguente sviluppo

sin πz = πz
∏

n 6=0

(1− z

n
)e

z
n = πz

∞∏

n=1

(1− z2

n2
) (4.9)

4.2 La funzione Gamma di Eulero

Definiamo una funzione intera che ha zeri negli interi negativi:

G(z) =
∞∏

n=1

(1 +
z

n
)e−

z
n (4.10)

E’ evidente che G(−z) ha zeri negli interi positivi e confrontando con la rappresentazione
di sin πz

zG(z)G(−z) =
sin πz

π
(4.11)

Per costruzione G(z − 1) ha gli stessi zeri di G(z) più uno zero nell’origine.

Possiamo quindi scrivere
G(z − 1) = zeγ(z)G(z) (4.12)

con γ(z) funzione intera.

Per determinare γ(z) deriviamo logaritmicamente la eq.(4.12), ottenendo

∞∑

n=1

(
1

z − 1 + n
− 1

n

)
=

1

z
+ γ′(z) +

∞∑

n=1

(
1

z + n
− 1

n

)
(4.13)
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dove abbiamo fatto uso di

G′(z)/G(z) =
d

dz
(
∞∑

n=1

log(z + n)− z

n
) =

∞∑

n=1

(
1

z + n
− 1

n

)
(4.14)

Sostituendo nella serie di sinistra della eq. (4.13) n→ n+ 1

∞∑

n=1

(
1

z − 1 + n
− 1

n

)
=

∞∑

n=0

(
1

z + n
− 1

n+ 1

)

=
1

z
− 1 +

∞∑

n=1

(
1

z + n
− 1

n+ 1

)

=
1

z
− 1 +

∞∑

n=1

(
1

z + n
− 1

n

)
+

∞∑

n=1

(
1

n
− 1

n+ 1

)

=
1

z
− 1 +

∞∑

n=1

(
1

z + n
− 1

n

)
+ 1

e quindi confrontando con la eq.(4.13), segue γ′(z) = 0 ovvero γ(z) = γ costante.
Definiamo ora

H(z) = G(z)eγz (4.15)

che soddisfa
H(z − 1) = G(z − 1)eγ(z−1) = zeγG(z)eγ(z−1) = zH(z) (4.16)

Il valore della costante γ (costante di Eulero) è facilmente determinato dalla (4.10) e
dalla (4.12):

G(0) = 1 = eγG(1) (4.17)

da cui

e−γ = G(1) =
∞∏

n=1

(1 +
1

n
)e−

1
n (4.18)

Prendendo l’n-esimo prodotto parziale

(1 + 1)(1 +
1

2
) · · · (1 +

1

n
)e−(1+ 1

2
+···+ 1

n
) = (n+ 1)e−(1+ 1

2
+···+ 1

n
) (4.19)

e considerandone il logaritmo

−(1 +
1

2
+ · · ·+ 1

n
) + log(n+ 1) (4.20)

otteniamo

γ = lim
n→∞(1 +

1

2
+ · · · 1

n
− log n) (4.21)

Questa successione è convergente, il valore approssimato di γ = 0.57722...

Definiamo la funzione Gamma di Eulero con

Γ(z) =
1

zH(z)
(4.22)
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Dalla eq.(4.16) segue la proprietà

Γ(z + 1) = zΓ(z) (4.23)

Dalla definizione di H segue

Γ(z) =
e−γz

z

∞∏

n=1

(1 +
z

n
)−1e

z
n (4.24)

e confrontando con la eq.(4.9)

Γ(z)Γ(1− z) = Γ(z)(−z)Γ(−z) =
1

z

∞∏

n=1

(1 +
z

n
)−1

∞∏

n=1

(1− z

n
)−1−z

−z =
π

sin πz
(4.25)

La funzione Γ(z) è meromorfa ed ha poli negli interi negativi e in zero.

Abbiamo Γ(1) = 1/H(1) = 1/[(exp γ)G(1)] = 1, Γ(2) = 1. In generale Γ(n+ 1) = n!.
Dalla eq.(4.25) Γ(1/2) =

√
π.

Esiste una formula integrale per Γ

Γ(z) =
∫ ∞

0
e−ttz−1dt (4.26)

La funzione è analitica per Rez > 0.

Diamo anche la formula di Stirling (che dimostreremo in seguito)

Γ(n+ 1) = n! ∼ nne−n
√

2πn (4.27)

valida per n→∞. Questa è un caso speciale di

Γ(z) ∼ zz−1/2e−z
√

2π (4.28)

valida per |z| → ∞.

Il residuo nei poli z = n vale

lim
z→−n(z + n)Γ(z) = lim

z→−n
π(z + n)

sin(πz)Γ(1− z)
=

1

cos(nπ)

1

Γ(1 + n)
=

(−1)n

n!
(4.29)

5 Trasformazioni conformi

Sia γ: [a, b] 7→ |C, t 7→ γ(t) = x(t)+iy(t), una curva in una regione Ω e sia f : Ω→ |C definita
e continua su R(γ). L’equazione

w = η(t) = f(γ(t)) (5.1)
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definisce una curva η nel piano complesso w. Se f è analitica in z0 = γ(t0) allora

η′(t0) = f ′(z0)γ
′(t0) a ≤ t0 ≤ b (5.2)

Consideriamo un punto z0 tale che γ′(t0) 6= 0 e f ′(z0) 6= 0. E’ chiaro che sarà η′(t0) 6= 0.
Quindi η ha tangente in w0 = f(z0) e l’angolo con l’asse orizzontale è dato da

arg (η′(t0)) = arg (f ′(z0)) + arg (γ′(t0)) (5.3)

Quindi l’angolo tra la tangente a η in w0 e la tangente a γ in z0 è uguale all’ arg f ′(z0), che
è indipendente dalle curve. Per questa ragione curve che sono tangenti l’una all’altra nel
piano complesso z in z0 sono trasformate in curve tangenti tra di loro nel piano complesso
w in w0. Inoltre curve che formano un certo angolo nel punto z0 sono trasformate in curve
che formano lo stesso angolo in w0. A causa di questa proprietà la trasformazione è detta
conforme in z0.

Se poi consideriamo il modulo

|f ′(z0)| = lim
z→z0

|f(z)− f(z0)|
|z − z0| (5.4)

vediamo che un segmento infinitesimo nel piano z viene mandato in un segmento infinite-
simo nel piano w ma moltiplicato per il fattore |f ′(z0)|. Possiamo interpretare |f ′(z0)|
come un coefficiente di contrazione o espansione.

Quindi in tutti i punti di Ω in cui f ′(z) 6= 0 la trasformazione è conforme.

Abbiamo visto quindi che una trasformazione analitica è equivalente ad una trasfor-
mazione conforme. Viceversa se f è conforme ne segue che è analitica.

