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1 Funzioni analitiche

1.1 Notazioni e preliminari

R(C) indica I'insieme dei numeri reali (complessi). C ¢ uno spazio metrico con la metrica
definita dal modulo di un numero complesso. Ricordiamo la forma trigonometrica o polare
di un numero complesso z = x +iy = pe? = p(cosp+isinp). p = |z| = /2% + y? denota
il modulo, ¢ = arctany/x I'argomento e i I'unita immaginaria (i = —1). Indicheremo
con zZ = x — 4y il coniugato di z, con & = Re z(y = I'm z) la parte reale (immaginaria)
del numero complesso.

Per molte applicazioni e utile estendere C introducendo il simbolo co per rappresentare
I'infinito. La sua proprieta ¢ data da a + 0o = 0o +a = 00 e coa = aco = 0o per ogni
a # 0, a € C. Sara inoltre a/oo = 0 e a/0 = oo. Nella rappresentazione dei numeri
complessi nel piano, il simbolo oo corrisponde al punto all’infinito. Si parla allora di
piano complesso esteso.

Proiezione stereografica. E’ possibile introdurre un modello geometrico in cui tutti i
punti del piano complesso esteso hanno un punto rappresentativo (Fig. 1). Consideriamo
una sfera unitaria S con centro nell’origine la cui equazione nello spazio tridimensionale e

i+ 75+ 13 =1 (1.1)

Ad ogni punto P = (21, 9, x3) della sfera (sfera di Riemann) possiamo associare un punto
del piano complesso (il piano equatoriale della sfera)
r1 + 1T
- Tt 1y (1.2)
1— I3
eccetto al polo nord della sfera N = (0,0, 1). Il punto z si trova nel punto intersezione col
piano della retta passante per il polo nord e per il punto P. Se indichiamo le coordinate
di z con (z,y,0) richiedendo che i punti N,P,z stiano sulla stessa retta si ricava

x Y —1
i 1.3
T i) T3 — 1 ( )
da cui . .
1 2
= = 1.4
o 1 — T3 4 1 — T3 ( )

e quindi la eq.(1.2).

La corrispondenza puo esser completata associando al polo nord il punto all’infinito.
La corrispondenza e uno a uno e vale

_ z+z
S EPE

i Z— Z
T AT P

L
BT TP
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Figura 1: La sfera di Riemann e il piano complesso

Infatti dalla eq.(1.1) segue, utilizzando le eq. (1.3)
(2* +y* + )23 — 22> + y*)zs + (2 +9y° — 1) =0 (1.5)
cui corrispondono le radici x3 = 1 cui corrisponde il punto P e la radice

24+ -1
B — 1.6
v (L6)

Utilizzando questa radice nelle eq. (1.3) si ottengono le eq. (1.5). L’emisfero z3 < 0
corrisponde al disco |z| < 1.

In definitiva abbiamo una corrispondenza uno a uno tra la sfera e C U {o0}.

Topologia del piano complesso e notazioni

Per ogni numero complesso zg e r € R positivo, definiamo il disco (aperto) di raggio r

B(r,zp) ={2€C|0< |z — 2| <r} (1.7)

Analogamente indicheremo con B(r, 2g) il disco chiuso
B(r,z) ={2€C|0< |z — 2| <r} (1.8)
e con By(r, zp) il disco aperto privato del punto z.

Un sottoinsieme S C C ¢ detto aperto se ogni suo punto ha un corrispondente disco
B(r, z9) che lo contiene e tale che B(r, zy) C S.

Un insieme S & detto chiuso se il suo complemento in C, C \ S, ¢ aperto.

Un altro modo di caratterizzare gli insiemi chiusi € quello di introdurre il concetto di
punto limite o punto di accumulazione.

Un punto 2y € un punto di accumulazione per un insieme S se ogni disco centrato in z
contiene punti di S distinti da 2z (2o non appartiene necessariamente ad S). E’ possibile
mostrare che S é chiuso se e solo se contiene i suoi punti di accumulazione.
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Se S ¢ un sottoinsieme di C (S C C), indicheremo con int(S) l'insieme dei punti
interni, 05 la frontiera, S la chiusura.

Possiamo caratterizzare int(S) come il piu grande degli insiemi aperti contenuti in S.
Se esiste esso ¢ 'unione di tutti gli insiemi aperti contenuti in S.

La chiusura S di S ¢ il piti piccolo degli insiemi chiusi che contengono S. La chiusura
¢ anche l'insieme che ha per elementi i punti di accumulazione di S.

La frontiera S = S \ int(9S).

Un insieme € connesso se non puo esser rappresentato come unione di due insiemi
aperti relativamente disgiunti nessuno dei quali ¢ vuoto.

Un insieme si dice limitato se esiste un disco che lo contiene.

U indichera un aperto. ) indichera una regione (anche dominio) ovvero un aperto e
connesso di C. La proprieta di connessione garantira l’esistenza di un cammino tra due
punti di €.

Funzioni

Data una funzione f : A—B, R(f) indichera il codominio o immagine, ovvero R(f) =

{f(z) |z € A} C B.

Sia S C C. Una legge che ad ogni elemento in S associa un numero complesso e detta
funzione a valori complessi:

f:8—C (1.9)
z— f(2) (1.10)

Scriveremo anche z = x4+ iy e f(2) = u(x,y) +iv(z,y) con u(x,y) e v(z,y) funzioni reali
di due variabili reali. La funzione u e detta parte reale e la v parte immaginaria.

Le operazioni di derivata rispetto alla variabile z (y) saranno denotate con 0, (d,) o

anche % (8%)

Sia zp un punto di accumulazione per S. Sara

lim f(z) = A (1.11)

Z2—20
se Ve > 0 esiste un disco B(r, zp) tale che per ogni z € By(r, z0) |f(2) — A] <e.
Sara
lim f(z)=A (1.12)

se Ve > 0 esiste un k > 0 tale che per ogni z con |z| > k |f(2) — A| <.

Nota Nel caso reale si possono considerare sia lim, .., che lim,_, ., nel caso com-
plesso solo lim,_, .

La funzione f(z) & continua in z se

lim f(z) = f(z) (1.13)

Z—Z20



Esempio 1 Sia n intero positivo. Consideriamo f(z) = 2z".

z = pe'? e quindi

In coordinate polari

u = p"cos(ny) v=p"sin(ny) (1.14)

Sia B(1,0) il disco chiuso con centro nell’origine e raggio unitario:

B(1,0)={z [0<|z| <1} (1.15)

Se z € B(1,0), allora 2™ : B(1,0)—B(1,0).

Esempio 2 Sia f(z) = z. E’ allora u = z e v = —y. Notare come f(z) non ¢
necessariamente espressa analiticamente in termini di z.

1.2 Serie di potenze

Chiamasi serie di potenze una serie del tipo
ao + a1z + as2® 4+ ... F a2 + ... (1.16)

dove {a,} € una successione di costanti reali o complesse.

[bn]

|bn71‘

In generale data una serie ), b, e definito A = lim,, vale il seguente criterio

di convergenza:
i) se A < 1 la serie ¢ assolutamente convergente e quindi convergente
ii) se A > 1 la serie diverge
iii) se A = 1 la serie puo convergere o divergere.
Vale il seguente risultato.

Teorema Per ogni serie (1.16) esiste un numero R > 0, chiamato raggio di convergenza
con le seguenti proprieta:

i) la serie converge assolutamente per ogni z con |z| < R

ii) se |z| > R la serie diverge

Il cerchio |z| = R ¢ detto cerchio di convergenza. Ricordiamo anche la formula di
Hadamard:
1/R = lim /|ay| (1.17)
Ricordiamo che
lim b, = lim sup(by, k> n] (1.18)
Se inoltre esiste lim,,_, || si ha allora R = lim,,_,+ ||
|an+1‘ |an+1|

Ricordiamo inoltre che se R ¢ il raggio di convergenza la serie converge uniformemente
per |z| < R.



Esempio 1 La serie geometrica. Consideriamo la serie

I+z+22 4+ +2"+ .. (1.19)
Vale
I 4oqogomt=t2? (1.20)
1—=z '
Ma |z|™ — 0 se |z| < 1, quindi la serie converge a 1/(1 — z) per |z| < 1.
Se calcoliamo | b’b”’ | = |z| e quindi ritroviamo, utilizzando il criterio di convergenza,
n—1

che il raggio di convergenza ¢ uno.
Esempio 2 La serie esponenziale.

Consideriamo la serie

1 2 1 n
1+Z+§Z +...az 4. (1.21)
In questo caso
L2 I (1.22)
|bn—1| n

quindi il raggio di convergenza e infinito.

La funzione a cui converge questa serie definisce 1’esponenziale e* o exp z.

1.3 Funzioni analitiche e olomorfe

Definizione Sia f: S—C; sia zy € int(S). Diciamo che f & olomorfa in z, se esiste un
disco B(r, zp) ed una serie di potenze

e}

> an(z — z)" (1.23)

n=0
con raggio di convergenza maggiore o uguale ad r tale che

o0

f(z) =D an(z —2)" Vz € B(r,z) (1.24)
n=0
f € olomorfa in un insieme S; C int(S) se ¢ olomorfa in ogni punto di 5.
Definizione Sia f: S—C; sia zg € int(S). Diciamo che f e analitica in z, se esiste

(finito)
F(z) = tim LE =20

1.25
zZ—20 z — ZO ( )

f'(z0) & detta derivata di f in zp. Analogamente la f ¢ derivabile in un insieme
S1 C int(S) se ¢ analitica in ogni punto di Sj. Per la differenziabilita valgono le consuete
proprieta

(f+9)'=f+g (f9)=Ffg+fd (flg) =" (1.26)
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Se f e analitica in zg essa € anche continua in z.
Definizione Una funzione definita ed analitica in tutto C si dice intera.
Esempio La funzione f(z) = 2" con n intero. E* f'(2) = nz""1.
Teorema Sia f: U—C;

i) se f € analitica in zg = zg + iyo allora valgono le equazioni di Cauchy-Riemann
(CR):
dru(xo, Yo) = Oyv(wo, yo)  Oyu(wo, yo) = —0,v (o, Yo) (1.27)

ii) Viceversa se u e v soddisfano le condizioni di Cauchy-Riemann in (z¢,yo) e sono
C' in un intorno di g, yo, allora f ¢ analitica e vale

f'(20) = 0uf(20) = —i0y f(20) (1.28)

Dimostrazione.

i) Se f ¢ analitica, allora calcolando il rapporto incrementale con Az = h e con Az = ik
con h, k reali si ha:

f(zo+h) = (=)

f'(z0) = lim Y = Oyu(z0, Yo) + i0;v(x0, Yo)
, . +ik) — 1 ,
Fleo) = tim TEOTIIZIE) Do) + 0,000, 0)

e quindi uguagliando si ottengono le condizioni (1.27).

ii) Sotto le ipotesi fatte ¢

w(xo + h, yo + k) — u(zo, yo) = hozu(zo, yo) + kO u(xo, yo) + € (1.29)
e
v(xo + h, yo + k) — v(o, yo) = hdyv(xo, yo) + kdyv(xo, yo) + €2 (1.30)
con €1/(h+ik) — 0 e e/(h +ik) — 0 quando h + ik — 0.
Quindi
f(z0 +h+ik) — f(20) _ u(xo + h,yo + k) — u(zo, yo) + ifv(wo + h, yo + k) — v(wo, Y0)])
h + ik h + 1k
_ hOyu+ kOyu + thdyv + kv € + ey
B h + ik h + ik

Pertanto, utilizzando le (1.27)

/ . (h+ik)Opu A+ i(h + k)0
f'(20) = hl%gio ht ik = 0 f(20)
s —i[(h + ik)Oyu + i(h + ik)Ov]
N thlk?LO h+ ik = —i0yf (%)
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Nota Se f & analitica, dimostreremo che u,v € C*. Quindi derivando du/dz una
seconda volta ed utilizzando le (1.27), si ottiene

0%u 0%v 9%v 0%u

= = =— 1.31
0x? 0x0y  Oyox 0y? (131)
e pertanto
Pu  O*u
Au=—+— = 1.32
u=o + 0y 0 (1.32)
ed analogamente
v 0™

ovvero u e v sono funzioni che soddisfano 1’equazione di Laplace e sono dette armoniche.

Se due funzioni u e v soddisfano le condizioni di Cauchy-Riemann, v ¢ detta funzione
armonica coniugata di u.

Consideriamo una funzione complessa g(z,y). Possiamo pensare g funzione delle
variabili z e Z = x — iy

9(z,y) = f(z,2) (1.34)
In realta queste due variabili non sono variabili indipendenti. Possiamo scrivere anche
zZ+z zZ—Z
= = 1.35
T YT Ty (1.35)

e quindi, trattando le variabili z e z come indipendenti ed utilizzando le condizioni di
Cauchy-Riemann
of .of

aof 1 B

Quindi la condizione di analiticita si puo anche riscrivere come

of

5 =0 (1.37)

Esempio f(z) = 2% E'u=2? —y? v = 2zy e quindi d,u = 2z = dyv e Qyu = —2y =
—00.

Teorema Se f(z) = >°° ,a,2" ha raggio di convergenza R:

i) la serie 3°° ; na, 2" ha raggio di convergenza R

i) f'(2) = 3%, na,z"*

Dimostrazione. (vedi [2])



1.4 Le funzioni esponenziale, logaritmo, potenza

Abbiamo gia visto la definizione di exp(z).

La funzione exp(z) ¢ derivabile ed e f’(z) = exp(z). Questo puo esser visto derivando
la serie di potenze termine a termine:

1 1
(exp(2)) = 1+z+§z2+---ﬁz”+-~- (1.38)
La funzione esponenziale soddisfa il teorema di addizione:

21,29

e*le”? = et (1.39)

Infatti (ee“ %) = e*e“* — e*¢“* = 0. Quindi la funzione e*e¢“~* = costante. 1l valore

della costante ¢ trovato per z = 0. Quindi e*e“™* = e da cui segue la proprieta per
Z2=z1€ec=2z+ 2.

* =1 e quindi e* non ¢ mai zero. Inoltre se z = = + 1y

Segue anche e*e™
e* = "W = % = ¢”(cosy + isiny) (1.40)

Da e* = e*! segue
2=z +2kni con k €X (1.41)

Infatti da e® = e segue, prendendo il modulo z; = z e e¥ = %! da cui

y =11+ 2km (1.42)

Utilizzando la funzione e* € possibile definire le funzioni seno e coseno

eiz _ e—iz eiz + e—iz
sing = ———— cosz = ———— 1.43
21 2 ( )
e le funzioni seno e coseno iperbolici
e — =% e? e~ %
sinh z = — coshz = +2 (1.44)

Dalla (1.43) segue la formula di Eulero
e = cosz +isin z (1.45)
Le funzioni (1.43-1.44) sono funzioni intere e soddisfano le consuete proprieta di derivazione:
(sinz) =cosz (cosz) = —sinz (1.46)

etc.

