UNIVERSITA DEGLI STUDI DI FIRENZE

Facolta di Scienze Matematiche Fisiche e Naturali

Marcello Ciafaloni

INTRODUZIONE ALLA TEORIA DEI CAMPI

Dispense del corso di
COMPLEMENTI DI FISICA TEORICA
a cura di
L.Fedeli, J.Gracomellr, L.Loll

Anno Accademico 2005/2006






Indice

1 Campi di spostamento: onde elastiche e fononi

1.1 Sistemi a molti gradi di liberta: fononi, fotoni, particelle e teoria dei campi . . .
1.2 Catena lineare e onde unidimensionali. . . . . . . . ... ... ... .......
1.3 Onde in tre dimensioni. Principiodi azione . . . . . . . . . ... .. ... ....
1.4 Sviluppo in modi propri. Quantizzazione dei fononi . . . . ... ... ... ...
1.5 Lo spazio di Fock e la meccanica quantistica. Energia dizero . . . . . . . . . ..
1.6 Esercizi e complementi . . . . . .. ..o Lo
1.6.1 Ortogonalita e completezza . . . . . . . . . .. .. ...
1.6.2 Densita deglistati . . . .. .. ... ... .
1.6.3 Moto classico di due o tre atomi accoppiati . . . . . ... ... ... ...
1.6.4 Velocita del suono nell’aria . . . . . . . ... ... ... ... .......

1.6.5 Onde unidimensionali senza dispersione . . . . . . . .. . ... ... ...

Campo Elettromagnetico. Fotoni

2.1 Equazioni di Maxwell. Gauge di Lorentz e di Coulomb . . ... ... ... ...
2.2 TIrraggiamento classico. Funzioni di Green. . . . . . . . ... ... ... .. ..
2.3 Campi e Spettro di Emissione di Dipolo . . . . . ... ... ... ... .....
2.4 Lagrangiana e Hamiltoniana del Campo in Gauge di Coulomb . . . . . . .. ..
2.5 Sviluppo in Modi Propri. Fotoni . . . . . . . ... ... .. ... ...
2.6 Effetto Casimir . . . . . . . . . . .
2.7 Esercizi e Complementi . . . . . . . . ... oL

Emissione, assorbimento e diffusione di fotoni

3.1 Interazione radiazione-materia. Processi elementari . . . . . ... ... .. ...
3.2 Rappresentazione di interazione. Regola d’oro di Fermi . . . . . .. ... . ...
3.3 La serie perturbativa della matrice di transizione. . . . . . . . ... .. .. ...
3.4 Transizioni di emissione e assorbimento. Approssimazione di dipolo . . . . . . .

3.5 Lo spettro di emissione spontanea. Vita media . . . . . . . ... .. ... . ...

10
12
12
13
14
14
14

15
15
17
19
20
22
24
25



i

INDICE
3.6 Emissione di multipolo. Effetto Cerenkov . . . . . . . .. .. ... ... ..... 39
3.7 Diffusione della luce: scattering Thomson . . . . . . ... ... ... ... .... 42
3.8 Scattering Raman . . . . . . . .. ... 44
Condensazione di bosoni e superfluidita 46
4.1 Campo bosonico di Schroedinger . . . . . .. .. ... 0oL 47
4.2 Modello di Landau del condensato con interazioni . . . . . . .. ... ... ... 49
4.3 Superfluidita e rottura di simmetria . . . . . . .. ..o 52
Equazione di Dirac 54
5.1 Soluzioni dell’equazione libera . . . . . . . ... . .. ... .. ... .. ... . 56
5.2 Soluzioni in campo esterno. Limite non-relativistico . . . . . . . ... ... ... 57
5.3 Covarianza Relativistica . . . . . . . . . . .. oo 61
5.4 1l campo di Dirac. Sviluppo in modi propri . . . . . . ... ... ... ... ... 63
5.5 Quantizzazione di Fermi. Spin e statistica, antiparticelle . . . . . ... ... .. 64
5.6 Equazione e campodi Weil . . . . . . . . . ... Lo 67
5.7 Argomentazione di Bethe per il Lamb Shift . . . . . . .. ... ... 68



Capitolo 1

Campi di spostamento: onde elastiche

e fononi

1.1 Sistemi a molti gradi di liberta: fononi, fotoni, par-

ticelle e teoria dei campi

La meccanica quantistica si occupa ordinariamente di sistemi con numero finito e fisso di gradi
di liberta. Atomi e molecole sono esempi tipici di tali sistemi, e sono anche i piti importanti in
quanto spiegano la stabilita e le proprieta statiche dei corpi. Tuttavia, se gli scambi di energia
sono sufficientemente grandi, il numero degli atomi eccitati e interagenti puo essere dell’ordine
del numero di Avogadro e si formano allora eccitazioni collettive, quali onde elastiche e sonore
le quali possono anch’esse mostrare effetti quantistici, dovuti allo scambio di fononi, a basse
temperature.