Infatti, supponiamo che f sia conforme e inoltre che f ∈ C1 (u, v ∈ C1). Quindi

η′(t0) =
∂f

∂x
x′(t0) +

∂f

∂y
y′(t0)

=
∂f

∂x

1

2
(γ′(t0) + γ′(t0)) +

∂f

∂y

1

2i
(γ′(t0)− γ′(t0))

Pertanto

η′(t0) =
1

2
(
∂f

∂x
− i

∂f

∂y
)γ′(t0) +

1

2
(
∂f

∂x
+ i

∂f

∂y
)γ′(t0)

= γ′(t0)[
1

2
(
∂f

∂x
− i

∂f

∂y
) +

1

2
(
∂f

∂x
+ i

∂f

∂y
)
γ′(t0)
γ′(t0)

]

Se la trasformazione é conforme in z0

arg η′ − arg γ′ (5.5)

deve esser indipendente da γ. Ma

arg η′ − arg γ′ = arg [
1

2
(
∂f

∂x
− i

∂f

∂y
) +

1

2
(
∂f

∂x
+ i

∂f

∂y
)
γ′(t0)
γ′(t0)

] (5.6)
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e quindi dovrà essere
∂f

∂x
+ i

∂f

∂y
= 0 (5.7)

ovvero
∂f

∂x
= −i∂f

∂y
(5.8)

che sono le condizioni di CR. Pertanto f è analitica in z0.

Mapping di Möebius Per a, b, c, d ∈ |C e soggetti alla condizione ad − bc 6= 0 la
funzione

f(z) =
az + b

cz + d
(5.9)

è nota come trasformazione di Möebius. Queste trasformazioni hanno una serie di pro-
prietà. f(z) è analitica per z 6= −d/c e

f ′(z) =
ad− bc

(cz + d)2
6= 0 (5.10)

Quindi f è conforme in |C \ {−d/c}.
Supponiamo di avere un secondo mapping

g(z) =
Az +B

Cz +D
(5.11)

con AD −BC 6= 0. Si verifica che il prodotto

gf(z) =
(Aa+Bc)z + (Ab+Bd)

(Ca+Dc)z + (Cb+Dd)
(5.12)

è ancora una trasformazione di Möebius. E’ possibile trovare una trasformazione inversa
ed esiste l’unità. In altre parole queste trasformazioni formano un gruppo.

Teorema della rappresentazione di Riemann Sia Ω una regione semplicemente
connessa che non sia l’intero piano complesso. Allora Ω é analiticamente isomorfo al disco
di raggio 1. Ovvero dato un punto z0 ∈ Ω esiste una funzione analitica e invertibile

f : Ω→B(1, 0) (5.13)

tale che f(z0) = 0. Tale isomorfismo è determinato a meno di una rotazione ed è
univocamente determinato dalla condizione f ′(z0) > 0.

Dimostrazione. [2].

Ovviamente affinchè il mapping esista occorre che Ω sia semplicemente connessa dato
che il disco è semplicemente connesso. Inoltre Ω non può esser tutto |C. Infatti dato che
|f(z)| ≤ 1, se f fosse definito su tutto |C per il teorema di Liouville sarebbe una costante.

Esempio f(z) = z − α
1− ᾱz con |α| < 1. La funzione è analitica sul disco |z| ≤ 1. Inoltre

se |z| = 1 z = eiθ

g(z) =
eiθ − α

eiθ(e−iθ − ᾱ)
(5.14)
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Il denominatore (a parte la fase) è il complesso coniugato del numeratore e quindi se
|z| = 1, |f(z)| = 1. Quindi per il principio del massimo |f(z)| ≤ 1 si ha |z| ≤ 1.
Quindi la trasformazione mappa il disco unitario nel disco unitario, mandando il punto α
nell’origine.

Esempio f(z) = z − α
z − ᾱ con Im α > 0 mappa il semipiano superiore del piano

complesso z nel disco unitario |w| = 1. Il punto z = α viene mappato nell’origine.

6 Trasformate di Fourier

6.1 Notazioni

L’integrale che utilizzeremo in questi capitoli è l’integrale di Lebesgue. L’integrale di Rie-
mann permette di calcolare l’integrale di funzioni continue o di funzioni continue con un
numero finito di discontinuità. Ci sono funzioni che non rientrano in questa classe: per es-
empio la funzione di Dirichlet, ovvero la funzione caratteristica dei razionali nell’intervallo
(0,1), che vale 1 nei razionali e zero in ogni punto irrazionale non e’ integrabile secondo
Riemann. L’integrale di Lebesgue permetterà l’integrazione di una tale funzione ma so-
prattutto permetterà di passare a limite sotto il segno di integrale sotto ipotesi di natura
abbastanza generale e non solo nel caso in cui la funzione da integrare è limite uniforme
di una successione di funzioni continue come nel caso dell’integrazione secondo Riemann.
La differenza fondamentale della costruzione dell’integrale di Lebesgue è a differenza di
quello di Riemann i punti x non sono raggruppati rispetto alla vicinanza sull’asse x ma in
base al criterio della vicinanza dei valori f(x). In altre parole se f assume valori, y1, y2, · · ·
sia An = {x : x ∈ A f(x) = yn} è allora

∫

A
f(x)dµ =

∑
n

ynµ(An) (6.1)

dove µ(An) é la misura di Lebesgue di un insieme che è una generalizzazione della misura
di un intervallo µ([a, b]) = b− a.

Considereremo funzioni dello spazio di Lebesgue L1(Rn), ovvero funzioni integrabili
in Rn ∫

Rn
|f |dx <∞ (6.2)

o più in generale spazi di Lebesgue Lp(Rn) per cui esiste

∫

Rn
|f |pdx <∞ 1 ≤ p <∞ (6.3)

Questi sono tutti spazi vettoriali e completi (di Banach) nella norma indotta dalla (6.3):

||f ||p =
(∫

Rn
|f |pdx

) 1
p

(6.4)
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In particolare tra questi ci interesseranno lo spazio delle funzioni a quadrato integrabile
L2(Rn), che è uno spazio di Hilbert, e lo spazio L1(Rn), che è uno spazio di Banach con
la norma

||f ||1 =
∫

Rn
|f |dx (6.5)

Se x, y ∈ Rn la notazione x · y indicherà il prodotto scalare x1y1 + x2y2 + . . . xnyn. Un
multiindice sarà una ennupla di numeri positivi α = (α1, α2, . . . , αn).

Per ciascun multiindice considereremo l’operatore seguente di ordine |α|

Dα = (−i)|α| ∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

(6.6)

con |α| = α1 + α2 + . . . + αn. Abbiamo aggiunto il fattore (−i)|α| per convenienza. Se
|α| = 0 Dαf = f .

Il simbolo xα denoterà xα1
1 x

α2
2 . . . xαn

n .

Ricordiamo anche alcuni teoremi dell’integrazione di Lebesgue che ci saranno utili.

Teorema della convergenza dominata di Lebesgue Sia {fn} ∈ L1(Rn) una
successione di funzioni tali che

f(x) = lim
n→∞ fn(x) (6.7)

esista ∀x ∈ Rn. Se esiste una funzione g ∈ L1(Rn) tale che |fn(x)| ≤ g(x) allora

lim
n→∞

∫

Rn
fn(x)dx =

∫

Rn
f(x)dx (6.8)

Teorema della derivazione sotto il segno di integrale Se f(x, y) è una funzione
integrabile in Rn per ogni y ed inoltre |∂yf(x, y)| ≤ g(x) con g integrabile è

∂y

∫

Rn
f(x, y)dx =

∫

Rn
∂yf(x, y)dx (6.9)

ovvero si puo’ derivare sotto il segno di integrale.