Insieme con la funzione esponenziale possiamo studiare la sua funzione inversa, il
logaritmo. Dato che la funzione esponenziale non e iniettiva (z; # 23 non implica f(z1) #
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Figura 2: Il piano complesso con un taglio lungo 1’asse reale negativo

f(22)) la funzione logaritmo non ¢ una funzione monodroma. Definiamo il logaritmo log z
come

€8 =2 Vz#£0 (1.47)
Essendo A 4
61ogz — |Z|€7,argz — elog\z|+zargz (148)
segue
logz =log|z| +iargz + 2kmi k € Z (1.49)

Il logaritmo e quindi una funzione polidroma.

Ogni k individua un ramo della funzione. Fissato un punto zy su un ramo k, facendo
un giro intorno all’origine in senso positivo (antiorario) e tornando nel punto z, si passa
al ramo k 4 1 e cosi via.

Se limitiamo | arg z| < 7 otteniamo il valore principale del logaritmo. In modo analogo
possiamo pensare di tagliare il piano complesso lungo 1’asse negativo delle = e considerare
il taglio come avente due bordi distinti (Fig. 2). Allora fissato il valore di logz in un
punto, in tutti gli altri punti logz & determinato con continuita. Sui bordi del taglio
si hanno per log z due valori che differiscono di 27¢. Il punto z = 0 e detto punto di
diramazione.

Con questa convenzione all'interno del piano tagliato log z € funzione analitica e vale
il solito risultato

(logz) = i (1.50)

Possiamo poi definire la potenza ad esponente complesso:

2% — ealogz _ ea(log\z|+iargz)62ka7ri V2 7& 0’ aeC (151>
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Pertanto in generale anche la potenza € una funzione polidroma. Il punto z = 0 & un
punto di diramazione salvo nel caso in cui « sia un intero. Se « ¢ razionale & = m/n (con
m e n primi) allora la potenza ha n valori distinti, se « & irrazionale o complesso i valori
distinti sono infiniti. Nel piano tagliato la funzione z® ¢ analitica ed ¢

(Za)/ _ (ealogz)/ — gealogz = qz® 1 (1.52)
z

Esempio La radice n—esima di 1. 1'/™ = exp(27ik/n) con k = 0,1, ...,n — 1.

2 Integrazione nel piano complesso

2.1 Curve e cammini

Cominciamo col definire una curva in € come una applicazione 7: [a, b]—C, che ad ogni
numero reale ¢t € [a, b] associa il numero complesso 7(t), e tale che Re () e I'm ~(t) siano
funzioni di classe C'. T punti v(a) e v(b) sono detti estremi della curva (o punto iniziale
e punto finale). 11 numero

L, = / I (1)t = / ’ VRey'(8)? + Imey/(t)2dt (2.53)

e detto lunghezza della curva. Una curva e chiusa se il punto iniziale e il punto finale
coincidono.

E’ conveniente introdurre anche una generalizzazione delle curve.

Definiamo cammino un insieme ordinato di curve v = {71, %2, - - ¥}, in modo che per
ciascuna curva il punto finale della «; coincide col punto iniziale della ;.

n

Il numero L, = 31", L,, ¢ detto lunghezza del cammino .

Analogamente il cammino sara chiuso se il suo punto iniziale coincide col punto finale.

2.2 Integrali su cammini

Sia f una funzione continua su un aperto U e 7: [a, b]—C una curva in U (in realta basta
che la funzione sia continua su R(7), 'immagine di 7). Possiamo definire I'integrale di f
lungo v come

[ 1= [ sown (254)

E’” anche scritto frequentemente come [ f(2)dz.

12



Si puo verificare che l'integrale definito dalla (2.54) ¢ invariante per riparametriz-
zazione. Sia g : [a,b] — [c, d] una funzione C* tale che g(a) = ¢, g(b) = d e sia ¢: [c,d] — C
una curva. Supponiamo inoltre

v(t) = ¥(g(t)) (2.55)
Si ha

S~
—
Il
T~
o
=
5
~
=
\Q\
=
QL
~

= [ i) o)dg

:/wf

Quindi l'integrale e invariante per riparametrizzazione.
. . -
Se v & un cammino allora [ f =33, [ f.
Esempi

Arco di circonferenza con centro in zy e raggio r da z; a 2o:

Y(t) = 20 + et tE€ [t (2.56)

con ty(g) = arg(zi(2) — 2o0)

Segmento da z; a 2y

V() =21 +t(z2 — 2z1) te€]0,1] (2.57)

Esempi

Sia f(z) = 2". Calcoliamo [ 2", nel caso in cui n sia intero positivo o negativo ma
diverso da -1, lungo una circonferenza di raggio unitario intorno all’origine:

2T .
/ 2z = / Dt — (2.58)
¥ 0

Sia f(z) = 7 l - Slay una circonferenza di raggio unitario intorno al punto a. Questa
circonferenza corrisponde a y(t) = a + e 0 <t < 27. Quindi v/(¢) = ie™. Vogliamo

calcolare

1 L :
/ dz = / —e"idt = 2mi (2.59)
¥ 0

Z—a €

Esempio Sia ¢ il segmento da zg a zo+ h (h € qui un numero complesso). L’equazione
del segmento ¢ ¢(t) = z9 +th, 0 <t < 1. Pertanto

1
/dz:h/ dt = h (2.60)
® 0

13



Data una curva v: [a, b] — C definiamo la curva opposta
v i [=b,—a] = C (2.61)
che a t associa y(—t). Quindi abbiamo

[ 1= s =~ [ e s (2.62)

dove abbiamo fatto il cambiamento di variabile s = —t. Pertanto

L_f=—Lf (2.63)

Vale il seguente teorema.

Teorema di Darboux Sia v un cammino e f continua su R(7y). Allora vale la
disuguaglianza (di Darboux):

| / fl< Ly swp |£(2)] (2.64)

Dimostrazione. Infatti ¢, nel caso in cui ~ sia una curva,

[ 51 [ 1@ @< L, s (1) (2.65)

zER(7)

La dimostrazione si generalizza facilmente al caso di un cammino.
Valgono anche i teoremi seguenti:

Teorema Sia {f,} una successione di funzioni continue su R(7y), convergenti uni-
formemente a una funzione f. Allora

i [ =] (2:66)

ed f ¢ continua. Se ) 07, f,, ¢ una serie uniformemente convergente ad una funzione f,

vale
;%hzlgyn (2.67)

ed f & continua.

Dimostrazione. La prima asserzione segue da

!Lﬁ—LﬂSAmeﬂgLW (2.68)
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dove abbiamo sfruttato I'uniforme convergenza delle f,, ovvero l'esistenza di un nq tale
che per n > ng |f(2) — fu(2)| < € per ogni z in R(7). La continuita di f segue da

£ (2) = f(20)| < [f(2) = fa(2)] + [ fu(2) = fulz0)] + [fn(20) — f(20)] (2.69)
|

Sia f:U +— C e g una funzione analitica tale che
g=f inU (2.70)
Allora g e detta primitiva di f in U.

Data una regione 2 indichiamo con T'o(€2) I'insieme dei cammini chiusi v tali che
R(v) C 2 e con I'(z1, 22, Q) l'insieme dei cammini + tali che R(y) C Q e che vanno da z;
a 29.

Vale il seguente:

Teorema della primitiva Data una f: ) — C continua, le seguenti proposizioni sono
equivalenti:

i) [, f=0 VyeTy(Q)

i) Vz1,29 € Q
/ f:/ f V7,72 € T(21,22,9Q) (2.71)
71 Y2

iii) f ammette primitiva in 2

Dimostrazione.

i)—ii) Se consideriamo il cammino v = (71,7, ) V71,7 € (21, 22,Q), questo ¢ un
cammino chiuso e quindi

/f:O: f+ [ f=0 (2.72)
vy 7 Y2
da cui segue ii).

ii)—iii) Fissato zg in {2 consideriamo
9z)= [ f (2.73)
ol
in cui y & un cammino in I'(zg, z,2). Abbiamo allora

[wf—/yf} = ,11/¢f(2’)d2’ (2.74)

dove ¢ ¢ il segmento da z a z + h. Per la continuita di f in z possiamo scrivere

f&) = f(z) +¥() (2.75)

gz+h) —g(z) 1
h h
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con lim,_,, 1 (2") = 0. Quindi

1 / ! l !/ 1 !/ ! 1 / !/
w1 = 5 [ i@ g [ed = 1)+ [ (e (2.76)
dove abbiamo utilizzato [, dz" = h (ovvero la (2.60)). Dalla (2.74) e dalla (2.76), segue
h) — 1
EI 29 _ pa)) < o fhlsup () .17
h LR

Ma sup, [¢(2")| tende a zero come h — 0 e quindi la proposizione ¢ dimostrata.

iii)— i) Se g € primitiva allora

[ 1= [ to@n = [ gvii=ga0) - gh@ =0 @

dato che il cammino ¢ chiuso. n

Esempio Sia f(z) = z" con n intero diverso da -1. z" ammette primitiva (2" /(n +
1)), quindi per ogni cammino ~ chiuso (non passante per l'origine nel caso in cui n sia
negativo)

/ =0 (2.79)
y
2.3 Teorema di Goursat

R denotera il rettangolo e R la frontiera del rettangolo.

Teorema (di Goursat) Sia R un rettangolo e sia f una funzione analitica su R.
Allora

[ f=0 (2.80)

Dimostrazione. Decomponiamo il rettangolo in quattro rettangoli bisecando i lati di

R. Quindi e
4
/8Rf - ; [ (2.81)

dato che gli integrali sui lati coincidenti dei quattro rettangoli si cancellano. Pertanto
4
< / 2.82
IAIE Iy i (2:82)

Quindi esistera un rettangolo, diciamo Ry, tra gli Ry, Rs, R3 e Ry, per cui

1
IREIES Y (2:83)
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Altrimenti sarebbe Vk ]
- 2.84
|/¢3ka|<4|/(9Rf| ( )

e sommando su k=1, ..4

L=l <t 255)

Indichiamo Rj, con R™W. Decomponiamo ora R ancora in quattro rettangoli uguali
bisecando i lati. Tra questi ne troveremo un altro, denotiamolo con R®), tale che

1
> — .
YRES i (2.5

Procedendo in questo modo troviamo una successione di rettangoli

RY 5 R® 5 RO 5 ... (2.87)

tali che 1
ooz (2.5%)

Pertanto 1
Y Er (2.89)

Sara inoltre L, 1 = %Ln, se L, denota il perimetro di R(”), e quindi L, = Z%L se L e
il perimetro di R.

Sia a, la successione dei centri dei rettangoli. E’ facile dimostrare che questa succes-
sione e una successione di Cauchy, e quindi converge ad un punto zy € R. Infatti fissato
€ > 0 possiamo trovare un N tale che la diagonale di R™Y) sia minore di e. Allora se
n,m > N a, ed a,, stanno in R ed inoltre

|, — | < diagR™) < ¢ (2.90)

Sia zp = lim,,_,o ;. 2o sta in ciascun rettangolo, perche ciascun rettangolo e chiuso, e
quindi sta nell'intersezione dei rettangoli R™.

Poiche f ¢ differenziabile in R, Ve > 0 esiste un B(r, zg) tale che

f(2) = f(20) + f'(20)(2 — 20) + h(2)(2 — 20) (2.91)

con |h(z)| < € per ogni z € B(r,%). Per n sufficientemente grande R™ C B(r, z) e
quindi

/(,)R(m f(z)dz = /{)R(m f(z0)dz + f'(20) /BR(H)(Z — 20)dz + (z —20)h(2)dz  (2.92)

OR(™)

Ma i primi due integrali per la (2.79) sono nulli, quindi

[ f@ds= [ (= h()d (2.93)
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Otteniamo allora (utilizzando il teorema di Darboux)

1 1
ol S (2 = 20)h(2)dz| < sup |(z = 20)h(2)| L < dnLnsup |h(2)| < - Lde
4n° Jor dR™) 4n
(2.94)
dove d, (d) denota la lunghezza della diagonale del rettangolo R™ (R) e quindi
| [ f] < Lde (2.95)
OR
da cui segue, essendo € arbitrario,
f=0 (2.96)
OR
]

Definizione Data f : S +— C un punto z, (non necessariamente appartenente ad S)
si dice singolarita isolata se esiste un intorno B(r, zg) tale che f ¢ definita ed analitica
nell’intorno di zy, ma non in z.

Una singolarita isolata si dice

i) una singolarita eliminabile se

ZlLI%(Z —20)f(2) =0 (2.97)
ii) un polo se
ZILHZ10 f(z) =00 (2.98)

iii) una singolaritd essenziale se lim, ., f(z) non esiste né finito né infinito.

Esempio La funzione f(z) = % Questa funzione ha una singolarita eliminabile
in 2z = 0. In z = 0 la funzione non & definita pero’ vale lim,_ozf(z) = 0. Inoltre
lim, o f(z) =1 e quindi possiamo estendere la f(z) in zero in modo che assuma il valore
1.

Il teorema di Goursat rimane valido anche in presenza di un numero finito di singolarita
eliminabili all’interno del rettangolo.

Teorema di Cauchy per il disco Data f:S +— C, analitica su D, disco contenuto
all'interno di S. Allora Vy € T'yo(D) ¢

/f:O (2.99)

Dimostrazione. Sia zj il centro del disco. Definiamo

Be)=[ 1 B)=] 1 (2.100)

7

dove 71 = (Y14, 710) € un cammino da zy a z composto da un cammino parallelo all’asse
immaginario vy, seguito da uno parallelo all’asse reale v, € Y2 = (720, Y2,) Un cammino
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Figura 3: I cammini per la dimostrazione del Teorema di Cauchy per il disco

da zp a z composto da un cammino parallelo all’asse reale 75, seguito da uno parallelo
all’asse immaginario vy, come in Fig. 3.