Sappiamo inoltre che le onde elettromagnetiche classiche sono caratterizzate da campi definiti
in ogni punto dello spazio, anche in assenza di supporto materiale. Esse corrispondono quindi a
infiniti gradi di liberta (g.d.l.), e mostrano — in opportune situazioni sperimentali — effetti quan-
tistici anche a temperatura ambiente (scambio di fotoni). Infine, anche le particelle elementari,
quali elettrone, protone etc. hanno la proprieta di mescolarsi — ad energie sufficientemente
grandi rispetto alla loro massa — con un numero arbitrario di coppie particella—antiparticella, e
corrispondono quindi, anch’esse, a infiniti gradi di liberta quantistici.

In tutti questi casi, pur cambiando 'o.d.g. dell’energia di eccitazione, si manifestano fenome-
ni di nuovo tipo, caratterizzati dalla eccitazione di un numero grandissimo di g.d.l. Si tratta
allora di generalizzare la meccanica quantistica non relativistica in modo da poter trattare le
eccitazioni collettive di molti o infiniti gradi di liberta. Dato che la singola eccitazione collettiva
si puo far corrispondere a un campo definito sui punti del sistema, il metodo di quantizzazione
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corrispondente si chiama Teoria quantistica dei campi.

E da notare che il metodo di quantizzazione dei campi e stato sviluppato a partire da
campi “piccoli” i quali descrivono oscillazioni del sistema attorno a uno stato di equilibrio
classico: le eccitazioni collettive sono i modi “propri” di oscillazione e la hamiltoniana e I’energia
di eccitazione di tali modi i quali sono, in prima approssimazione, armonici. Questi modi
armonici sono i “quanti” del sistema (fononi, fotoni, particelle, a seconda dei casi) e le correzioni
anarmoniche, presenti per ampiezze piu grandi, rappresentano le interazioni di tali quanti, cui
si applica la teoria delle perturbazioni.

Consideriamo ad esempio un campo u(x, t) che rappresenta, al tempo ¢, lo spostamento del
punto x di un corpo materiale dalla sua posizione di equilibrio, corrispondente allo stato termo-
dinamico di partenza del corpo (dato volume V, temperatura, etc'...). La lagrangiana classica
del sistema, data inizialmente in funzione delle x e delle p, puo essere espressa in funzione delle
u;, e determinera le loro equazioni di moto classiche. La procedura di quantizzazione consiste

allora in tre passi:

&1$ Identificazione dei modi propri delle piccole oscillazioni in base alla lagrangiana e
all’energia di eccitazione (hamiltoniana) classica del sistema. Tali modi sono caratterizzati
dalla relazione di “dispersione” fra frequenza w e numero d’onda k e da opportune variabili di

ampiezza.

02 Quantizzazione delle ampiezze dei modi in base alle regole di commutazione canoni-
ca del sistema di partenza (per i campi di spostamento) oppure in analogia con esse (per le

particelle).

3<% Espressione della hamiltoniana in funzione delle ampiezze dei modi e conseguente

soluzione dell’equazione di Schroedinger di evoluzione quantistica.

Il metodo cosi descritto si applica indifferentemente a fononi di velocita v, con la regola di
dispersione w = v|k|, ai fotoni per cui w = c|k|, e a qualsiasi particella di massa m, per la quale
la relazione tra energia e impulso £ = \/Im (¢ = 1) determina la regola di dispersione
usando le relazioni di DeBroglie E' = hw, p = hk. Esiste pero una differenza concettuale
tra i modi propri della materia (fononi acustici e ottici, plasmoni, etc...) e particelle. T
primi sono gradi di liberta efficaci, che dipendono dalle caratteristiche del corpo, per cui ne
paramentri di dispersione neé interazioni sono universali. Le seconde, invece, sembrano portare,

secondo la visione attuale, sia le diverse cariche (elettriche e non) dei costituenti elementari della