6.2 Trasformata di Fourier per funzioni L1

Possiamo definire la trasformata di Fourier di una funzione f ∈ L1(Rn) come la funzione
Ff :Rn 7→ |C, definita da

Ff(y) = (2π)−n/2
∫

Rn
f(x)e−ix·ydx (6.10)

La funzione Ff(y) è in generale complessa. Il termine trasformata di Fourier viene anche
usato per indicare il mapping f→Ff . Dalla definizione segue che la trasformata di Fourier
è un mapping lineare:

F (αf + βg) = αFf + βFg ∀α, β ∈ |C f, g ∈ L1(Rn) (6.11)
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La definizione (6.10) è consistente dato che

|f(x)e−ix·y| = |f | (6.12)

Quindi se f è integrabile anche f(x)e−ix·y lo sarà.

Vale il seguente

Teorema Sia f ∈ L1(Rn), allora

i) (Ff(x− a))(y) = Ff(y)e−iy·a (6.13)

ii) F (f(x)eia·x)(y) = Ff(y − a) (6.14)

iii) se α ∈ R 6= 0 (Ff(αx))(y) =
1

|α|nFf(y/α) (6.15)

Dimostrazione.

i) Se f ∈ L1(Rn) anche f(x − a) ∈ L1(Rn). Dalla (6.10) segue, facendo un cambia-
mento di variabile nell’integrale,

(Ff(x− a))(y) = (2π)−n/2
∫
f(x− a)e−ix·ydx = Ff(y)e−iy·a (6.16)

ii) Se f ∈ L1(Rn) anche feia·x ∈ L1(Rn), quindi

F (f(x)eia·x)(y) = (2π)−n/2
∫
f(x)eia·xe−ix·y = Ff(y − a) (6.17)

iii) Basta una ridefinizione nella variabile di integrazione.

Teorema Se f ∈ L1(Rn), allora Ff è una funzione limitata.

Dimostrazione. Si ha

|Ff(y)| ≤ (2π)−n/2
∫
|f(x)|dx = (2π)−n/2||f ||1 (6.18)

dove abbiamo utilizzato il fatto che f ∈ L1(Rn) e ||f ||1 denota la norma di f in L1(Rn).

6.3 Lo spazio S(Rn)

Definiamo lo spazio delle funzioni a rapida decrescita (spazio di Schwartz) S = S(Rn)
come quel sottoinsieme di C∞(Rn) costituito dalle funzioni f per cui

xβ
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

f ∀α, β multiindici (6.19)
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è limitata. Sono quindi funzioni infinitamente derivabili che vanno a zero all’infinito,
insieme alle loro derivate di ogni ordine, più rapidamente di ogni potenza. Queste fun-
zioni formano uno spazio vettoriale. Questo spazio contiene come sottospazio C∞0 (Rn) ≡
D(Rn), ovvero lo spazio delle funzioni C∞(Rn) con supporto compatto.

Poichè lo spazio di Schwartz è contenuto in L1(Rn) (anzi S(Rn) è denso in L1(Rn)),
la definizione (6.10) ha senso anche per funzioni in S(Rn). Ricordiamo che un insieme A
è denso in B se la chiusura di A contiene B.

Mostreremo che la trasformata di Fourier è un map uno a uno di S(Rn) in S(Rn). In
seguito utilizzeremo una procedura limite con funzioni S(Rn) per definire la trasformata
di Fourier per funzioni in L2(Rn) perchè in generale una funzione in L2(Rn) può non
essere L1(Rn).

Teorema Se f ∈ S(Rn)

i) DαFf = (−1)|α|F (Mαf) (6.20)

dove
(Mαf)(x) = xαf(x) (6.21)

ii) (FDαf)(y) = yα(Ff)(y) (6.22)

iii) F è una trasformazione lineare da S(Rn) in S(Rn).

Le proposizioni i) e ii) valgono anche per f ∈ L1(Rn) purché Dαf, Mαf ∈ L1(Rn).

Dimostrazione. i) Se f ∈ S(Rn) anche Mαf sarà in S(Rn). D’altra parte

|Dα
y f(x)e−ix·y| = |(−1)|α|xαf(x)e−ix·y| = |xαf(x)| ∈ S(Rn) (6.23)

Quindi posso derivare sotto il segno di integrale la (6.10) ottenendo il risultato.

ii) Si ha, integrando per parti,

(FDαf)(y) = (2π)−n/2
∫
Dα
xf(x)e−ix·ydx

= (−1)|α|(2π)−n/2
∫
yα(−i)2|α|f(x)e−ix·ydx = yα(Ff)(y)

Il termine agli estremi è nullo perché f ∈ S.

iii) Infatti

|yαDβ
yFf(y)| ≤ (2π)−n/2

∫
|Dα

xx
βf(x)|dx <∞ (6.24)

dove abbiamo usato le (6.20),(6.22) e il fatto che f ∈ S(Rn).

Esempio Consideriamo la trasformata di Fourier in S(R) e calcoliamo

d

dy

1√
2π

∫
f(x)e−ixydx (6.25)
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Dato che xf(x) ∈ S(R) possiamo derivare sotto il segno di integrale ed otteniamo

d

dy
Ff(y) = −iF (xf) (6.26)

che coincide con la (6.20) con |α| = 1. Inoltre, integrando per parti,

∫ d

dx
f(x)e−ixydx = iy

∫
f(x)e−ixydx (6.27)

da cui

F [−i d
dx
f ](y) = yFf(y) (6.28)

che coincide con la (6.22) con |α| = 1. In questa ultima dimostrazione abbiamo utilizzato
la proprietà di f di andare a zero per x → ±∞. Se f ∈ L1 la proprietà (6.22) continua
a valere se anche f ′ ∈ L1. In questo caso si può infatti dimostrare che f va zero per
x→ ±∞.

Teorema (di Riemann-Lebesgue) La trasformata di Fourier è una applicazione
da L1(Rn) nello spazio di Banach delle funzioni limitate e continue che tendono a zero
all’infinito. Questo spazio ha come norma

||f ||∞ = sup
x∈Rn

|f(x)| (6.29)

Dimostrazione. Abbiamo già visto che Ff è limitata. Ad ogni f ∈ L1(Rn) dato che
S(Rn) è denso in L1(Rn), corrisponde una successione {fi} ∈ S(Rn) tale che

||f − fi||1→0 (6.30)

per i→∞. Poichè
|(Ff − Ffi)(y)| ≤ (2π)−n/2||f − fi||1 (6.31)

Ffi tende uniformemente a Ff . Ff limite uniforme di funzioni continue e tendenti a zero
all’infinito, è continua e tende a a zero all’infinito. Basta sfruttare la disuguaglianza

|Ff | ≤ |Ff − Ffi|+ |Ffi| (6.32)

per dimostrare che Ff va a zero all’infinito (ricordando che Ffi ∈ S(Rn)). In modo
analogo si può dimostrare che Ff è continua.