1 cammino v = (Y14, Y10, Y2, V20) € quindi un cammino chiuso rettangolare e il teorema
di Goursat applicato a v da

Fi(z) = Fy(z) VYzeD (2.101)
Poniamo F' = F} = F5. Se consideriamo poi un incremento reale h e
F h)—F 1 1
@+'; (@::h/)ﬂz+chﬁ:aﬂz+mh) (2.102)
0

utilizzando il teorema della media. Quindi passando a limite troviamo

0.F(2) = f(2) (2.103)
Analogamente considerando un incremento ¢k con k reale troviamo

0, F(2) =1if(z) (2.104)

Quindi le condizioni di Cauchy Riemann sono soddisfatte, F' & analitica ed e primitiva di
f in D. Pertanto, per il teorema della primitiva,

szo (2.105)

per ogni cammino chiuso v € D.

Il teorema di Cauchy rimane valido in presenza di singolarita eliminabili per cammini
chiusi non passanti per tali singolarita.

2.4 Indice

Vogliamo generalizzare il teorema di Cauchy. Per prima cosa definiamo l'indice ovvero
quante volte una curva (cammino) gira intorno ad un punto.
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Abbiamo visto in un esempio che

—/ i —1 (2.106)

se v € una circonferenza intorno all’origine in senso antiorario.

E’ naturale quindi definire I'indice di un cammino chiuso 7 rispetto ad un punto
20 ¢ R(v)

n(vy, z0) = ! [{ ! (2.107)

21 Jy 2z — 2

Teorema Se « ¢ un cammino che non passa per zg, n(7, 29) € un intero.

Dimostrazione Sia vy un cammino v = (y1,72, -, Va). Sia Y(t) con t € [a,b] la
parametrizzazione del cammino. Consideriamo
t (¢t
F(t):/ 0y (2.108)
a Y(t) — 2o

F' ¢ continua e differenziabile in tutti i punti, salvo al piti nei punti di raccordo tra le
curve che costituiscono il cammino.

oY)
F'(t) = Y@ — 70 (2.109)
Se calcoliamo
jt[e_m) (v(t) = 20)] = e O () = F'(t)e "D (y(t) — 20) = 0 (2.110)

Pertanto la funzione e ) (y(t) — z) essendo continua e costante a tratti ¢ costante.
Valutandola, in b ed a, otteniamo

e (4(b) — 20) = 1(+(a) — =) (2.111)
Ma v(a) = ~(b) (il cammino ¢ chiuso) e quindi e ¥® =1 da cui
F(b) = 2rik (2.112)
e
n(y,z0) =k k€ (2.113)

L’insieme dei punti R(7y) & chiuso e limitato. Il suo complemento in C ¢ aperto e puo
esser rappresentato come unione di regioni disgiunte (le componenti). Una sola contiene
il punto all’infinito (componente illimitata).

Si dimostra anche che n(7, z) ¢ una funzione continua di zy. Poiché n puo assumere
solo valori interi,sara costante in ciascuna delle componenti connesse di C \ R(7y). Inoltre
se zo € S ed S & la componente illimitata n(y,zy) = 0. In questo caso basta prendere
z — 2y arbitrariamente grande per dimostrarlo.
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2.5 Formula Integrale di Cauchy

Teorema Sia f definita ed analitica su un disco D. Per ogni z € D e che non sta sul
cammino y € I'o(D) vale

ij(i”)zdw (2.114)

w2 = o |

F@0) = 1E) e

Dimostrazione. Basta applicare il teorema di Cauchy alla funzione ——/—

ta funzione e definita ed analitica per w # z e vale lim,,_,, M(w —2z) =0, ovvero

w—z

ha una singolarita eliminabile in w = z. Pertanto
/ F) = 1) g, g Vv € I'y(D) (2.115)

¥ w—z
da cui segue la formula integrale. |
L’applicazione pitt comune ¢ quella al caso n(y, z) = 1:
1 flw)

= — d 2.116
1) = 5 [ omdw (2.116)

Se fosse possibile derivare la (2.116) sotto il segno di integrale troveremmo:

£(2) 1/7<f(w>2dw (2.117)

" omi w— 2)

Il seguente teorema lo permette:

Teorema Supponiamo che g(w) sia una funzione continua su un cammino (non ne-
cessariamente chiuso) v € U. Allora la funzione

F(z):/7 9) g (2.118)

(w = 2)

¢ analitica nel complemento di v in U e vale

FO)(2) = pl / I C) (2.119)

y (w _ Z)n-i—l

Dimostrazione. [1] [2]

Derivando n volte la (2.116), si ottiene la formula integrale per la derivata n-esima

£ () = ;mn!/wﬂ%dw (2.120)

Segue il
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Teorema di Liouville Una funzione analitica e limitata in tutto C & costante.

Dimostrazione. Infatti se |f(z)| < M Vz, considerando per 7 una circonferenza di
raggio r e centro in z, abbiamo

1 f(w) 1 M M
! < —| | ——=dw| < ——2mr = — 2.121
|f(z)|_27r [y(w—z)Q w|_27r7"2 L ( )
e poiche possiamo scegliere r arbitrariamente grande segue il teorema. |

Abbiamo quindi visto che una funzione analitica ha derivate di tutti gli ordini che sono
analitiche. Possiamo ora mostrare il

Teorema di Morera Se f(z) e definita e continua su una regione ) e se [, f=0per
tutti i cammini chiusi in 2, allora f(z) € analitica in €.

Dimostrazione. Avevamo gia visto che sotto queste ipotesi f ammette una primitiva
analitica g. Abbiamo visto che la derivata di una funzione analitica & analitica, quindi f
e analitica.

Il teorema di Liouville porta anche ad una semplice dimostrazione del Teorema fon-
damentale dell’algebra.

Supponiamo che P(z) sia un polinomio di grado n. Se P(z) non fosse mai zero, la
funzione 1/P(z) sarebbe una funzione analitica in tutto il piano complesso. Sappiamo poi
che lim, ., P(z) = 0o, quindi 1/P(z) tende a zero. Pertanto 1/P(z) é piccolo al di fuori
di un diso di raggio R e assumera un massimo all’interno del disco. Ma questo implica
limitatezza e per il teorema di Liouville 1/P(z) sarebbe una costante. Pertanto P(z) = 0
deve avere una radice, che supponiamo di ordine m. E’ quindi P(z) = (z —a)™P;(z), con
P (z) polinomio di grado n — m. Riapplicando il ragionamento, si ottiene il teorema.

2.6 Sviluppo di Taylor

Teorema Sia f definita ed analitica in un intorno B(r,a) di a. Allora Vz € B(r,a) ¢

o () (g
f(z)= > / n'< >(z —a)" (2.122)
F™(a) = n!QjTi/v@U{(Z))"Hdw (2.123)

e vy € una circonferenza con centro in a.
Questa espressione e detta sviluppo di Taylor nell’intorno di a.

Dimostrazione. Vz € B(r,a) sia 7 una circonferenza con centro in a e raggio p tale
che |z — a|] < p < r. Evidentemente

f(z) = 1L S gy (2.124)

2w Jy w — 2z
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Ma 1/(w — z) puo esser espresso come la serie geometrica (uniformemente convergente

per w € R(¥)) 1 1 . n
w—z:(w—a)—(z_a):w_anz%<w_a> (2.125)

Sosituendo nella (2.124) e integrando termine a termine si ottiene

=3 l ! L mdw] (z—a) (2.126)

o |2

e quindi la (2.122).

2.7 Sviluppo di Laurent

Si chiama serie di Laurent di potenze di z una serie del tipo
o0
> ap” (2.127)
n=—oo

dove gli a,, € C. La serie convergera in una regione R; < |z| < Ry. Nell’intorno di una
singolarita isolata a una funzione puo essere espressa come serie di Laurent di z — a.

Teorema Sia f definita ed analitica in un intorno By(r,a) di a, dove f ha una
singolarita isolata. Allora Vz € By(r, a) vale

f(z) = i cp(z —a)? (2.128)
cp = 217rz [y fw)(w —a) P tdw (2.129)

essendo v una qualunque circonferenza con centro in a e raggio minore di r.

Dimostrazione. Sia z € By(r,a). Fissiamo € > 0, in modo che presi i cerchi ¢
e ¢y con centro in a e di raggio rispettivamente |z| — € e |z| + €, si possa trovare una
circonferenza ¢ C By(r,a) con centro in z tale che il cammino v; di Fig. 4 sia contenuto
nella circonferenza ¢ e cosi via. Possiamo trovare in questo modo un numero finito di
cammini 7;, Y2, - - - ¥, in modo che per qualunque funzione g continua su U?ZlR(fyj), e

/@g—/(plg:i g (2.130)

j=1"773

Sia adesso g(w) = f(w)/(w — z). Per il teorema di Cauchy

/g—/ 9=1 9 (2.131)
©2 P1 Y1
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Figura 4: Cammini per la dimostrazione dello sviluppo di Laurent

dato che la funzione f(w)/(w — z) & analitica all’interno di 7s, - - - 7,,. Pertanto
1 (w) 1 (w) 1 (w)
omi dw =5 dw = dw = 2132
2mi Lpgw_zw 2m plw—zw 27 "{1w_Zw f(z) ( )

21m'/¢2 zf(iU)zdw - 271m‘/¢2 (w— ])C(EU)( mpn

(2.133)

(2.134)

¢ = / Fw)(w — a) -



1

— o [ fw)w— a7
271—2 w2

dove abbiamo fatto uso del teorema di Cauchy per il disco per calcolare ciascuno degli

f%_. Quindi la circonferenza intorno a cui calcolare ¢, puo essere una qualsiasi con raggio

minore di r.

La parte >0, ¢_,(z — a)7? ¢ detta parte caratteristica di Laurent in un intorno di a
(p.c.L. in a).

Esempio La serie di Laurent nell'intorno di z =0 di f(z) = m
= 1 1 1 1 1
- - Lo 2.135
/) 2(z—=1) z—-1 =z z 1-—z ( )

e pertanto
f)=—>—1—2—-22—... (2.136)

2.8 Singolarita
Teorema Data una funzione f con una singolarita isolata in a le seguenti proposizioni
sono equivalenti:

i) f ha in z = a una singolarita eliminabile

ii) la p.c.L. in a ¢ zero

iii) esiste finito lim, ., f(2)

iv) esiste un r > 0 tale che f ¢ limitata su By(r, a).

Dimostrazione. i)— ii). La funzione f(w)(w —a)"! n > 1 ¢ definita ed analitica

tranne in a dove ha una singolarita eliminabile, quindi

Cop = — L fw)(w —a)"rdw =0 (2.137)

- omi

ii) — iii). Dallo sviluppo di Laurent con c_,, =0 n > 1, segue lim,_, f(z) = ¢.
iii) — iv). Ovvio.
iv) — i). Se f ¢ limitata in By(r,a), segue

lim f(2)(z —a) =0 (2.138)

zZ—a

Teorema Data una funzione f con una singolarita isolata in a le seguenti proposizioni
sono equivalenti:

i) f ha in z = @ un polo
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ii) la funzione 1/f(z) ha in z = @ una singolarita eliminabile e una volta eliminata
tale singolarita, esiste un intero m > 1 tale che 1/f(z) ha in z = a uno zero di un certo
ordine m.

iii) lim,_,, f(2)(z — a)™ esiste finito e diverso da zero.
iv) la p.c.L. in a di f é un polinomio di grado m in (z —a)™.

Dimostrazione. i)— ii). In un conveniente By(r,a) f ¢ analitica e diversa da zero.
Quindi sullo stesso insieme 1/f ¢ analitica e 1/f(z) — 0 per z — a. Una volta eliminata
tale singolarita eliminabile,ridefinendo 1/f(a) =0, 1/f(z) ha in z = a uno zero di ordine
m > 1.

ii) — iii) Se 1/f(z) ha in z = a uno zero di ordine m,

= ) (2.139)
=(z—a)"g(z :
/()

con ¢ analitica in un intorno di a e tale che g(a) # 0. Quindi
1 1

l%f(z)(z—a)m:lm%:m#o (2.140)

iii) — iv). f(2)(z —a)™ ha in @ una singolarita eliminabile, quindi

fE)(z=a)" =) cu(z—a)" (2.141)
n=0
da cui segue iv).
iv) —1i). E
1
f(z) = m[c—m +Ccomyr(z—a)+ -] (2.142)
da cui segue lim,_., f(z) = 0. n

m e l'ordine del polo.

Teorema di Casorati Weierstrass Sia z; una singolarita essenziale per la funzione
f e sia By(r, zp) un disco centrato in zo. Allora f(By(r, 29)) € denso in C Vr.

Dimostrazione. Supponiamo il teorema falso. Allora esiste un numero complesso w e
un numero positivo € tali che

|f(2) —w| >€ Vz € By(r, z) (2.143)

Ma allora

im L) =% _ (2.144)
z=20 z2 — 2

flz) —w
Z— 20
singolarita eliminabile contrariamente all’ipotesi.

e quindi la funzione ha un polo e pertanto anche la f(z) avrebbe un polo o una
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E’ facile dimostrare inoltre che se zg € una singolarita essenziale per la funzione f la
p-c.L. ha infiniti termini. Infatti se la p.c.L. si riducesse ad un polinomio esisterebbe finito
o infinito il lim,_,,, f(z), contrariamente all’ipotesi.

E’ stato inoltre mostrato da Picard che f(z) in ogni intorno della singolarita essenziale
assume ogni valore di C eccetto al pitt uno. Per esempio la funzione exp(1/z) in By(r,0)
prende ogni valore eccetto il valore 0.

Esempio La funzione exp % ha in z = 0 una singolarita essenziale. Infatti

1 1
li — = li —=0 2.145
Aoy =eo g ery 210)
Lo sviluppo di Laurent e dato da
1 1 11
- =14+-+=—+-- 2.146
exp p; + . + 91 52 + ( )

Esempio La funzione sin% ha in z = 0 una singolarita essenziale. Infatti se conside-
riamo le due successioni

1 2
U - 2.147
{an} nm {an} (4n+ 1)m ( )
tendenti a zero per n — oo abbiamo nel primo caso
1
lim sin — =0 (2.148)
n—oo xn
e nel secondo 1
lim sin — =1 (2.149)
n—00 Ty

Data una funzione definita ed analitica nellintorno di oo, cioe per |z| > k > 0,
trattiamo 'infinito come una singolarita isolata. Il tipo di singolarita e quello di f o7 dove
i:C\ {0} € C associando a z—f(z) = 1/z.

Quindi per esempio z = 0o & una singolarita essenziale per le funzioni exp(z), sin z,
cos z, € un polo di ordine m per un polinomio di grado m.