Nota Dalla (6.22) segue che se f ∈ L1(R) è derivabile k volte la sua trasformata di
Fourier va a zero più rapidamente di 1/|y|k. Infatti

|Ff | = |Ff (k)|
|y|k ≤ M

|y|k (6.33)

dove abbiamo usato la limitatezza di Ff (k).
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Esempio Trasformata di Fourier della funzione

f(x) = 1 se |x| ≤ a

= 0 se |x| > a

La trasformata di Fourier è data da

Ff(y) =
1√
2π

∫ +∞

−∞
f(x)e−ixydx

=
1√
2π

∫ +a

−a
e−ixydx

=
1√
2π

2
sin ya

y

=

√
2

π

sin ya

y

Quindi |Ff(y)| → 0 quando y →∞.

Esempio Trasformata di Fourier della gaussiana. Consideriamo la funzione φ(x) =
exp(−x2/2). La funzione φ ∈ S. Si verifica che Fφ = φ e φ(0) = 1√

2π

∫ +∞
−∞ Fφ(y)dy.

Infatti la funzione φ soddisfa l’equazione differenziale

d

dx
φ+ xφ = 0 (6.34)

Se consideriamo la trasformata di Fourier dell’equazione, tenendo conto che

(F
dφ

dx
)(y) = iyFφ(y) (6.35)

e

F (xφ)(y) = i
d

dy
Fφ(y) (6.36)

otteniamo

yFφ(y) +
d

dy
Fφ(y) = 0 (6.37)

Quindi dovrà essere
Fφ

φ
= cost (6.38)

Poichè φ(0) = 1 e poichè

Fφ(0) =
1√
2π

∫ +∞

−∞
exp (−x2/2)dx = 1 (6.39)

segue cost = 1 e quindi
Fφ = φ (6.40)
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6.4 Formula di inversione

Teorema di inversione i) Se f ∈ S(Rn) allora

f(x) = (2π)−n/2
∫
Ff(y)eiy·xdy (6.41)

ii) La trasformata di Fourier F è un mapping lineare uno a uno da S → S. Inoltre
F 2f(x) = f(−x), F 4 = I.

iii) Se f, Ff ∈ L1(Rn) e

f0(x) = (2π)−n/2
∫
Ff(y)eiy·xdy (6.42)

f = f0 quasi ovunque (ovvero tranne in un insieme di misura nulla).

Dimostrazione. i) Se h, g ∈ L1(Rn) applicando il teorema di Fubini all’integrale
∫
h(w)g(y)e−iw·ydwdy (6.43)

si ottiene ∫
Fh(y)g(y)dy =

∫
h(w)Fg(w)dw (6.44)

Per dimostrare i) consideriamo g ∈ S e sia g(y) = φ(εy), dove φ è la gaussiana e ε > 0.
E‘ allora

(Fφ(εy))(w) =
1

εn
(Fφ)(

w

ε
) (6.45)

Inoltre sia h(w) = f(w + x) con f ∈ S. Avremo, sfruttando Fh(y) = Ff(y) exp(ixy),
∫
h(w)Fg(w)dw =

∫
Fh(y)g(y)dy =

∫
(Ff)(y)eix·yφ(εy)

=
∫
f(w + x)(Fφ(εy))(w)dw

= ε−n
∫
f(w + x)(Fφ)(

w

ε
)dw

=
∫
f(εy + x)φ(y)dy

D’altra parte per il teorema della convergenza dominata (f e φ sono limitate)

f(x) = (2π)−n/2f(x)
∫
φ(y)dy = lim

ε→0
(2π)−n/2

∫
f(εy + x)φ(y)dy

= (2π)−n/2 lim
ε→0

∫
(Ff)(y)eix·yφ(εy)dy

= (2π)−n/2
∫

(Ff)(y)eix·ydy

Per dimostrare ii) osserviamo che la formula di inversione (6.41) in S implica che il
mapping è uno a uno dato che Ff = 0 implica f = 0. Inoltre se consideriamo la formula
di inversione ne ricaviamo

F (Ff)(−x) = f(x) (6.46)
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e pertanto F 2f(x) = f(−x). Infine F 4f = f .

Per dimostrare iii) ripartiamo da (6.44). Sia h = f ∈ L1 e g ∈ S. Abbiamo

∫
f(x)(Fg)(x)dx =

∫
(Ff)(y)g(y)dy

=
∫

(Ff)(y)(2π)−n/2
∫
Fg(x)eiy·xdxdy

= (2π)−n/2
∫

(Fg)(x)
∫

(Ff)(y)eiy·xdydx

=
∫

(Fg)(x)f0(x)dx

dove abbiamo usato Fubini e la definizione di f0(x). Ovvero

∫
(f0 − f)(x)Fg(x)dx = 0 (6.47)

da cui dato che per ii) Fg copre tutto S e dato che S ⊃ D, essendo D lo spazio delle
funzioni continue a supporto compatto, ne segue [8]

f = f0 quasi ovunque (q.o.) (6.48)

Dalla (6.48) segue il

Teorema di unicità Se due funzioni hanno la stessa trasformata di Fourier esse sono
uguali q.o.

Teorema dell’inversione in R Se f ∈ L1(R) ed è una funzione a variazione limitata
in un intorno di x allora

1

2
[f(x+ 0) + f(x− 0)] = (2π)−1/2P.V.

∫ ∞

−∞
(Ff)(y)eix·ydy (6.49)

dove

P.V.
∫ ∞

−∞
= lim

k→∞

∫ k

−k
(6.50)

Inoltre f(x ± 0) denota il limite destro e sinistro. Se la funzione è continua il primo
membro della (6.49) è evidentemente f(x). Ricordiamo che una f : [a, b]→R è a variazione
limitata se, per ogni partizione dell’intervallo [a, b],

∑n−1
k=0 |f(xk+1)− f(xk)| è limitata.

Dimostrazione. [9]

6.5 Prodotto di convoluzione

Date due funzioni complesse f e g definite in Rn definiamo prodotto di convoluzione la
funzione

(f ∗ g)(x) =
∫

Rn
f(y)g(x− y)dy (6.51)
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purchè l’integrale esista nel senso di Lebesgue per tutti (o quasi tutti) gli x ∈ Rn.

Il prodotto di convoluzione, se esiste, è commutativo:

f ∗ g = g ∗ f (6.52)

Infatti ∫
f(y)g(x− y)dy =

∫
f(x− z)g(z)dz (6.53)

(abbiamo fatto il cambiamento di variabile z = x− y).

Teorema Se f ∈ L1(Rn) e g ∈ L1(Rn) il prodotto di convoluzione esiste ed inoltre
f ∗ g ∈ L1(Rn).

Dimostrazione. [4]

Teorema Se f , g e Fg ∈ L1(Rn), allora

i) F (fg) = (2π)−n/2Ff ∗ Fg
ii)

∫
f̄gdx =

∫
FfFgdx (6.54)

Dimostrazione. i) Se

g0(x) = (2π)−n/2
∫
Fg(u)eiu·xdu (6.55)

abbiamo
F (fg)(y) = F (fg0)(y) = (2π)−n

∫
f(x)

∫
Fg(u)eiu·xe−iy·xdudx (6.56)

Applicando il teorema di Fubini

F (fg)(y) = (2π)−n
∫
Fg(u)

∫
f(x)e−ix(y−u)dxdu

= (2π)−n/2
∫
Fg(u)Ff(y − u)du

= (2π)−n/2[Ff ∗ Fg](y)

ii) Da i) con f̄ al posto di f otteniamo

(2π)−n/2
∫
f̄(x)g(x)dx = F (f̄g)(0)

= (2π)−n/2[F f̄ ∗ Fg](0)

= (2π)−n/2
∫
F f̄(−u)Fg(u)du

= (2π)−n/2
∫
Ff(u)Fg(u)du
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La ii) è nota anche come formula di Parseval. Nel caso in cui f = g diventa

∫
|f(x)|2dx =

∫
|Ff(y)|2dy (6.57)

Teorema Se f, g ∈ L1(Rn)

F (f ∗ g) = (2π)
n
2FfFg (6.58)

Dimostrazione. Per il teorema visto precedentemente f ∗ g ∈ L1(Rn). D’altra parte

F (f ∗ g)(x) = (2π)−n/2
∫ ∫

f(y)g(u− y)dye−ix·udu

= (2π)−n/2
∫
f(y)

∫
g(u− y)e−ix·(u−y)due−ix·ydy

= (2π)
n
2Ff(x)Fg(x)

6.6 Trasformata di Fourier per funzioni L2.

Lo spazio L2(Rn) è lo spazio delle funzioni a quadrato integrabile, ovvero tali che

∫

Rn
|f |2dx <∞ (6.59)

Questo spazio ha la struttura di spazio di Hilbert ovvero ha un prodotto scalare definito
da

< f, g >=
∫

Rn
f̄gdx (6.60)

che induce una norma
||f ||2 = [

∫

Rn
|f |2dx] 1

2 (6.61)

In generale tra L2 ed L1 non c’è una relazione definita.

Nel caso in cui la misura sia su un intervallo finito Ω, vale L2(Ω) ⊂ L1(Ω). Infatti
dato che vale la disuguaglianza di Cauchy-Schwarz

|
∫
f̄ gdx|2 ≤

∫
|f |2dx

∫
|g|2dx (6.62)

scegliendo g = 1 si ha

|
∫
fdx|2 ≤

∫
|f |2dxM (6.63)

se M è la misura dell’intervallo finito Ω. Quindi se f ∈ L2(Ω), è anche f ∈ L1(Ω), ovvero
L2(Ω) ⊂ L1(Ω). In questo caso possiamo usare per le funzioni in L2 la definizione di
trasformata di Fourier in L1.

Poichè la misura di Lebesgue di Rn è infinita, L2(Rn) non è un sottoinsieme di L1(Rn).
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In generale se f ∈ L1 ∩ L2 possiamo quindi ancora usare la definizione data in L1 e
inoltre in questo caso si ha ∫

|Ff |2dx =
∫
|f |2dx (6.64)

e quindi
Ff ∈ L2 (6.65)

L’applicazione F è quindi una isometria

< Ff, Ff >=< f, f > ∀f ∈ L1 ∩ L2 (6.66)

E‘ possibile estendere questa isometria a tutto L2 col seguente

Teorema di Plancherel Ad ogni f ∈ L2 è possibile associare una Ff ∈ L2 tale che

i) se f ∈ L1 ∩ L2 Ff è la trasformata definita in L1.

ii)
∫ |Ff |2dx =

∫ |f |2dx
iii) l’applicazione f→Ff è un isometria L2→L2

iv) se {fA} è una successione di funzioni in L1 ∩ L2 tendenti a f , allora FfA tende a
Ff , ovvero

||FfA − Ff ||2 → 0 per A→∞ (6.67)

dove la norma è quella in L2.

v) se ψA(x) = (2π)−n/2
∫
FfA(y) exp(ix · y)dy

||ψA − f ||2 → 0 per A→∞ (6.68)

Dimostrazione [4, 7] La successione {fA ∈ L1 ∩ L2} può esser ottenuta a partire da f
considerando fA = fχQA

dove χQA
è la funzione caratteristica dell’insieme QA

QA = {(x1, x2, . . . xn)| − A ≤ xi ≤ A} (6.69)

6.7 Teorema dell’interpolazione

Un amplificatore è un dispositivo che riceve un segnale funzione del tempo s(t) e rilascia
una risposta r(t). Nei casi più semplici r(t) = ks(t). Se sovrapponiamo due segnali,

s(t) = a1s1(t) + a2s2(t) (6.70)

la risposta sarà
r(t) = a1ks1(t) + a2ks2(t) (6.71)

In generale il segnale sarà distorto e la relazione tra s(t) e r(t) sarà più complessa.
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Consideriamo un segnale con frequenza ω, s(t) = 1√
2π
eiωt. In generale la risposta

sarà proporzionale a s(t) ma con un’ampiezza ed una fase modificata. Per semplicità
assumiamo la stessa fase; allora

r(t) =
1√
2π
G(ω)eiωt = G(ω)s(t) (6.72)

G(ω) è detto guadagno.

Più in generale il segnale sarà

s(t) =
1√
2π

∫ +∞

−∞
S(ω)eiωtdω (6.73)

dove nelle nostre notazioni S(ω) = Fs(ω), ovvero S(ω) è la trasformata di Fourier di s(t).
La risposta alla frequenza ω sarà

R(ω) = S(ω)G(ω) = Fs(ω)Fg(ω) (6.74)

e

r(t) =
1√
2π

∫ +∞

−∞
R(ω)eiωtdω

=
1√
2π

∫ +∞

−∞
Fs(ω)Fg(ω)eiωtdω

= [F−1(FsFg)](t)

=
1√
2π

(s ∗ g)(t)

=
1√
2π

∫ +∞

−∞
s(τ)g(t− τ)dτ (6.75)

dove abbiamo fatto uso del teorema sulla trasformata di Fourier del prodotto di con-
voluzione (6.54),

F (f ∗ g) =
√

2πFfFg (6.76)

Quindi la risposta è data dal prodotto di convoluzione del segnale con il guadagno.

In generale la funzione G(ω) = Fg(ω) ovvero il guadagno è zero (trascurabile) al di
fuori di un intervallo finito di frequenze, quindi è una funzione a supporto limitato.

Un dispositivo che soddisfa le (6.73), (6.74), (6.75) è detto un filtro lineare.

Teorema dell’interpolazione (campionatura) Sia f una funzione continua e la
sua trasformata di Fourier Ff sia a supporto compatto (Ff(ω) = 0, |ω| ≥ L). Allora

f(t) =
∞∑

n=−∞
f(−nπ

L
)
sin (nπ + Lt)

nπ + Lt
(6.77)

Dimostrazione. Dato che f è continua, dalla (6.49)

f(t) =
1√
2π

∫ +∞

−∞
Ff(ω)eiωtdω

=
1√
2π

∫ L

−L
Ff(ω)eiωtdω (6.78)
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dove abbiamo sfruttato il fatto che la Ff è a supporto compatto.