2.9 Zeri di una funzione analitica

Sia f: ) +— C una funzione analitica in 2. Sia a uno zero per f(z). Espandiamo f in serie
di Taylor nell’intorno dello zero

f(z) =) ca(z—a)" (2.150)

Se a € uno zero due casi possono presentarsi. Tutti i ¢, sono zero, nel qual caso f(z) =0
identicamente su {2, oppure esiste un m tale che

01202:"':Cm_1:0 (2151)
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e quindi vale
f(z) = (2 —a)"y(z) (2.152)

con ¢(z) analitica e g(a) # 0. Vale allora il seguente
Teorema Uno zero di ordine finito & isolato.

Dimostrazione. Dall’ipotesi segue che possiamo scrivere f(z) = (z — a)™g(z) con
g(a) # 0. g(2) ¢ analitica e quindi continua, quindi posto € = $|g(a)], esiste un § tale che

|z —al <d=|g(2) —g(a)] <€ (2.153)
Pertanto
9(2)| > |lg(a)| —lg(a) — g(2)|| > 26 —e=¢ (2.154)
ovvero g(z) # 0.
Quindi se |z —a| < 8 f(2) = g(2)(z — a)™ # 0. n

Vale il teorema seguente:

Teorema Sia S un insieme di zeri per una funzione analitica f: {2 +— C, aventi punto
di accumulazione a € €. Allora in ogni intorno B(r,a), f ¢ identicamente zero.

Dimostrazione. Poiche a € punto di accumulazione possiamo scegliere una successione
di zeri {z,} — a. Per la continuita di f si ha

fla) = lim f(z,) =0 (2.155)

n—oo

Ma f(z) = >0y cn(z —a)", quindi f(a) = 0 implica ¢y = 0. Supponiamo che il primo
coefficiente non nullo sia ¢,,. E’ quindi

f(z)=(z—a)"[cm + cmi1(z —a) + -+ (2.156)

Ma se fosse vero questo esisterebbe un intorno B(r,a) in cui f(z) € non nullo, contraria-
mente all'ipotesi che a sia un punto di accumulazione. Pertanto f(z) = 0 identicamente
in B(r,a). m

La dimostrazione si puo estendere a tutto €.
Segue allora il

Teorema di identita. Se f e g sono analitiche su €2 e uguali su un insieme di punti
aventi punto di accumulazione in €, allora f = g su €.

Questo teorema e alla base della teoria del prolungamento analitico. Se f e g sono
analitiche in ; e Q5 (che hanno una parte comune in ;N€) e se f(2) = g(z) Vz € 1N,
allora la funzione F(z) = f(2) se z € 1 e F(z) = g(2) se z € {2y ¢ analitica in Q; U e
costituisce il prolungamento analitico della funzione f (g) dalla regione € (£22) a 7 UQs.
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Figura 5:

3 Formulazione generale del teorema di Cauchy

Abbiamo visto finora il teorema di Cauchy per un disco, ovvero se f € analitica su un
disco D

/f —0 ¥y e Ly(D) (3.1)

Sia €2 un insieme su cui f ¢ analitica. Vogliamo generalizzare tale teorema in due direzioni.
Da una parte per cammini piu complicati, anche sconnessi, come in Fig. 5 i cammini

Y1,Y2, "+ Yp iNtorno ai punti zi, 29,---2, € 2. Se 7 € un cammino che gira intorno a
21, 29, + + Zn, Ci aspettiamo che
(1= 1o poms] s 32
il Y1 Y2 n
sia se la f e analitica ma anche nel caso in cui f non sia analitica in 2y, 2o, - - - 2,,. Dall’altra

parte vogliamo generalizzare il teorema a regioni semplicemente connesse.
E’ conveniente introdurre il concetto di catena.

Siano in generale ~y;, %o, -, 7, dei cammini e my, ma, - -, m, degli interi (non neces-
sariamente positivi) corrispondenti alla molteplicita del cammino. Una catena sara scritta
nella forma

v =mygyr Moy + MYy (3.3)

Diciamo che la catena e chiusa se ogni cammino in essa e chiuso.

Definiamo 'integrale lungo la catena -~
/ f= E mi/ f (3.4)
Y i Vi

Definiamo 'indice del punto a rispetto ad una catena chiusa -,

n(y,a) = 1[/ ! dz (3.5)

271 zZ—a
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Figura 6: La curva n € omologa a zero, mentre la curva v non lo e

Se 7,7 sono catene chiuse in 2, diciamo che v ¢ omologa a zero (y ~ 0) in €2, se
n(y,a) =0 Ya ¢ Q (3.6)
Diciamo che vy ¢ omologa a n (v ~n) in Q, se
n(y,a) =n(n,a) Ya ¢ Q (3.7)
Riportiamo due esempi in Fig. 6.

Una regione ) & semplicemente connessa se e solo se n(vy,a) = 0 per tutte le catene
chiuse v € Q e per tutti i punti a ¢ € (ovvero tutte le catene chiuse sono omologhe a
7€ro).

Teorema di Cauchy per regioni semplicemente connesse Se f:{) — C ¢
analitica su una regione semplicemente connessa (2

Asz (3.8)

per ogni catena chiusa v € 2.
Ecco infine la forma piu generale.

Teorema di Cauchy Sia f: () — C analitica in €. Allora

Af:o (3.9)

per tutte le catene chiuse omologhe a zero in ().
Dimostrazione. [1].

Teorema Sia f: {2 +— C analitica in (2. Se v e 1 sono catene chiuse omologhe in €2 e
[r=]1 (3.10)
8! U
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Dimostrazione. Basta applicare il teorema precedente alla catena v, 7~ che € omologa
a zero.

Il teorema di Cauchy continua a valere in presenza di un numero finito di singolarita
eliminabili. Tutti i risultati dimostrati come conseguenza del teorema di Cauchy per il
disco si possono generalizzare alle catene chiuse omologhe a zero.

Teorema Sia f:€) — C analitica in 2 salvo un numero finito di punti 2y, 2o, - - -, 2.
Sia v una catena chiusa omologa a zero in € e siano ~; € Q delle circonferenze intorno a
z; orientate in senso antiorario e tali che 7; contiene z; ma non z; j # i. Sia m; = n(vy, z;).
Sia Q* l'insieme Q \ {21, 22, -, 2, }. Allora v & omologa a > m;7,; in Q* e

/f = imi f (3.11)
Y i=1 i

Dimostrazione. Consideriamo la catena I' = v — Y m;7;. Se a ¢ Q ¢
n(T,a) =n(y,a) =Y mn(y,a) =0 (3.12)

Se a = z
n(lya) =n(vy,z,) —mp =0 (3.13)

Applicando il teorema di Cauchy alla catena I' si ottiene il risultato.

In particolare, utilizzando questo risultato nello sviluppo di Taylor e di Laurent (2.128),
possiamo sostituire alla circonferenza v una qualsiasi curva omologa a 7.

3.1 Residuo

Diamo la definizione di residuo. Data una funzione f analitica in €2, sia zy una singolarita
isolata. Definiamo residuo

Res.,f = ;m/vf (3.14)

dove v ¢ un cammino chiuso con R(y) C 2 tale che n(v,z) = 1 e n(y,w) = 0 se
w ¢ QU {2z}

Ricordando la definizione di ¢_,,

Cop = 217rz /7 fw)(w — z)" tdw (3.15)

segue che

Res,,f =c_4 (3.16)

Utilizzando il teorema precedente e possibile allora, utilizzando la definizione di resid-
uo, enunciare il seguente
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Teorema del residuo Sia f:() — C analitica in {2 salvo un numero finito di punti

Z1, 29, , Zn, in cui ha singolarita isolate. Allora

/f Z n(vy, z;)Res.,, f

per ogni catena v omologa a zero in ).

i

Teorema Sia a un polo di f; allora
i) Se a e di ordine m

1 dm—l

Resaf = oy i o ) = )]

ii) Se a ¢ di ordine 1 ¢ dalla i)

Res,f = lim f(z)(z — a)

zZ—a

o anche
1

tim.— (4 (2

Dimostrazione. Dallo sviluppo di Laurent segue

Res,f =

N = @) = et e (2 — @)™ 4 S (2 — ) = g(2)

k=0
e quindi
_ 9" (w)
1= (m —1)!
Per z € By(r,a) ¢ ¢ (2) = [f(2)(z — a)™]*)(2) e pertanto
=t () )]

(m — 1)! z2=a dzm—1

ii) Per z € By(r,a) &

con g(z) = c_1 + 252 cr(z — a)*!. Quindi

g(a) =c_1 = Res,f = lim f(z)(z — a)

z—a

D’altra parte

1 _dima_ g0 =G-ag)
(f) &)= 90 7

e passando a limite si ottiene la (3.20).
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Figura 7: Archi ~; per la dimostrazione del Lemma di Jordan

3.2 Lemma di Jordan

Lemma Sia a un polo di ordine uno per f e sia 7,:[c,d] — C un arco di circonferenza
con centro in a e raggio r, con argy,(c) =0 e argy,(d) = 6 + a. Allora

lim/ f =iaRes,f (3.27)

r—0 J~,

Dimostrazione. Posto g(z) = f(z)(z — a) per z # a e g(a) = Res,f, g ¢ olomorfa in
a. Usando il teorema della media

lim [ f = lim/ Mclz
Y

r—0 ./, r—0J~. 2 —a
0+« .
= lim g(a+ re™)idt
r—0 /g

= z'lin(l] g(a+re™)a =iag(a)

da cui segue il lemma.

Lemma di Jordan Sia v; una successione di archi di circonferenza di raggio Ry come

in Fig. 7. Posto 6, = arcsin R% (a>0)e¢
Vi [—Ok, ™+ 0] — C (3.28)
Sia limy .o Ry = o0o. Sia f continua su R(7x)Vk e posto My = sup,cp,) |f(2)| sia

limy_.oo M, = 0. Allora VA >0 ¢

lim / f(2)e?dz =0 (3.29)

k—o0

Dimostrazione. Dimostriamo prima che sono zero i contributi degli archi Ay By, e ByC}.
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Su A Bj, vale ' .
‘f(Z)ele S Mkef)\smtRk S Mke)\a (330>
e percio
| s f(2)e™dz| < My R0, (3.31)
kPk

Per k — 0o Ri0; — a quindi il limite del secondo membro della (3.31) ¢ zero.

Su B (Y, utilizzando la disuguaglianza,

<1 0<t<

2 sint
gﬂ%f (3.32)

2 T
T 2
abbiamo

4 ™/2 . .
| f(2)edz| = | / f(Rre™) exp [iARy(cost + isint)]iRpe™dt|
BiCy 0

VAN

w/2 2
MkRk/ eXp(——Rk)\t)dt
0 ™

w1 —exp(—ARy)
- "y
2" A

Ma il risultato va a zero per k — oo e quindi e nullo il contributo dell’arco B,Cj.
Per simmetria sono zero anche i contributi di C, Dy e D E}.

Lemma Se sulla successione di archi v e |zf(2)] < My ed e limy_ My = 0, allora

lim [ f=0 (3.33)
k—00 Jy,
Dimostrazione. Infatti |f(2)z| < M} implica |f(2)| < My /Ry e pertanto
M
|| flI< JRk(T" + 20) (3.34)
Tk Rk

Il secondo membro va a zero per k — oo.

3.3 Teorema dell’indicatore logaritmico

Una funzione f in €2 & detta meromorfa in €2 se ¢ analitica in 2 eccetto che per la presenza
di poli. Una funzione meromorfa ha in ogni regione limitata un numero finito di poli. Se ve
ne fossero infiniti essi ammetterebbero (per il teorema di Bolzano-Weierstrass) un punto
di accumulazione zy € € e questo non sarebbe una singolarita isolata. I poli possono
invece aver punto di accumulazione all’infinito (Esempio 1/sin z. Questa funzione ha poli
in z = nr, e in z = 0o una singolarita essenziale ma non isolata).
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Teorema Sia f una funzione meromorfa in 2. Allora se zy € uno zero
!/
R68Z07 = ord,, f (3.35)

Se zg € un polo /

Resm]} = —ord,, f (3.36)

Dimostrazione. Se 2y ¢ uno zero (polo) di ordine m,

f(2) = (2 — 2)™™g(z) (3.37)
con ¢g(z) analitica nellintorno di zg e g(zp) # 0. Quindi
f'(z) _m(=m) 4'(z)

2 e—m g (3.38)

da cui, ricordando la definizione di residuo, segue il teorema.
Vale quindi il

Teorema Sia v una catena omologa a 0 in {2 e f una funzione meromorfa in €2, con
zeri in a; e poli in by, allora

27r7,/ / n(y, a;)orda, f — Z n(y, by )ordy, f (3.39)

Nelle applicazioni spesso gli indici saranno uguali a uno, la catena sara semplicemente
una curva e quindi

/
57 J}: (numero di zeri — numero di poli) (3.40)
mi Jo

dove poli e zeri sono all’interno della curva C' e contati col loro ordine.

3.4 Problema di Dirichlet

Come applicazione della formula integrale di Cauchy, studiamo il problema di Dirichlet.

Sia ) una regione con frontiera J{2 = v e g(x,y) sia una funzione continua reale
definita su . Consideriamo il problema di trovare una funzione u(x,y) tale che

i) u(r,y) ¢ armonica su © e continua su {2
ii) u(z,y) coincide con g(z,y) su 7.

Un problema fisico che corrisponde al problema di Dirichlet & quello che corrisponde
alle configurazioni di equilibrio di una membrana elastica in assenza di forze esterne e
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y
Figura 8: La membrana con una cornice rigida

trascurandone il peso. Supponiamo di considerare una membrana, con una cornice rigida
g(x,y), come in Fig. 8. La membrana, pensata come superficie, avra una equazione

u=u(z,y) (3.41)

dove u(z,y) & continua su . Riferendo lo spazio ad un sistema cartesiano avente sull’
asse z u, sia v la proiezione di g(x,y) sul piano (z,y).

Si dimostra nella teoria dell’elasticita che la posizione di equilibrio della membrana in
assenza di forze esterne e trascurandone il peso, e soluzione dell’equazione di Laplace

*u  0*u
A= — +— = 42
u=o + Iy 0 (3.42)
con la condizione al contorno
u(z,y) = g(z,y) su v (3.43)

Il seguente teorema assicura l'unicita della soluzione:

Teorema del massimo modulo Se f & una funzione analitica su una regione {2
limitato) e continua su €2 e non ¢ costante, |f| assume il massimo in un punto della
frontiera M.