D’altra parte Ff(−L) = Ff(L) = 0, quindi possiamo estendere la funzione per pe-
riodicità a (−∞,∞). Denotiamo la funzione cos̀ı ottenuta ancora con Ff(ω). Ff(ω) è
una funzione periodica con periodo 2L e può esser rappresentata come serie di Fourier
uniformemente convergente

(Ff)(ω) =
∞∑

n=−∞
ane

inπ
L
ω (6.79)

Per ricavare gli an basta moltiplicare per

e−ip
π
L
ω (6.80)

ed integrare in ω tra [−L,L].

∫ L

−L
(Ff)(ω)e−ip

π
L
ωdω =

∞∑

n=−∞
an

∫ L

−L
ei(n−p)

π
L
ωdω (6.81)

dove abbiamo usato l’uniforme convergenza della serie per scambiare il simbolo di som-
matoria con quello di integrale. Ma se n 6= p troviamo

∫ L

−L
ei(n−p)

π
L
ωdω = 0 (6.82)

Mentre per n = p abbiamo

∫ L

−L
(Ff)(ω)e−ip

π
L
ωdω = 2Lap (6.83)

e quindi

ap =
1

2L

∫ L

−L
(Ff)(ω)e−ip

π
L
ωdω

=
1

L

√
π

2
f(−pπ

L
)

dove abbiamo usato la formula dell’inversione (6.78). Otteniamo quindi

f(t) =
1√
2π

∫ L

−L

∞∑

n=−∞
ane

in π
L
ωeiωtdω

=
1

2L

∞∑

n=−∞
f(−nπ

L
)
∫ L

−L
ei(n

π
L

+t)ωdω

=
∞∑

n=−∞
f(−nπ

L
)
sin(nπ + Lt)

nπ + Lt

Possiamo quindi ricostruire la funzione dai suoi valori in una infinità numerabile di
punti, o in un numero finito di punti se essa è a supporto compatto.
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7 Trasformate di Laplace

7.1 Notazioni e proprietà

Quando abbiamo definito la trasformata di Fourier in Rn abbiamo considerato funzioni
assolutamente integrabili. Questo esclude funzioni che crescono come f(t) = et in R. La
trasformata di Laplace permette di trattare alcune di queste funzioni. Più in particolare
considereremo funzioni f(t) tali che

f(t) = 0 −∞ < t < 0 (7.1)

e per cui esiste una costante reale a tale che

f(t)e−at (7.2)

è assolutamente integrabile in [0,∞).

Sia f :R+ → |C. Si dice trasformata di Laplace della funzione f la funzione

Lf(z) ≡
∫ ∞

0
e−ztf(t)dt (7.3)

quando l’integrale esiste.

Per esempio se f è localmente integrabile in R+ ed è tale che

|f(t)| ≤Meat per t ≥ t0 (7.4)

allora esiste la trasformata di Laplace per ogni z tale che Rez > a. Infatti è

|Lf(z)| ≤
∫ t0

0
|f(t)|e−Re(z)tdt+M

∫ ∞

t0
e−Re(z−a)tdt (7.5)

Indicheremo con αf l’estremo inferiore dei valori {x = Re(z)|e−ztf(t) ∈ L1(R+)}. αf è
detta ascissa di assoluta convergenza, perche’ l’integrale esiste per ogni z con Re(z) > αf .
Il semipiano Re(z) > αf è il semipiano di assoluta convergenza.

Esempio La funzione f(t) = 1 su R+. E‘

L1(z) =
∫ ∞

0
e−ztdt =

1

z
(7.6)

L’integrale esiste purché Re z > 0. In questo semipiano la funzione trasformata di Laplace
è analitica.

Esempio La funzione f(t) = eiωt.

L(eiωt)(z) =
∫ ∞

0
e−zteiωtdt =

1

z − iω
(7.7)

purché Re z > 0. In questo semipiano la funzione trasformata di Laplace è analitica.
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Possiamo dimostrare anche nel caso della trasformata di Laplace delle semplici pro-
prietà.

i) Linearità.
L[a1f1 + a2f2](z) = a1L[f1](z) + a2L[f2](z) (7.8)

Questa proprietà vale ovviamente nel semipiano in cui entrambe le trasformate di Laplace
sono definite, ovvero

αa1f1+a2f2 = max{αf1 , αf2} (7.9)

ii)
L[f(t)eat](z) = L[f ](z − a) (7.10)

ma con ascissa di assoluta convergenza uguale a αf +Re a.

Analogamente, se τ > 0,

e−zτL[f ](z) =
∫ ∞

0
e−z(s+τ)f(s)ds

=
∫ ∞

τ
e−ztf(t− τ)dt

= L[f(t− τ)θ(t− τ)](z)

Questa proprietà non vale per τ negativo. Si ha (per τ > 0)

ezτL[f ](z) =
∫ ∞

0
e−z(t

′−τ)f(t′)dt′

=
∫ ∞

−τ
e−ztf(t+ τ)dt

= L[f(t+ τ)θ(t+ τ)](z) +
∫ 0

−τ
e−ztf(t+ τ)dt

Vale solo se f(t) = 0 anche per 0 ≤ t ≤ τ .

Teorema Se f ha per trasformata di Laplace Lf con ascissa di assoluta convergenza
uguale a αf , (−t)nf ha la stessa ascissa di assoluta convergenza. Inoltre Lf è olomorfa e
vale

dn

dzn
L[f ](z) = L[(−t)nf(t)](z) (7.11)

Dimostrazione Dimostriamo prima che il prodotto tnf(t) ha ascissa di assoluta con-
vergenza α′ uguale ad αf . Per ogni n intero ed ε > 0 arbitrario esiste t0 tale che

tn < eεt t > t0 (7.12)

Quindi la trasformata di Laplace di tnf(t) esiste per ogni z con Re z > αf+ε. Dall’arbitra-
rietà di ε segue α′ ≤ αf . D’altra parte dalla sommabilità in R+ della funzione

tnf(t)e−zt (7.13)

segue la sommabilità della fe−zt, dato che

|f(t)e−zt| ≤ |tnf(t)e−zt| t ∈ [1,∞) (7.14)
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Quindi e’ anche αf ≤ α′ e quindi α′ = αf . Possiamo allora derivare la (7.3), sotto il segno
di integrale, dato che tnf(t)e−zt è integrabile ed ottenere il risultato.

Esempio Dalla (7.6), utilizzando la (7.11) e derivando n volte si ottiene

L[tn] =
n!

zn+1
Re(z) > 0 (7.15)

Si può poi estendere la precedente equazione per potenze qualsiasi e si ottiene

L[tν ](z) =
∫ ∞

0
tνe−ztdt =

Γ[ν + 1]

zν+1
Re(z) > 0 Re(ν) > −1 (7.16)

La richiesta Re(ν) > −1 è necessaria perchè l’integrale non diverga nell’origine.

Per valori di z reali e positivi (z = x > 0) dalla (7.16) si ottiene

L[tν ](z) =
∫ ∞

0
tνe−xtdt =

1

xν+1

∫ ∞

0
sνe−sds =

Γ[ν + 1]

xν+1
(7.17)

Si ottiene quindi la (7.16) la cui validità può poi estendersi per continuazione analitica
per qualsiasi z con Re(z) > 0, utilizzando la rappresentazione integrale della Gamma di
Eulero (4.26).

Teorema Sia f derivabile n volte e L[f (k)] k = 0, 1, . . . n siano le corrispondenti
trasformate di Laplace con αk le corrispondenti ascisse di assoluta convergenza. Allora
∀k = 0, 1, . . . esiste finito

f (k)(0) ≡ lim
t→0+

f (k)(t) (7.18)

e vale
L[f (n)](z) = znL[f ](z)− zn−1f(0)− zn−2f (1)(0)− . . .− f (n−1)(0) (7.19)

∀z|Re(z) > max{α0, α1, . . . , αn}.
Dimostrazione Cominciamo col considerare

L
[
d

dt
f(t)

]
(z) =

∫ ∞

0
e−zt

d

dt
f(t)dt (7.20)

Integrando per parti si ha

L
[
d

dt
f(t)

]
(z) = e−ztf(t)|∞0 + z

∫ ∞

0
e−ztf(t)dt (7.21)

purché Re(z) > max{α0, α1}. Inoltre devono esistere finiti

lim
t→∞ e

−ztf(t) lim
t→0+

e−ztf(t) (7.22)

dato che nella (7.21) tutti i restanti termini sono finiti.

Ma se Re(z) > max{α0, α1}, vale

lim
t→∞ e

−ztf(t) = 0 (7.23)
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Infatti
lim
t→∞ e

−ztf(t) = lim
t→∞ e

−(z−z0)t lim
t→∞ e

−z0tf(t) (7.24)

D’altra parte se Re(z) > Re(z0) > max{α0, α1}, vale

lim
t→∞ e

−(z−z0)t = 0 (7.25)

Pertanto tenuto conto che limt→∞ e−ztf(t) è finito ne segue

lim
t→∞ e

−ztf(t) = 0 (7.26)

Quindi

L
[
d

dt
f(t)

]
(z) = z

∫ ∞

0
e−ztf(t)dt− f(0) (7.27)

Iterando il procedimento si ottiene la formula generale.

7.2 Formula di inversione

Per trovare questa relazione conviene prima vedere la relazione tra la trasformata di
Laplace e quella di Fourier. Dalla definizione segue

Lf(x+ iy) =
∫ +∞

−∞
θ(t)f(t)e−xte−iytdt = F [

√
2πθ(t)f(t)e−xt](y) (7.28)

dove θ(t) è la funzione di Heaviside. Dalla proprietà di unicità della trasformata di Fourier
segue una proprietà analoga per quella di Laplace. Quindi se due funzioni hanno la stessa
trasformata di Laplace esse sono uguali q.o.

Teorema Se la f è a variazione limitata in un intorno di t > 0, e se Lf denota la sua
trasformata di Laplace, vale

1

2
[f(t+ 0) + f(t− 0)] =

1

2πi
V.P.

∫ x+i∞

x−i∞
Lf(z)eztdz ∀x > αf (7.29)

dove l’integrazione è estesa ad una qualsiasi parallela all’asse immaginario del piano
complesso z contenuta nel semipiano di assoluta convergenza di Lf :

V.P.
∫ x+i∞

x−i∞
g(z) = i lim

k→∞

∫ k

−k
g(x+ iy)dy (7.30)

Dimostrazione Dalla formula di inversione della trasformata di Fourier (6.49), segue

1

2

√
2πe−xt[θ(t+ 0)f(t+ 0) + θ(t− 0)f(t− 0)] =

1√
2π

lim
k→∞

∫ k

−k
Lf(x+ iy)eiytdy (7.31)

e quindi per t > 0

1

2
[f(t+ 0) + f(t− 0)] =

1

2π
lim
k→∞

∫ k

−k
Lf(x+ iy)e(x+iy)tdy
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x+ik

x-ik

γk

x

Figura 9: Se |Lf | < Mk su una successione di archi di circonferenza γk a partire dalla retta
x, con limk→∞Mk = 0, è possibile utilizzare il lemma di Jordan e chiudere il cammino di
integrazione nel semipiano a sinistra di z = x.

=
1

2πi
V.P.

∫ x+i∞

x−i∞
Lf(z)eztdz

Nota La (7.29) è nota come formula di inversione complessa di Riemann. L’inte-
grazione è estesa rispetto ad una qualsiasi parallela all’asse immaginario nel piano z
contenuta nel semipiano di assoluta convergenza di Lf , dove la funzione Lf è analitica.
Inoltre se |Lf | < Mk su una successione di archi di circonferenza γk (non passanti per le
eventuali singolarità di Lf) a partire dalla retta x come in Fig. 9, con limk→∞Mk = 0, è
possibile utilizzare il lemma di Jordan e chiudere il cammino di integrazione nel semipiano
a sinistra di z = x. Applicando il teorema dei residui si trova allora

1

2
[f(t+ 0) + f(t− 0)] =

∑

sing.is.

Res[Lf(z)ezt] (7.32)

dove la somma è estesa alle singolarità isolate della funzione Lf(z).

Esempio La funzione f(t) = sinh kt ha per trasformata di Laplace Lf(z) = k
z2−k2

per Rez > k. Questa funzione ha due poli semplici in z = ±k. Quindi per calcolarne
l’antitrasformata dobbiamo calcolare

∑
Res±k[

k

z2 − k2
ezt] =

kekt

2k
+
ke−kt

−2k
= sinh kt (7.33)

7.3 Prodotto di convoluzione

Se f, g sono funzioni da R+ in |C, dalla definizione di prodotto di convoluzione segue che

(f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ)dτ (7.34)
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dato che g(t− τ) = 0 se τ > t.

Vale il seguente

Teorema Se f, g:R+ → |C e L(f) e L(g) denotano le rispettive trasformate di Laplace
è

L(f ∗ g) = Lf · Lg per α > maxαf , αg (7.35)

Infatti da
∫ ∞

0
e−zt

∫ t

0
f(τ)g(t− τ)dτdt =

∫ ∞

0
f(τ)

∫ ∞

0
e−ztg(t− τ)dtdτ

=
∫ ∞

0
f(τ)e−zτ

∫ ∞

0
e−z(t−τ)g(t− τ)dtdτ

= Lf(z) · Lg(z)

7.4 Sviluppi asintotici

Data una funzione f reale o complessa è conveniente a volte conoscerne lo sviluppo
asintotico, per esempio per x→∞.

Definizione Data la successione di funzioni {φn} (reali o complesse) la serie

∞∑

n=0

anφn(x) (7.36)

è detta sviluppo asintotico di una funzione f(x) in x0 e scriveremo

f(x) ∼
∞∑

n=0

anφn(x) x→ x0 (7.37)

se

i)
φn+1(x)

φn(x)
→ 0 x→ x0

ii)
f(x)−∑N

n=0 anφn(x)

φN(x)
→ 0 ∀N x→ x0

Questa definizione è una generalizzazione di quella dovuta a Poincaré.

Vista come serie infinita la (7.37) può esser convergente o divergente. In altre parole
la combinazione [f(x)−∑N

n=0 anφn(x)]/φN(x) → 0 per x → x0 ma non è detto che
[f(x)−∑N

n=0 anφn(x)]/φN(x) vada a zero per N →∞.