Dimostrazione. Infatti essendo |f(z)| una funzione reale e continua su {2 ammettera’
un massimo in un punto zo. Supponiamo zg € . Allora esiste un disco B(zg, ro) tale che
Vz € B(Z(), To)

f(2) =co+ci(z — 20) + ca(z — 20)2 e (3.44)
Allora Vr < rq
1 27 . 0
oo | 1 Go ) Pd0 = 3 JeafPr” (3.45)
21 Jo o
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D’altra parte essendo zy massimo

|f (20 +7e| < |£(z0)] = |eol (3.46)

pertanto
nf% |en [P = 217r /027r |f (20 + re®)do < |col? (3.47)
che implica ¢; = ¢y = -+ = 0 e quindi f(2) = ¢y ovvero costante. Quindi se f non €’

costante zg € OM.

Esempio f(z) = 2? definita sul disco di raggio 1 B(1,0). Il modulo ¢ |f(2)| = z* + y?
che assume il massimo valore sull cerchio.

C’e un teorema analogo per funzioni armoniche.

Teorema Se u(z, y) € una funzione reale armonica su una regione limitata €2 e continua
sulla regione chiusa €2, essa assume massimo sulla frontiera.

Dimostrazione. (Data la u si puo costruire una fnzione armonica v coniugata, tale che
la ¢ = u + iv sia analitica). se poniamo f = exp ¢ sappiamo che |f| = expu & massimo
sulla frontiera, pertanto anche il massimo di u sara‘a assunto sulla frontiera.)

Si vede quindi che il problema di Dirichlet ha una unica soluzione. Infatti se u; e us
fossero due soluzioni, anche la differenza u; — us € armonica ed assume il massimo su 7.
Pertanto

0< |u1(x,y)—u2(x,y)| <0 (348)

dato che sulla frontiera le due funzioni coincidono. Pertanto w; = us.

Teorema Una funzione armonica su una regione semplicemente connessa ) puo esser
considerata la parte reale o la parte immaginaria di una funzione analitica in 2.

Per ricavare la funzione analitica basta integrare le equazioni di CR

ou Ov OJu ov
-7 T _ 7 4
or 0Oy Oy ox (3.49)

In altre parole assegnata la u, € possibile ricavare la v come soluzione data dall’integrale

z ou ou
/Z 0 (—ayda: + axdy> (3.50)

dove zg € un punto in 2. e quindi

vz, y) = /: <_gzd;p + gzdy) + cost (3.51)
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3.5 Problema di Dirichlet per il disco e per il semipiano

Dimostriamo prima il seguente

Teorema Sia f analitica sul disco B(R,0) con centro nell’origine e raggio R. Allora
Vr < R, V0 € [0, 2m) vale

1 2 R%* —r?
" 2rJo R?®—2Rrcos(f —¢) +r

f(rew) 5 f(Re™)dyp (3.52)

Dimostrazione. Dalla formula integrale di Cauchy (2.116) scegliendo v = 0B(R,0) e
2 = re’ punto interno alla circonferenza -, si ha

1 27 Re¥

0y — - “@\d
f(re®) 21 Jo Rew—rewf(Re Jdp
— 1/27T ;f(Rew)d
T ok 1 T i) 4

1 2 R* — rRe”0=%) ;
= — Re'?)d 3.53
2w Jo  R?*—2Rrcos(f — ) + rzf( ¢7)de (3:53)

R2

x e all’ester-

D’altra parte ancora per il teorema di Cauchy prendendo un punto z =
no del disco e

Reiap P 17
r
27 702 i TRefl(efgﬂ i
= 1 Re*?)d 3.54
"Jo R2—2chos(9—<p)+r2f( e)de (3.54)
Quindi
2 rRe10—%) 2 r2

2 f(Re'?)dy
(3.55)

i —
af (Re")dy ;

0o R?*—2Rrcos( — )+ R* — 2Rrcos(f — ) +r

Utilizzando la (3.55) nella (3.53) si ottiene il teorema.

Data una funzione armonica u su un dominio semplicemente connesso essa puo esser
pensata come la parte reale di una funzione analitica, quindi se u ¢ armonica sul disco
vale la formula di Poisson

1 g2 R%* —r?
21 Jo R*—2Rrcos(0 — ) +r

su(Re™)dyp (3.56)

u(re) = u(r cos @, rsinf) =
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La (3.56) suggerisce come scrivere la soluzione per il problema di Dirichlet per il disco,
ovvero la funzione u armonica in B(r,0) e tale che u(Re?) = ¢(), 6 € [0,27) con g
funzione assegnata (non necessariamente armonica),

1 2 R%* —r?

u(re?) = u(rcos,rsinf) = 2w Jo R?—2Rrcos(f — o) +r

59(0)dp (3.57)

La (3.57) si puo riscrivere introducendo il nucleo di Poisson K (per semplicita poniamo
R=1):

2
u(rcosf,rsinf) = / K(r,0 — ¢)g(p)de (3.58)
0
con . e
—r
K(r,0) = — 3.59
(r,) 2m 1 — 2rcosf 4 12 (3:59)
Nota Si puo’ dimostrare che
R2 - 7’2
=1+2 (0 — 3.60
R? —2rRcos (0 — ¢) + - Z( ) cosn(f =) (3.60)

Infatti €’ (quando z = rexpif)

ip 2 .2
P (Re‘ —i—z) - - R*—r (3.61)

Re' — 2 > —2rRcos (0 — @) + 1
Ma
Re' + z Re™®
- = 142—=—14+2—
Rei — 2 * Ret® — z T Fei0=¢)
= 1+2) <) em0=%) (3.62)
o\

In modo analogo si dimostra che

2Rrsin (0 — ¢)
R? —2rRcos (0 — ¢) +

—22( ) sinn(6 — o) (3.63)

Nota. Si puo verificare che u ¢ armonica passando a coordinate polari

10, 0 1 92

e I 64
7"(97"( 8r>+7’2862 (3.64)
e dimostrando che il nucleo di Poisson soddisfa I’equazione
AK(r,0) =0 (3.65)
La verifica che u(f) quando r — 1 tende a g(¢) richiede la seguente proprieta
2m
lim [ K(r,0 = ¢)g(p)dp = g(6) (3.66)
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Quindi nel limite ’azione dell’integrale col nucleo di Poisson diventa equivalente all’azione
della distribuzione delta di Dirac, che studieremo in seguito.

In modo analogo si dimostra il problema di Dirichlet per il semipiano. Vale infatti il

Teorema Sia f analitica e limitata nel semipiano Imz > 0. Allora Vz = x + iy con
y>0e

Yy
T /_Oo oyl e (3.67)

Dimostrazione. Basta applicare il teorema di Cauchy due volte.La prima volta scegliamo
un cammino lungo 'asse reale e lo chiudiamo con un semicirconferenza nel semipiano
superiore, con z all’interno della curva,

F(z) = —— / L b w)duw (3.68)

2m Jyw — z

Nel secondo caso scegliamo al posto di z Z, quindi

0= 1/ L b w)duw (3.69)

2 Jyw — Z

dato che z sta nel semipiano inferiore. Sottraendo le due equazioni si ottiene

16 = L g f

_ Y 1
N / t—x)2+yf<t)dt

Z?J i0 i0
/ T ( g (B Reds

Nel limite R — oo si ottiene la (3.67), tenuto conto che il secondo termine va a zero.

Da questo segue la soluzione per il problema di Dirichlet per il semipiano, ovvero la
funzione w armonica nel semipiano y > 0, e tale che u(z,0) = g(z) con g(x) funzione
continua assegnata:

o)=L [ et (3.70)
u(z,y) == '
=T e =22+ 27
Data la funzione ——%— si verifica infatti che
(t—x)"+y
Y
A——F——=0 3.71
(t—2)*+y? (371)
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4 Funzioni intere e meromorfe

4.1 Fattorizzazione

Abbiamo visto che una funzione intera ¢ una funzione analitica in tutto C, e una funzione
meromorfa & analitica eccetto al piu dei poli. Si puo’ anche estendere la definizione di
funzione meromorfa al piano complesso esteso. Una funzione e meromorfa in C U oo se €
meromorfa in C ed in zyg = oo € analitica o ha un polo.

Una caratterizzazione equivalente corrisponde a definire le funzioni meromorfe come
quelle funzioni che sono esprimibili come

9(2)
z) = 4.1
f6) =705 (11)
con g e h funzioni analitiche. In particolare se f € una funzione meromorfa in C essa
e il quoziente di due funzioni intere, se f ¢ una funzione meromorfa in C U oo essa ¢ il
quoziente di due polinomi.

Alcuni teoremi sulle funzioni intere.

Teorema Sia f una funzione intera senza zeri. Allora esiste una funzione intera h
tale che

f(z) = e (4.2)

Dimostrazione. [2] (Ne segue che f'/f ¢ analitica, e la funzione h = [ f'/fdz+ cost).

Se f intera ha un numero finito di zeri z; di molteplicita n; la funzione

f(2)

im1 (7 — 2™

h(z) = (4.3)

e intera e priva di zeri e quindi

q
z
fz) = AesD TI(1 = 2)™ (4.4)
i=1 <i
Se abbiamo una funzione intera con un numero infinito di zeri possiamo pensare di

costruire un prodotto infinito
oo

[[G—=)™ (4.5)

i=1
In generale questo prodotto infinito non convergera e quindi dovremo aggiungere un fattore
di convergenza.

Diamo 'enunciato del teorema di Weierstrass

Teorema Sia f una funzione intera tale che f(0) # 0; se 21, 2, .. sono gli zeri di f
elencati con la loro molteplicita esiste una funzione intera g e una successione di interi
non negativi {p;} tali che

) = T En(D) (4:6)
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Gli E, sono i fattori elementari

Ey(z) = (l—z)exp(z—i-Z;—i—“'—i-) p=12. (4.7)

con Fp=1— 2.
Se f ha in 2 = 0 uno zero di ordine k basta applicare il teorema a f(z)/2".
Questa fattorizzazione non e unica.

La convergenza del prodotto infinito ¢ definita nel modo seguente.

Sia {a;} una successione di numeri complessi (a; # —1). Il prodotto infinito converge
se converge la successione dei prodotti parziali

{ﬁ(l + ai)} (4.8)

=1

Condizione necessaria e sufficiente affinche il prodotto infinito converga ¢ che converga
>ilail.

Esempio sin7z. La funzione sin7wz ha zeri del primo ordine in tutti i punti di ZZ.
Vale il seguente sviluppo

sm7rz-7rzH1——en:7rZH 1—— (4.9)
n#0

4.2 La funzione Gamma di Eulero
Definiamo una funzione intera che ha zeri negli interi negativi:
s Z. _=z
2)=[[(1+ Z)e = (4.10)
n=1 n

E’ evidente che G(—z) ha zeri negli interi positivi e confrontando con la rappresentazione

di sinmz )
sin 7wz

2G(2)G(—2) = (4.11)
T
Per costruzione G(z — 1) ha gli stessi zeri di G(z) pitt uno zero nell’origine.
Possiamo quindi scrivere
G(z—1) = 227 G(2) (4.12)

con 7y(z) funzione intera.

Per determinare vy(z) deriviamo logaritmicamente la eq.(4.12), ottenendo

Z(Z_Hn—l) }+v +Z(Z+n 1) (4.13)

n n
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dove abbiamo fatto uso di

G'/6(:) = (D loat +) = 5 = 3 (47 =) (4.14)

i \z+n n

Sostituendo nella serie di sinistra della eq. (4.13) n — n+1
(D) - £
“\z—1+n n)  Z\z+n n+l
1 > 1 1
- )

z \ztn o+l
1 s 1 1 > /1 1
- -1 — = - -
z +;<z+n n)—'—;(n n~|—1>
1 s 1 1
- -1 B ]
z * ;::1 (z +n n) *
e quindi confrontando con la eq.(4.13), segue 7/(2) = 0 ovvero y(z) = + costante.
Definiamo ora
H(z) =G(»)e”* (4.15)
che soddisfa
H(z—1)=G(z - 1)V = 2e7G(2)e’* ™Y = 2H(z) (4.16)

Il valore della costante v (costante di Eulero) ¢ facilmente determinato dalla (4.10) e
dalla (4.12):
G(0)=1=e"G(1) (4.17)

da cui - |
e =G = [0+ ﬁ)e_% (4.18)

n=1

Prendendo I'n-esimo prodotto parziale

1 1
L+ D+ 5) 1+ e Utatti) = (4 1)e(Fatt) (4.19)
n

e considerandone il logaritmo

1 1
—(L+ 5+ + ) +log(n+1) (4.20)
otteniamo 1 1
yzlim(1+§+~~~——logn) (4.21)
n—oo n

Questa successione e convergente, il valore approssimato di v = 0.57722...

Definiamo la funzione Gamma di Eulero con

() = (4.22)



Dalla eq.(4.16) segue la proprieta

I(z+1) =2I'(2) (4.23)
Dalla definizione di H segue
e 7 X z -
['(z) = [T+ =)"ex (4.24)
z 5 n
e confrontando con la eq.(4.9)
15 z = Z._4—Z T
D)1 —2)=TE)(-2)(-2)=-[[a+ )" [[1->)"'—= = 4.2
=2 =TE)ar-) = [0+ )7 TT0- 7 = o (125)

La funzione I'(z) & meromorfa ed ha poli negli interi negativi e in zero.

Abbiamo I'(1) = 1/H(1) = 1/[(expy)G(1)] = 1, ['(2) = 1. In generale I'(n 4 1) = nl.
Dalla eq.(4.25) I'(1/2) = /7.

Esiste una formula integrale per I"
I(z) = / et Lt (4.26)
0

La funzione ¢ analitica per Rez > 0.
Diamo anche la formula di Stirling (che dimostreremo in seguito)
Fin+1)=n!~n"e"V2mn (4.27)

valida per n — oo. Questa € un caso speciale di

[(2) ~ 227272V 2r (4.28)
valida per |z| — oc.
Il residuo nei poli z = n vale
, , m(z+n) 1 1 (=)
1 T(2) =1 = = 4.29
z—lgln(z +n)l) o sin(m2)['(1 — 2)  cos(nm) (1 +n) n! (429)

5 Trasformazioni conformi

Sia v:[a,b] — C, t — () = x(t) +iy(t), una curva in una regione {2 e sia f: Q—C definita
e continua su R(7). L’equazione

w =n(t) = f(v(t)) (5.1)
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definisce una curva 1 nel piano complesso w. Se f ¢ analitica in zy = y(to) allora
1 (to) = f'(20)7'(to) a <to <b (5.2)

Consideriamo un punto 2 tale che v/(¢o) # 0 e f'(z0) # 0. E’ chiaro che sara n'(to) # 0.
Quindi 7 ha tangente in wy = f(zo) e 'angolo con l'asse orizzontale ¢ dato da

arg (17 (to)) = arg (f'(z0)) + arg (v (to)) (5.3)

Quindi I’angolo tra la tangente a 7 in wy e la tangente a v in zg € uguale all’ arg f'(zp), che
e indipendente dalle curve. Per questa ragione curve che sono tangenti I'una all’altra nel
piano complesso z in zg sono trasformate in curve tangenti tra di loro nel piano complesso
w in wy. Inoltre curve che formano un certo angolo nel punto 2, sono trasformate in curve
che formano lo stesso angolo in wy. A causa di questa proprieta la trasformazione e detta
conforme in zj.

Se poi consideriamo il modulo

| f'(20)] = lim M

zZ—Z20 ’z —_ ZO’

(5.4)

vediamo che un segmento infinitesimo nel piano z viene mandato in un segmento infinite-
simo nel piano w ma moltiplicato per il fattore |f’'(zo)|. Possiamo interpretare |f’(zp)]
come un coefficiente di contrazione o espansione.

Quindi in tutti i punti di Q in cui f/(z) # 0 la trasformazione e conforme.

Abbiamo visto quindi che una trasformazione analitica ¢ equivalente ad una trasfor-
mazione conforme. Viceversa se f & conforme ne segue che e analitica.

Infatti, supponiamo che f sia conforme e inoltre che f € C' (u,v € C'). Quindi

/) = Galt) + Gyt
= G50/ 4+ 7)) + G5 k)~ V@)
Pertanto
W) = 5 —igh () + (G + i 7@

~ Yy - ish+ 3 &L+ T

Se la trasformazione é conforme in z,
argn —arg ' (5.5)

deve esser indipendente da y. Ma

1.0f Of. 1,0f .0f
2%5—5?+§%5+ay

argn' —argy =arg |
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e quindi dovra essere

of  of

90 gy =" (5.7)
ovvero af af

che sono le condizioni di CR. Pertanto f ¢ analitica in z.

Mapping di Moebius Per a,b,c,d € C e soggetti alla condizione ad — bc # 0 la

funzione b
az +
z) = 5.9
fle) = =2 (59)
e nota come trasformazione di Méebius. Queste trasformazioni hanno una serie di pro-

prieta. f(z) e analitica per z # —d/c e

ad — be

40 (5.10)

f'(2) = (cz 4+ d)

Quindi f ¢ conforme in C \ {—d/c}.

Supponiamo di avere un secondo mapping

Az + B
= A1
o) =t (5.11)
con AD — BC' # 0. Si verifica che il prodotto
Aa+ Be)z + (Ab+ Bd
of(z) = Lot Doz v (A0 B (5.12)

(Ca+ Dc)z+ (Cb+ Dd)

¢ ancora una trasformazione di Moebius. E’ possibile trovare una trasformazione inversa
ed esiste I'unita. In altre parole queste trasformazioni formano un gruppo.

Teorema della rappresentazione di Riemann Sia () una regione semplicemente
connessa che non sia l'intero piano complesso. Allora €2 é analiticamente isomorfo al disco
di raggio 1. Ovvero dato un punto zy € €2 esiste una funzione analitica e invertibile

F:Q—B(1,0) (5.13)

tale che f(z9) = 0. Tale isomorfismo ¢ determinato a meno di una rotazione ed &
univocamente determinato dalla condizione f'(z) > 0.

Dimostrazione. [2].

Ovviamente affinche il mapping esista occorre che €) sia semplicemente connessa dato
che il disco e semplicemente connesso. Inoltre {2 non puo esser tutto C. Infatti dato che
|f(2)] <1, se f fosse definito su tutto C per il teorema di Liouville sarebbe una costante.

Esempio f(z) = 1’2__0_?‘2 con |a| < 1. La funzione ¢ analitica sul disco |z| < 1. Inoltre
0

sez|=12=¢
e’ — o

FeT—a) (5.14)

9(2) =
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II denominatore (a parte la fase) e il complesso coniugato del numeratore e quindi se
lz| = 1, |f(2)] = 1. Quindi per il principio del massimo [f(z)] < 1 si ha |z] < 1.
Quindi la trasformazione mappa il disco unitario nel disco unitario, mandando il punto «
nell’origine.

Esempio f(z) = ’g:g con Im a > 0 mappa il semipiano superiore del piano

complesso z nel disco unitario |w| = 1. Il punto z = a viene mappato nell’origine.

6 Trasformate di Fourier

6.1 Notazioni

L’integrale che utilizzeremo in questi capitoli ¢ l'integrale di Lebesgue. L’integrale di Rie-
mann permette di calcolare I'integrale di funzioni continue o di funzioni continue con un
numero finito di discontinuita. Ci sono funzioni che non rientrano in questa classe: per es-
empio la funzione di Dirichlet, ovvero la funzione caratteristica dei razionali nell’intervallo
(0,1), che vale 1 nei razionali e zero in ogni punto irrazionale non e’ integrabile secondo
Riemann. L’integrale di Lebesgue permettera l'integrazione di una tale funzione ma so-
prattutto permettera di passare a limite sotto il segno di integrale sotto ipotesi di natura
abbastanza generale e non solo nel caso in cui la funzione da integrare ¢ limite uniforme
di una successione di funzioni continue come nel caso dell’integrazione secondo Riemann.
La differenza fondamentale della costruzione dell’integrale di Lebesgue ¢ a differenza di
quello di Riemann i punti x non sono raggruppati rispetto alla vicinanza sull’asse x ma in
base al criterio della vicinanza dei valori f(z). In altre parole se f assume valori, yy, ya, - - -
sia A, ={x:z€ A f(z) =y,} ¢ allora

[ F@dn =3 yan(An) (6.1)

dove p(A,) é la misura di Lebesgue di un insieme che & una generalizzazione della misura
di un intervallo u([a,b]) = b — a.

Considereremo funzioni dello spazio di Lebesgue L'(R™), ovvero funzioni integrabili
in R"
/ |fldz < o0 (6.2)
R’IL

o piu in generale spazi di Lebesgue LP(IR") per cui esiste
/ [flPdz < 00 1<p< oo (6.3)
Rn

Questi sono tutti spazi vettoriali e completi (di Banach) nella norma indotta dalla (6.3):
1
il = ([, 1/1Pde) (64)
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In particolare tra questi ci interesseranno lo spazio delle funzioni a quadrato integrabile
L*(R"), che & uno spazio di Hilbert, e lo spazio L'(R"), che & uno spazio di Banach con
la norma

Il = [ 1flde (6.5)

Se x,y € R" la notazione x - y indichera il prodotto scalare x1y; + xays + . . . T,y,. Un
multiindice sara una ennupla di numeri positivi @ = (aq, g, ..., ap).

Per ciascun multiindice considereremo l'operatore seguente di ordine |

olel

0z 0ry? ... Oxgn

D* = (=)l (6.6)

con |a| = oy + as + ... + . Abbiamo aggiunto il fattore (—i)l*l per convenienza. Se
ol =0 Df = f.

Il simbolo z* denotera x{'x5* ... x

Qn
n

Ricordiamo anche alcuni teoremi dell’integrazione di Lebesgue che ci saranno utili.

Teorema della convergenza dominata di Lebesgue Sia {f,} € L'(R") una
successione di funzioni tali che

f(x) = lim f,(x) (6.7)
esista Vo € R". Se esiste una funzione g € L'(R") tale che |f,(z)| < g(z) allora

lim /R falw)d = /R fla)da (6.8)

n—oo

Teorema della derivazione sotto il segno di integrale Se f(x,y) ¢ una funzione
integrabile in R" per ogni y ed inoltre |0, f(z,y)| < g(x) con g integrabile &

Oy /Rn flz,y)dx = /Rn Oy f(z,y)dx (6.9)

ovvero si puo’ derivare sotto il segno di integrale.

6.2 Trasformata di Fourier per funzioni L!

Possiamo definire la trasformata di Fourier di una funzione f € L'(R") come la funzione
Ff:R" — C, definita da

Ffy) = @n) "2 [ f(a)e (6.10)

n

La funzione F'f(y) € in generale complessa. Il termine trasformata di Fourier viene anche
usato per indicare il mapping f—F'f. Dalla definizione segue che la trasformata di Fourier
¢ un mapping lineare:

F(af +Bg) =aFf+BFg Yo, €C f,gc L*(R") (6.11)
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La definizione (6.10) ¢ consistente dato che
|f()e™ Y] = |f| (6.12)
Quindi se f ¢ integrabile anche f(x)e ¥ lo sara.
Vale il seguente

Teorema Sia f € L'(R"), allora

i) (Ff(x—a))(y) =Ff(ye ™ (6.13)
i) F(f(z)e™*)(y) = Ff(y —a) (6.14)
i) se a cR£0 (Fflaz))(y) = |(M1|an(y/oz) (6.15)

Dimostrazione.

i) Se f € LY(R") anche f(z —a) € L'(R"). Dalla (6.10) segue, facendo un cambia-
mento di variabile nell’integrale,

(Ff(z—a)y) = @m) "2 [ fla = a)e =Vde = Pf(y)e " (6.16)

ii) Se f € L}(R") anche fe'®* € L*(R"), quindi

F(f@)e)(y) = (2m) " [ f@)e™=e =" = Ff(y - a) (6.17)

iii) Basta una ridefinizione nella variabile di integrazione.
Teorema Se f € L'(R"), allora F f ¢ una funzione limitata.

Dimostrazione. Si ha
Ff) < @) [ 1f(@)lde = @m) 2| fl] (6.15)

dove abbiamo utilizzato il fatto che f € L'(R") e ||f||; denota la norma di f in L*(R").

6.3 Lo spazio S(R")

Definiamo lo spazio delle funzioni a rapida decrescita (spazio di Schwartz) S = S(R")
come quel sottoinsieme di C*°(R") costituito dalle funzioni f per cui

p olel

x
0x'0xy* ... Oxon

f Ya,8 multiindici (6.19)
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e limitata. Sono quindi funzioni infinitamente derivabili che vanno a zero all’infinito,
insieme alle loro derivate di ogni ordine, pit rapidamente di ogni potenza. Queste fun-
zioni formano uno spazio vettoriale. Questo spazio contiene come sottospazio C§°(R") =
D(R™), ovvero lo spazio delle funzioni C*°(R") con supporto compatto.

Poiche lo spazio di Schwartz ¢ contenuto in L'(R") (anzi S(R") ¢ denso in L'(R")),
la definizione (6.10) ha senso anche per funzioni in S(R"). Ricordiamo che un insieme A
¢ denso in B se la chiusura di A contiene B.

Mostreremo che la trasformata di Fourier ¢ un map uno a uno di S(R") in S(R"). In
seguito utilizzeremo una procedura limite con funzioni S(IR"™) per definire la trasformata
di Fourier per funzioni in L?(R") perche in generale una funzione in L?*(R") pud non
essere L'(R").

Teorema Se f € S(R")

i) D°Ff = (=) F(M ) (6.20)

dove
(M*f)(z) =2 f(x) (6.21)
i) (FDf)(y) =y*(Ff)(y) (6.22)

iii) F' ¢ una trasformazione lineare da S(R") in S(R").
Le proposizioni i) e ii) valgono anche per f € L'(R") purché D*f, M*f e L'(R").
Dimostrazione. i) Se f € S(R") anche M f sara in S(R"). D’altra parte
Dy f(a)e™] = |(=1)la® f(a)e Y| = 2 f(2)| € SR") (6.23)
Quindi posso derivare sotto il segno di integrale la (6.10) ottenendo il risultato.

ii) Si ha, integrando per parti,
(FDf)y) = (@m)""* [ Dif(@)e* da
= (=1)FlEm) R [y (e (@)e e = g (Ff) ()

Il termine agli estremi e nullo perché f € S.
iii) Infatti
V" DIFS()] < (2m) "2 [ |D2a” f(@)lde < oo (6.24)

dove abbiamo usato le (6.20),(6.22) e il fatto che f € S(R").

Esempio Consideriamo la trasformata di Fourier in S(R) e calcoliamo

d 1 —iTY
dy\/ﬁ/f(x)e dx (6.25)
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Dato che zf(z) € S(R) possiamo derivare sotto il segno di integrale ed otteniamo

d

@Ff(y) = —iF(zf) (6.26)

che coincide con la (6.20) con |o| = 1. Inoltre, integrando per parti,

L f@eimvdz = iy [ fa)eivda (6.27)
da cui d
Fl=i——[1(y) = yF [ (y) (6.28)

che coincide con la (6.22) con |a| = 1. In questa ultima dimostrazione abbiamo utilizzato
la proprieta di f di andare a zero per x — 4o00. Se f € L' la proprieta (6.22) continua
a valere se anche f' € L!'. In questo caso si pud infatti dimostrare che f va zero per
T — Fo0.

Teorema (di Riemann-Lebesgue) La trasformata di Fourier ¢ una applicazione
da L'(R") nello spazio di Banach delle funzioni limitate e continue che tendono a zero
all’infinito. Questo spazio ha come norma

1 flloc = sup | f(z)] (6.29)
TeR"

Dimostrazione. Abbiamo gid visto che F'f ¢ limitata. Ad ogni f € L'(R") dato che
S(R™) & denso in L'(R"), corrisponde una successione { f;} € S(R") tale che

1f = fil L—0 (6.30)

per ¢ — oo. Poiche

(Ff = Ff)w)| < @r)~2||f = filla (6.31)
F'f; tende uniformemente a F'f. F f limite uniforme di funzioni continue e tendenti a zero
all’infinito, e continua e tende a a zero all’infinito. Basta sfruttare la disuguaglianza

\[FfI < |Ff = Ffil + |Ffil (6.32)

per dimostrare che F'f va a zero all'infinito (ricordando che F'f; € S(R")). In modo
analogo si puo dimostrare che F'f & continua.

Nota Dalla (6.22) segue che se f € L!(IR) ¢ derivabile k volte la sua trasformata di
Fourier va a zero pit rapidamente di 1/]y|*. Infatti

£V
lyl*

M
lyl*

[Ff| =

< (6.33)

dove abbiamo usato la limitatezza di Ff®).
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Esempio Trasformata di Fourier della funzione

fle) = 1 se |z|]<a

= 0 se |z|>a

La trasformata di Fourier ¢ data da
Fit) = —= [ fa)e
= — z)e x
Y V21 J—oc0

1 ta 7imyd
— e T
V2T /—a

1 9 sin ya

V2T Y

_ fsinya
= —

Quindi |F' f(y)| — 0 quando y — oc.