Nel caso di una serie di potenze la proprietà i) è soddisfatta automaticamente.
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Consideriamo la formula della trasformata di Laplace

∫ ∞

0
e−xtf(t)dt (7.38)

Ci aspettiamo che per grandi valori di x l’integrale sia esponenzialmente piccolo e che i
contributi siano non trascurabili solo per 0 ≤ t ≤ 1/x e quindi che sia

∫ ∞

0
e−xtf(t)dt ≈ f(0)

∫ 1/x

0
dt =

f(0)

x
per x→∞ (7.39)

Questo risultato è un caso particolare del

Lemma di Watson Se la funzione reale o complessa f(t) ha l’espansione asintotica

f(t) ∼
∞∑

n=0

ant
αn t→ 0+ (7.40)

con
−1 < Re(α0) < Re(α1) . . . (7.41)

Se l’integrale

I(z) =
∫ ∞

0
e−ztf(t)dt (7.42)

è assolutamente convergente per Re z > σ > 0, allora I(z) è analitica per Re z > σ e,
∀δ > 0

I(z) =
∫ ∞

0
e−ztf(t)dt ∼

∞∑

n=0

an
Γ(αn + 1)

zαn+1
z →∞, |Arg z| ≤ π

2
− δ (7.43)

Dimostrazione. [10] Il lemma vale anche se l’estremo superiore dell’integrale non è
infinito ma un numero qualsiasi M > 0.

Metodo di Laplace Consideriamo l’integrale

I(x) =
∫ b

a
exf(t)g(t)dt (7.44)

Se la funzione f(t) ha un massimo in t0 ∈ [a, b], per grandi valori di x questo massimo
è sempre più pronunciato e quindi ci aspettiamo che il contributo dominante all’integrale
venga dall’ intorno del massimo, ovvero

I(x) ≈ g(t0)e
xf(t0)

∫ t0+δ

t0−δ
e

1
2
xf ′′(t0)(t−t0)2dt

≈ g(t0)e
xf(t0)

∫ ∞

−∞
e

1
2
xf ′′(t0)(t−t0)2dt

=

√ −2π

xf ′′(t0)
g(t0)e

xf(t0) x→∞ (7.45)
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dove nell’ultimo passaggio abbiamo usato il risultato

∫ ∞

−∞
e
−ax

2

2 =

√
2π

a
(7.46)

Il risultato (7.45) è garantito dal seguente teorema.

Teorema Siano f, g: [a, b] → R. La funzione f(t) abbia un massimo in t0 ∈ [a, b] e
sia sup f(t) < f(t0) in ogni intervallo chiuso non contenente t0; sia inoltre f ∈ C2 in un
intorno di t0 (quindi f ′(t0) = 0 e f ′′(t0) < 0). La funzione g sia continua in un intorno di
t0. L’integrale I(z) sia assolutamente convergente per Re z > σ > 0. Allora

I(z) =
∫ b

a
ezf(t)g(t)dt ∼

√ −2π

zf ′′(t0)
g(t0)e

zf(t0) z →∞, |Arg z| < π/2 (7.47)

Dimostrazione. Dalle ipotesi su f e g segue

f(t) ∼ f(t0) +
1

2
f ′′(t0)(t− t0)

2 t→ t0 (7.48)

g(t) ∼ g(t0) t→ t0 (7.49)

Esiste un δ > 0 tale che f ′′(t) < 0 per t ∈ (t0, t0 + δ]. Poniamo

τ = f(t0)− f(t) > 0 t ∈ (t0, t0 + δ] (7.50)

E’ allora

τ ∼ −1

2
f ′′(t0)(t− t0)

2 t→ t+0 (7.51)

e quindi

t− t0 ∼
√ −2τ

f ′′(t0)
t→ t+0 (7.52)

e
dt

dτ
∼

√ −1

2τf ′′(t0)
τ → 0+ (7.53)

Consideriamo

∫ t0+δ

t0
ezf(t)g(t)dt = ezf(t0)

∫ f(t0)−f(t0+δ)

0
e−zτg(t(τ))

dt

dτ
dτ

∼ ezf(t0)
∫ f(t0)−f(t0+δ)

0
e−zτg(t0 +

√ −2τ

f ′′(t0)
)

1√
−2τf ′′(t0)

dτ

= ezf(t0) 1√
−2f ′′(t0)

∫ f(t0)−f(t0+δ)

0
e−zτ

1√
τ
g(t0 +

√ −2τ

f ′′(t0)
)dτ
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Dobbiamo quindi valutare un integrale del tipo

∫ f(t0)−f(t0+δ)

0
e−zτh(τ)dτ (7.54)

con

h(τ) =
1√
τ
g(t0 +

√ −2τ

f ′′(t0)
) (7.55)

Ma
1√
τ
g(t0 +

√ −2τ

f ′′(t0)
) =

1√
τ
(g(t0) + g′(t0)

√ −2τ

f ′′(t0)
+ . . .) (7.56)

Possiamo allora utilizzare il lemma di Watson con

a0 = g(t0) α0 = −1

2
(7.57)

Ricordando che Γ(1/2) =
√
π otteniamo

∫ t0+δ

t0
ezf(t)g(t)dt ∼ ezf(t0)g(t0)

√
π

1√
z

1√
−2f ′′(t0)

(7.58)

L’intervallo [t0 − δ, t0) da lo stesso contributo all’integrale e quindi

∫ t0+δ

t0−δ
ezf(t)g(t)dt ∼ ezf(t0)g(t0)

√ −2π

zf ′′(t0)
(7.59)

Si può dimostrare infine che gli intervalli [a, t0 − δ) e (x0 + δ, b] danno un contributo
che è esponenzialmente soppresso, rispetto a quello dato dalla (7.59), quando z →∞.

Sviluppo asintotico per la Gamma di Eulero Consideriamo la funzione Gamma
di Eulero

Γ(z) =
∫ ∞

0
e−ttz−1dt (7.60)

E’ anche

Γ(z) =
1

z
Γ(z + 1) =

1

z

∫ ∞

0
e−ttzdt =

1

z

∫ ∞

0
e−t+z ln tdt (7.61)

Vogliamo ottenere uno sviluppo asintotico per Γ(x) per x reale e positivo per x→ +∞.

Quindi conviene riscalare la variabile t→ xs, ottenendo

Γ(x) = xx
∫ ∞

0
e(−s+ln s)xds (7.62)

Quindi è
f(s) = −s+ ln s (7.63)

Questa funzione ha un massimo in s = 1 con f ′′(1) = −1. Inoltre f(1) = −1. Quindi per
x→ +∞ utilizzando la (7.47) otteniamo la formula di Stirling

Γ(x) ∼ xxe−x
√

2π

x
(7.64)
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Se x = n+ 1 otteniamo

Γ(n+ 1) = n! ∼
√

2π(n+ 1)n+ 1
2 e−n−1

∼ nne−n
√

2πn n→ +∞

Ringrazio G. Martucci per alcune dimostrazioni di teoremi della variabile complessa
tratte dai suoi appunti.
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