Esempio Trasformata di Fourier della gaussiana. Consideriamo la funzione ¢(z) =
exp(—z?/2). La funzione ¢ € S. Si verifica che F¢p = ¢ e ¢(0) = \/% [T Fo(y)dy.

Infatti la funzione ¢ soddisfa I’equazione differenziale

jxqﬁ +2p=0 (6.34)

Se consideriamo la trasformata di Fourier dell’equazione, tenendo conto che

d
(F)) = iyFoly) (6.35)
‘ d
F(z¢)(y) = i@Fé(y) (6.36)
otteniamo p
YFO(y) + = Foly) = 0 (6:37)
Y
Quindi dovra essere
i;b = cost (6.38)
Poiche ¢(0) =1 e poiche
F(0) = \/127 /_ :O exp (—22/2)dx = 1 (6.39)
segue cost = 1 e quindi
Fop=¢ (6.40)
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6.4 Formula di inversione

Teorema di inversione i) Se f € S(R") allora
flw) = @m) "2 [ Fy)e=dy (6.41)

ii) La trasformata di Fourier F' & un mapping lineare uno a uno da § — S. Inoltre
F?f(z) = f(—a), F* = 1.

iii) Se f,Ff € L}(R") e
fol@) = @)% [ Fy)evdy (6.42)

f = fo quasi ovunque (ovvero tranne in un insieme di misura nulla).

Dimostrazione. i) Se h,g € L'(R") applicando il teorema di Fubini all'integrale

/ h(w)g(y)e™ dwdy (6.43)

si ottiene

[ Friy)otdy = [ hw)Fg(w)du (6.44)

Per dimostrare i) consideriamo g € S e sia g(y) = ¢(ey), dove ¢ ¢ la gaussiana e € > 0.

E¢ allora
1

(Foley))(w) = . (F9)(7) (6.45)
Inoltre sia h(w) = f(w + ) con f € S. Avremo, sfruttando Fh(y) = F f(y) exp(izy),
/h(w)Fg(w)dw = /Fh(y)g(y)dy = /(Ff)(y)e“%(ey)
= [ Fw+ ) (Foley))(w)dw
= [ fw+ ) (Fo) (L )du
— [ Hey+2)ol)dy
D’altra parte per il teorema della convergenza dominata (f e ¢ sono limitate)
f@) = @m) "2 f() [ o)y = lim@m) 2 [ fley+)oly)dy
= 2m) Pl [(FR@)e = oey)dy

= (@0 [(F)yerdy

Per dimostrare ii) osserviamo che la formula di inversione (6.41) in S implica che il
mapping € uno a uno dato che F'f = 0 implica f = 0. Inoltre se consideriamo la formula
di inversione ne ricaviamo

F(Ff)(~2) = f(2) (6.46)
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e pertanto F?f(x) = f(—x). Infine F*f = f.
Per dimostrare iii) ripartiamo da (6.44). Sia h = f € L' e g € S. Abbiamo
[ 1@ Fg@dr = [(FHwew)y
= [(FNwEn) ™2 [ Fy(x)erdedy
= 202 [(Fo)(@) [(F)(w)edyda
= [(Fo)@)folw)dz

dove abbiamo usato Fubini e la definizione di fo(x). Ovvero

[(fo = D) Fy(a)dz =0 (6.47)

da cui dato che per ii) F'g copre tutto S e dato che § D D, essendo D lo spazio delle
funzioni continue a supporto compatto, ne segue (8]

f = fo quasi ovunque (q.0.) (6.48)

Dalla (6.48) segue il

Teorema di unicita Se due funzioni hanno la stessa trasformata di Fourier esse sono
uguali q.o.

Teorema dell’inversione in R Se f € L'(R) ed ¢ una funzione a variazione limitata
in un intorno di x allora

S +0)+ S —0)] = @m) 2PV [ (Ff) )y (6.49)
dove . i
PV. [ = lim [ (6.50)

Inoltre f(z 4+ 0) denota il limite destro e sinistro. Se la funzione ¢ continua il primo
membro della (6.49) ¢ evidentemente f(z). Ricordiamo che una f: [a, bj—R ¢ a variazione
limitata se, per ogni partizione dell'intervallo [a, b], 725 | f(zrs1) — f(21)| & limitata.

Dimostrazione. [9]

6.5 Prodotto di convoluzione

Date due funzioni complesse f e g definite in R" definiamo prodotto di convoluzione la
funzione

(9)@) = [ Tw)gla—y)dy (6.51)

R”
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purche I'integrale esista nel senso di Lebesgue per tutti (o quasi tutti) gli x € R".

Il prodotto di convoluzione, se esiste, & commutativo:

fxg=gx*f (6.52)

Infatti

[ fwg(e =y = [ (@ = 2)g()a (6.53)
(abbiamo fatto il cambiamento di variabile z = x — y).

Teorema Se f € L'(R") e g € L*(R") il prodotto di convoluzione esiste ed inoltre
fxge LR

Dimostrazione. [4]

Teorema Se f, g e Fg e L'(R"), allora

i) F(fg) = (2m)"*Ff % Fyg
i1) /fgd:p = /Tngdm (6.54)

Dimostrazione. i) Se

go(x) = (2m) /2 / Fg(uw)e™du (6.55)
abbiamo . .
F(f)y) = F(foo)(y) = @) " [ [(@) [ Fo(we e dudz  (6.50)
Applicando il teorema di Fubini
F(fo)y) = @n)" [ Fo(w) [ fz)e v dudu
= (20) " [ Fg(u)Ff(y - u)du
= (2m)"[Ff * Fg)(y)

ii) Da i) con f al posto di f otteniamo

@) [ fa)g(@)dz = F(fg)(0)
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La ii) & nota anche come formula di Parseval. Nel caso in cui f = g diventa

J1#@)dz = [ |F5(y)Pay (6.57)

Teorema Se f,g € L'(R")

F(fxg)=(2m)?FfFg (6.58)

Dimostrazione. Per il teorema visto precedentemente f x g € L*(R"). D’altra parte

F(f*g)(x) = (2n) "/2//f y)dye " du
_ n/Q/f /g uw—y ix~(u—y)du€—im~ydy
= ( T)2Ff(x)Fg(x)

6.6 Trasformata di Fourier per funzioni 2.

Lo spazio L*(R"™) & lo spazio delle funzioni a quadrato integrabile, ovvero tali che

/Rn f[2dz < oo (6.59)

Questo spazio ha la struttura di spazio di Hilbert ovvero ha un prodotto scalare definito
da

< f.g>= / Fodx (6.60)
Rn
che induce una norma )
11l = [ 1£1%d2)? (6.61)
In generale tra L? ed L! non c’¢ una relazione definita.

Nel caso in cui la misura sia su un intervallo finito €, vale L?(Q2) € L*(Q). Infatti
dato che vale la disuguaglianza di Cauchy-Schwarz

| [ Fodal? < [ \fPds [1gPda (6.:62)
scegliendo g = 1 si ha
y/fdx|2 §/|f|2dxM (6.63)

se M & la misura dell’intervallo finito Q. Quindi se f € L*(2), & anche f € L'(Q), ovvero
L3(Q) c L'(Q). In questo caso possiamo usare per le funzioni in L? la definizione di
trasformata di Fourier in L'.

Poiche la misura di Lebesgue di R" ¢ infinita, L?(IR") non & un sottoinsieme di L*(R").
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In generale se f € L' N L? possiamo quindi ancora usare la definizione data in L' e
inoltre in questo caso si ha

/|Ff|2dx :/|f|2dx (6.64)

e quindi
Ffel? (6.65)

L’applicazione F' e quindi una isometria
<Ff,Ff>=<ff> VfeL nL? (6.66)
E‘ possibile estendere questa isometria a tutto L? col seguente
Teorema di Plancherel Ad ogni f € L? & possibile associare una F'f € L? tale che
i)se fe L'NL? Ff ¢la trasformata definita in L.
it) [ |Ff|*de = [ |f|de
iii) 'applicazione f—F f & un isometria L?—L?

iv) se {fa} ¢ una successione di funzioni in L' N L? tendenti a f, allora F f4 tende a

Ff, ovvero
|Ffa—Fflla— 0 per A— oo (6.67)

dove la norma ¢ quella in L?.
v) se Ya(a) = (2m) 72 [ F fa(y) exp(ia - y)dy

[[Ya — flla = 0 per A — oo (6.68)

Dimostrazione [4, 7] La successione {f4 € L' N L?} pud esser ottenuta a partire da f
considerando fa = fxg, dove xg, ¢ la funzione caratteristica dell'insieme ()4

Qa={(z1,29,...2,)] — A<z <A} (6.69)

6.7 Teorema dell’interpolazione

Un amplificatore & un dispositivo che riceve un segnale funzione del tempo s(t) e rilascia
una risposta r(t). Nei casi piu semplici 7(t) = ks(t). Se sovrapponiamo due segnali,

s(t) = ays1(t) + azsa(t) (6.70)

la risposta sara
r(t) = a1ks1(t) + azksa(t) (6.71)

In generale il segnale sara distorto e la relazione tra s(t) e r(t) sara piu complessa.
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Consideriamo un segnale con frequenza w, s(t) = \/%ei“’t. In generale la risposta

sara proporzionale a s(t) ma con un’ampiezza ed una fase modificata. Per semplicita
assumiamo la stessa fase; allora

r(t) = ——G(w)e™" = G(w)s(t) (6.72)

G(w) ¢ detto guadagno.

Pit in generale il segnale sara

1 +oo iwt
s(t) = \/%/_oo S(w)e“tdw (6.73)

dove nelle nostre notazioni S(w) = Fs(w), ovvero S(w) ¢ la trasformata di Fourier di s(t).
La risposta alla frequenza w sara

R(w) = S(w)G(w) = Fs(w)Fg(w) (6.74)

r(t) = \/12_7r /J:O R(w)e™'dw
= \/12_7T /_;OO Fs(w)Fg(w)e™dw
= [Fl_l(Fng)](t)
= \/%(3 *9)(t)
1 fteo
\/ﬂ/—oo s(T)g(t — 7)dr (6.75)

dove abbiamo fatto uso del teorema sulla trasformata di Fourier del prodotto di con-
voluzione (6.54),

F(f*xg)=V2rnFfFg (6.76)
Quindi la risposta e data dal prodotto di convoluzione del segnale con il guadagno.

In generale la funzione G(w) = Fg(w) ovvero il guadagno & zero (trascurabile) al di
fuori di un intervallo finito di frequenze, quindi e una funzione a supporto limitato.

Un dispositivo che soddisfa le (6.73), (6.74), (6.75) & detto un filtro lineare.

Teorema dell’interpolazione (campionatura) Sia f una funzione continua e la
sua trasformata di Fourier F'f sia a supporto compatto (Ff(w) =0, |w|> L). Allora

=3 fn

n=—oo

7 sin (nw + Lt)

L) nm + Lt (6.77)

Dimostrazione. Dato che f ¢ continua, dalla (6.49)

) = \/127 _;OOFf(w)ei“’tdw

- \/127 /_ LL Ff(w)edw (6.78)
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dove abbiamo sfruttato il fatto che la F'f e a supporto compatto.

D’altra parte Ff(—L) = Ff(L) = 0, quindi possiamo estendere la funzione per pe-
riodicita a (—o0,00). Denotiamo la funzione cosi ottenuta ancora con F f(w). Ff(w) e
una funzione periodica con periodo 2L e puo esser rappresentata come serie di Fourier
uniformemente convergente

(FH@) = Y anenEe (6.79)

n=—oo

Per ricavare gli a,, basta moltiplicare per
T
e ¥ (6.80)

ed integrare in w tra [—L, L.
L , s L
/ (Ff)(w)e_’p%”dw = > an/ el T gy, (6.81)
—L —L

n=—oo

dove abbiamo usato 'uniforme convergenza della serie per scambiare il simbolo di som-
matoria con quello di integrale. Ma se n # p troviamo

L .
/ e (6.82)
-L
Mentre per n = p abbiamo
L T
[ (Ff)w)e " dw = 2La, (6.83)

e quindi
1 L —ipTw
a, = ﬁlL(Ff)(w)e PLYdw

= i\/jf(—p}i)

dove abbiamo usato la formula dell’inversione (6.78). Otteniamo quindi

1 L - inTw iw
ft) = \/%/_L > apemive™ dw

n=—oo

| x Lo

_ ﬁ Z f(—n%)/ ez(n%-ﬁ-t)wdw
n=—oo -L

= 7 sin(nm + Lt)

N Z ut nL) nm + Lt

n=—oo

Possiamo quindi ricostruire la funzione dai suoi valori in una infinita numerabile di
punti, o in un numero finito di punti se essa e a supporto compatto.
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7 'Trasformate di Laplace

7.1 Notazioni e proprieta

Quando abbiamo definito la trasformata di Fourier in R" abbiamo considerato funzioni
assolutamente integrabili. Questo esclude funzioni che crescono come f(t) =€’ in R. La
trasformata di Laplace permette di trattare alcune di queste funzioni. Piu in particolare
considereremo funzioni f(t) tali che

ft)=0 —oco<t<O (7.1)
e per cui esiste una costante reale a tale che

f(t)e (7.2)
¢ assolutamente integrabile in [0, 00).

Sia f:R, — C. Si dice trasformata di Laplace della funzione f la funzione

Lf(z) = / T e p(4)dt (7.3)

0
quando l'integrale esiste.

Per esempio se f & localmente integrabile in R, ed e tale che
|f(t)] < Me™ per t >t (7.4)

allora esiste la trasformata di Laplace per ogni z tale che Rez > a. Infatti ¢

2 [e%¢]
LA < [ 1l e 0 [T ey (75)
0

to

Indicheremo con a; l'estremo inferiore dei valori {z = Re(z)le *'f(t) € L'(Ry)}. ay &
detta ascissa di assoluta convergenza, perche’ 'integrale esiste per ogni z con Re(z) > ay.
Il semipiano Re(z) > ay ¢ il semipiano di assoluta convergenza.

Esempio La funzione f(t) =1 suR,. Ef

£i() = [ ear _1 (7.6)

z

L’integrale esiste purché Re z > 0. In questo semipiano la funzione trasformata di Laplace
e analitica.

iwt

Esempio La funzione f(t) =e

1

Z— 1w

L(e™)(z) = /OOO e et = (7.7)

purché Re z > 0. In questo semipiano la funzione trasformata di Laplace ¢ analitica.
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Possiamo dimostrare anche nel caso della trasformata di Laplace delle semplici pro-
prieta.
i) Linearita.
Llaifi + as fo](2) = a1 L[f1](2) + a2 L] f2](2) (7.8)

Questa proprieta vale ovviamente nel semipiano in cui entrambe le trasformate di Laplace
sono definite, ovvero
Qay frtasfo = max{afl, an} (7'9)

i)
L[f(t)e"](2) = L[f](z - a) (7.10)
ma con ascissa di assoluta convergenza uguale a ay + Re a.

Analogamente, se 7 > 0,

eTLIN) = [T e (s
= /ooe’th(t—T)dt

= L[f(t=7)0(—7)](2)
Questa proprieta non vale per 7 negativo. Si ha (per 7 > 0)

L)) = [T e

0

= /joe_th(t—l—T)dt
= L[ft+7)0t+7)](z)+ Oefztf(tjtr)dt

-7

Vale solo se f(t) = 0 anche per 0 <t < 7.

Teorema Se f ha per trasformata di Laplace Lf con ascissa di assoluta convergenza
uguale a ay, (—t)" f ha la stessa ascissa di assoluta convergenza. Inoltre Lf & olomorfa e
vale

ar
dzm

LIfI(z) = LI=0)"F ()] (2) (7.11)

Dimostrazione Dimostriamo prima che il prodotto ¢" f(t) ha ascissa di assoluta con-
vergenza o’ uguale ad ay. Per ogni n intero ed € > 0 arbitrario esiste ¢, tale che

t"<et t>1 (7.12)

Quindi la trasformata di Laplace di t" f(t) esiste per ogni z con Re z > ay+e. Dall’arbitra-
rieta di € segue o’ < ay. D’altra parte dalla sommabilita in R, della funzione

t"f(t)e ™ (7.13)
segue la sommabilita della fe=*! dato che

[f@)e™| < [t"f(H)e ™| t el 00) (7.14)
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Quindi e” anche ay < o’ e quindi o = ay. Possiamo allora derivare la (7.3), sotto il segno
di integrale, dato che " f(t)e™*" & integrabile ed ottenere il risultato.

Esempio Dalla (7.6), utilizzando la (7.11) e derivando n volte si ottiene

n!
Zn+1

L] =

Re(z) >0 (7.15)

Si puo poi estendere la precedente equazione per potenze qualsiasi e si ottiene

Iy +1]
zz/+1

L)) = /0 T et = Re(z) >0 Re(v) > —1 (7.16)

La richiesta Re(r) > —1 & necessaria perche l'integrale non diverga nell’origine.

Per valori di z reali e positivi (z = x > 0) dalla (7.16) si ottiene

4 > VvV _—x 1 o0 v — F[l/ + 1]
L[t"](z) :/0 tVe dt = x”“/o s'e fds = o (7.17)
Si ottiene quindi la (7.16) la cui validita puo poi estendersi per continuazione analitica

per qualsiasi z con Re(z) > 0, utilizzando la rappresentazione integrale della Gamma di
Eulero (4.26).

Teorema Sia f derivabile n volte e L[f®] k = 0,1,...n siano le corrispondenti
trasformate di Laplace con «y le corrispondenti ascisse di assoluta convergenza. Allora
Vk =0,1,... esiste finito

fM(0) = Jim fO() (7.18)
e vale
L)) = 2 LI)(2) — 27 f(0) = 2 fO0) — ..~ Jo ) (7.19)
Vz|Re(z) > mazx{ag, aq, ..., a,}.

Dimostrazione Cominciamo col considerare

d o0 d
E[dtf(t)] (2) = /0 e f (1)t (7.20)
Integrando per parti si ha
c d __—=zt ) o —zt
0] 0=l [T (721)

purché Re(z) > max{ag, a1 }. Inoltre devono esistere finiti
: —zt : —zt
Jim e () i e () (7.22)

dato che nella (7.21) tutti i restanti termini sono finiti.

Ma se Re(z) > max{ao, a1}, vale

Jlim e P f(t) =0 (7.23)
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Infatti
lim e * f(t) = lim e~ G720 lim e=0! f(¢) (7.24)

t—o00 t—o00 t—o00

D’altra parte se Re(z) > Re(z9) > maz{ag, a;}, vale

lim e~ (7200t = () (7.25)

t—o00

Pertanto tenuto conto che lim; .., e=* f(¢) ¢ finito ne segue

tlirglo e ?f(t) =0 (7.26)
Quindi
c [jtfm] (== [T e st - 110) (7.27)

Iterando il procedimento si ottiene la formula generale.

7.2 Formula di inversione

Per trovare questa relazione conviene prima vedere la relazione tra la trasformata di
Laplace e quella di Fourier. Dalla definizione segue

+o0o .

Lf(x+1y) = / O(t)f(t)e e Wdt = F[V2ml(t) f(t)e *"|(y) (7.28)
dove 0(t) ¢ la funzione di Heaviside. Dalla proprieta di unicita della trasformata di Fourier
segue una proprieta analoga per quella di Laplace. Quindi se due funzioni hanno la stessa
trasformata di Laplace esse sono uguali q.o.

Teorema Se la f ¢ a variazione limitata in un intorno di ¢t > 0, e se Lf denota la sua
trasformata di Laplace, vale
1 1 4100 ot
§[f(t+0)+f(t—0)] :TV'P' Lf(z)e*dz Vx> ay (7.29)
Yy T—100
dove l'integrazione e estesa ad una qualsiasi parallela all’asse immaginario del piano
complesso z contenuta nel semipiano di assoluta convergenza di Lf:

T+1i00 k
V.P. g(z) =1 hm g(x +iy)dy (7.30)
—k

T—100 k—o0

Dimostrazione Dalla formula di inversione della trasformata di Fourier (6.49), segue

*\/_e HO(t + 0)f(t + 0) + O(t — 0) f(t — 0)] = lim Lif(m +iy)e¥dy (7.31)

27 k—oo

e quindi per ¢t > 0

;[f(t +0)+/t-0)] = 21 lim Ef(x +iy)e Ty

T k—oo
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_4\1 x+ik

ox-ik

L

Figura 9: Se |L£f| < M} su una successione di archi di circonferenza v, a partire dalla retta
x, con limy_,o, My = 0, e possibile utilizzare il lemma di Jordan e chiudere il cammino di
integrazione nel semipiano a sinistra di z = .

x+100

= L.V.P. Lf(2)e*dz

271 T—100

Nota La (7.29) & nota come formula di inversione complessa di Riemann. L’inte-
grazione ¢ estesa rispetto ad una qualsiasi parallela all’asse immaginario nel piano z
contenuta nel semipiano di assoluta convergenza di Lf, dove la funzione Lf ¢ analitica.
Inoltre se |Lf| < My su una successione di archi di circonferenza 7, (non passanti per le
eventuali singolarita di L£f) a partire dalla retta z come in Fig. 9, con limy_,., My =0, &
possibile utilizzare il lemma di Jordan e chiudere il cammino di integrazione nel semipiano
a sinistra di z = x. Applicando il teorema dei residui si trova allora

1
i[f(t +0)+ f(t—0)]= > Res[Lf(z)e”] (7.32)
SiNg.iS.
dove la somma ¢ estesa alle singolarita isolate della funzione Lf(z).

Esempio La funzione f(t) = sinhkt ha per trasformata di Laplace Lf(z) = 2
per Rez > k. Questa funzione ha due poli semplici in z = £k. Quindi per calcolarne
I’antitrasformata dobbiamo calcolare

ko . ke keTM
ZRESik[me ] = % + _7% = gsinh kt (733)

7.3 Prodotto di convoluzione

Se f, g sono funzioni da R, in C, dalla definizione di prodotto di convoluzione segue che
t
(f9)®) = [ f(r)glt = T)ar (7.34)
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dato che g(t —7) =0se 7 > t.
Vale il seguente

Teorema Se f,g:R, — Ce L(f) e L(g) denotano le rispettive trasformate di Laplace
L(f*xg)=Lf-Lg per a>maxay,a, (7.35)
Infatti da
[T [ g —narae = [~ g) [T etote — rydear

= /OOO f(r)e ™" /OOO e gt — 7)dtdr
= Lf(2)-Lg(2)

7.4 Sviluppi asintotici

Data una funzione f reale o complessa & conveniente a volte conoscerne lo sviluppo
asintotico, per esempio per r — oo.

Definizione Data la successione di funzioni {¢, } (reali o complesse) la serie

> andn(z) (7.36)
n=0
¢ detta sviluppo asintotico di una funzione f(x) in xg e scriveremo
F@) ~ 3 anul) ©— 70 (7.37)
n=0
se
. ¢n+l(x)
{ -0 xz—u
bW :

f(l’) - 27]:[:0 an¢n(x)

0 VN
on () -~ o

i)

Questa definizione e una generalizzazione di quella dovuta a Poincaré.

Vista come serie infinita la (7.37) puo esser convergente o divergente. In altre parole
la combinazione [f(x) — XN an¢.(2)]/én(z) — 0 per z — x¢ ma non & detto che
[f(z) — =N ann ()] /N (x) vada a zero per N — oo.

Nel caso di una serie di potenze la proprieta i) ¢ soddisfatta automaticamente.
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Consideriamo la formula della trasformata di Laplace

/0 T et (1) dt (7.38)

Ci aspettiamo che per grandi valori di x l'integrale sia esponenzialmente piccolo e che i
contributi siano non trascurabili solo per 0 < ¢ < 1/x e quindi che sia

/OO e " f(t)dt =~ f(0) /I/I dt = () per x — o0 (7.39)
0 0 T

Questo risultato € un caso particolare del

Lemma di Watson Se la funzione reale o complessa f(t) ha I’espansione asintotica

) ~ Y a,t™ t— 07" (7.40)
n=0
con
—-1< R€<OZQ) < R(B(Oél) e (741)
Se l'integrale
1(z) = / e~ f(t)dt (7.42)
0

e assolutamente convergente per Re z > o > 0, allora I(z) e analitica per Re z > o e,
Vo > 0

nt+1
16) = [Te e S o m St s oo s < T ()

an+1

Dimostrazione. [10] Il lemma vale anche se l'estremo superiore dell’integrale non &
infinito ma un numero qualsiasi M > 0.

Metodo di Laplace Consideriamo 'integrale

I(z) = / L= Og (1) dt (7.44)

Se la funzione f(¢) ha un massimo in to € [a, b], per grandi valori di « questo massimo
e sempre piu pronunciato e quindi ci aspettiamo che il contributo dominante all’integrale
venga dall’” intorno del massimo, ovvero

Ia) ~ gligpert@ [ chet ey

to—6
~ g(to)el‘f(to) /OO eéxf//(to)(t_toydt

—27 .
=\ e ) — o0 (7.45)
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dove nell'ultimo passaggio abbiamo usato il risultato

s _az’ 2
/ e 2 =% (7.46)
—0o0 a

Il risultato (7.45) & garantito dal seguente teorema.

Teorema Siano f,g:[a,b] — R. La funzione f(t) abbia un massimo in ¢y € [a,b] e
sia sup f(t) < f(to) in ogni intervallo chiuso non contenente tg; sia inoltre f € C? in un
intorno di ¢ (quindi f'(¢9) =0 e f”(tp) < 0). La funzione ¢ sia continua in un intorno di
to. L’integrale I(z) sia assolutamente convergente per Re z > ¢ > 0. Allora

b —2
1(2) :/ O g(t)dt ~ f”(:)g(to)ezf@o) z— o0, |Argz| <7/2 (7.47)
a z 0

Dimostrazione. Dalle ipotesi su f e g segue

£(0) ~ S(to) + 3" t0)t — t0)* 1=t (7.45)

g(t) ~ g(to) t—to (7.49)
Esiste un 0 > 0 tale che f”(t) < 0 per t € (to,to + ¢]. Poniamo

T = f(tg) — f(t) >0 t € (to,to+ I (7.50)
E’ allora )
T ~ —if”(to)(t —t)?  t—td (7.51)
e quindi
—27
t—to~ ko) t—ty (7.52)
e
dt -1
—_—~ g — 0t 7.53
dr \ 27 f"(to) T ( )
Consideriamo
to+d f(to)—f(to+9) dt
/0 T Og(t)dt = ezf(tO)/ v e_ZTg(t(T))d—dT
to 0 T
f(to)—f(to+9) -2 1
~ €Zf(t0)/ eizTg(tO—i_ " - ) dr
0 f"(o)” /=27 7 (to)
1 f(to)—f(to+9) 1 —27
—  zf(to) / —2T___ [
= e e g(to + Ydr
V=21 (o) /0 VT J"(to)
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Dobbiamo quindi valutare un integrale del tipo

f(to)—f(to+9)
/ e *Th(r)dr (7.54)
0
con
1 —27
h = —q(t 7.55
(T) \/Fg( 0o+ f//(to)) ( )
Ma
1 —2T 1 —27
—q(t = —(¢g(t "(t —_— ... 7.56
Possiamo allora utilizzare il lemma di Watson con
1
ag = g(to) Qo = —5 (757)

Ricordando che T'(1/2) = /7 otteniamo

J RO SN (LI, S— (7.58)
ey ~e g(to) VT —=—F———— )
to \/E 1/ —2f//(t0)
L’intervallo [ty — 6,ty) da lo stesso contributo all’integrale e quindi
to+o -2
W g(t)dt ~ e g(t 7.59
f,, e gt~ T glaa)y s (7.50)

Si puo dimostrare infine che gli intervalli [a,ty — d) e (zo + 0,b] danno un contributo
che ¢ esponenzialmente soppresso, rispetto a quello dato dalla (7.59), quando z — oc.

Sviluppo asintotico per la Gamma di Eulero Consideriamo la funzione Gamma
di Eulero .
w@:/ et Lt (7.60)
0

E’ anche

1 1 yoe 1 o
na:fmz+n=f/ KWﬁ:f/ e~thelnt gy (7.61)
z z JOo z Jo

Vogliamo ottenere uno sviluppo asintotico per I'(x) per z reale e positivo per z — +o0.

Quindi conviene riscalare la variabile t — xs, ottenendo

[(x) = x””/ el=sHns)z g, (7.62)
0
Quindi e
f(s)=—s+1Ins (7.63)
Questa funzione ha un massimo in s =1 con f”(1) = —1. Inoltre f(1) = —1. Quindi per

x — +oo utilizzando la (7.47) otteniamo la formula di Stirling

[(x) ~ xwe_w\/? (7.64)
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Se £ = n + 1 otteniamo

Tin+1)=nl ~ V2r(n+1)"ze !

n

~ n"e "V2tn n — 400

Ringrazio G. Martucci per alcune dimostrazioni di teoremi della variabile complessa

tratte dai suoi appunti.
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