!Dato che si tratta di un numero finito N di atomi, ¢ in realtd piti appropriato parlare degli spostamenti
u;(t) delle varie celle atomiche, numerate ad esempio con il modello di reticolo cristallino cubico.
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materia, sia quelle dei mediatori delle interazioni fondamentali. Inoltre, sia ’Elettrodinamica
quantistica (teoria dei fotoni e degli elettroni) sia le sue generalizzazioni (la Teoria unificata
elettrodebole e la Cromodinamica quantistica delle interazioni nucleari) sono costruite in base al
principio universale di “invarianza di gauge” che determina completamente il tipo di interazioni
possibili, dato il tipo di cariche delle particelle portatrici. Quindi, le teorie di campo delle
particelle sembrano possedere un notevole grado di universalita, e si candidano come teorie
delle interazioni di base.

Il cosiddetto “modello standard” delle interazioni fondamentali e stato molto ben verificato
sperimentalmente negli ultimi anni ed ha segnato dunque un notevole successo di queste teorie
di campo di gauge. Restano perod da capire la Gravitd quantistica (che per la sua natura
geometrica non rientra pienamente in questo schema) insieme a diversi segnali cosmologici di
una nuova fisica alla scala di Planck (distanza a cui la gravita diventa forte). La teoria ultima

forse non e, alla fine, una semplice teoria di campo.

1.2 Catena lineare e onde unidimensionali

Come primo esempio di vibrazioni armoniche, consideriamo un sistema unidimensionale, sche-
matizzato come catena lineare di atomi accoppiati. Casi di questo tipo possono essere le onde
sonore in un tubo (vibrazioni longitudinali), o le corde vibranti (vibrazioni trasverse). Nel caso
longitudinale si puo pensare ad atomi di ugual massa m, caratterizzati all’equilibrio da un passo
reticolare a, e accoppiati tra loro da molle uguali, di costante elastica C'.

La lagrangiana del sistema e data da:
N N

1 .9 1 2
EzT—V:§Zmui—§C’Z(ui—ui+1) (1.1)

i=1 i=1

dove le u; = x} — x; rappresentano gli spostamenti rispetto all’equilibrio delle posizioni z;
degli atomi. Per semplicita di trattazione, ci riferiremo al caso di condizioni periodiche al bordo,
per cui N+ 1 = 1, tenendo presente che diverse condizioni di bordo (estremi fissi, o liberi, etc..)
non modificheranno le proprieta di volume del sistema, cui siamo principalmente interessati.
La (1.1) & un esempio molto particolare di lagrangiana quadratica nelle u; e ;, derivante da
piccoli spostamenti attorno allo stato fondamentale del materiale. I termini anarmonici di
ordine superiore, dal cubico in poi — che sono qui trascurati — potranno poi essere affrontati
quali interazioni tra i modi propri del sistema.

Il primo passo ¢ dunque identificare i modi propri che diagonalizzano la lagrangiana e

I’evoluzione temporale. Le equazioni del moto di Eulero-Lagrange hanno la forma:

oL
aui

—=mi; = —C (u; — Uiy + U — Ujp1) = (1.2)
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Queste equazioni, alle differenze finite, sono diagonalizzate da una trasformata di Fourier
discreta:

) = A e et 4 e (1.3)

purché w, soddisfi ’equazione

C C X
2 2
=27 (1— =47 gin2 X 1.4
wy m( cos ) —sin” 3 (1.4)
e purché sia soddisfatta la condizione di bordo uy,; = u; cioe
; 2

N =1, x=ntT  (nl<N/2) (1.5)

dove n & un intero compreso fra —N/2 e N/2 (incluso n = N/2 per N pari e con |n| < 2L per

N dispari). Si hanno dunque N modi propri, caratterizzati dalla regola di dispersione (1.4),
con valori di x sia positivi che negativi nella prima zona di Brillouin (1.5). E da notare che,
dati i valori interi assunti da j, x € definito modulo 27 e quindi n e definito modulo N.

Il significato fisico dei modi propri quali onde elastiche & piti chiaro nel limite continuo, in
cui N — oo ea — 0 con L = Na fisso. Allorax =a j ek = % diventano rispettivamente
la coordinata atomica e il numero d’onda, mentre i parametri m e C devono essere riscritti
in termini delle variabili del continuo di densita di massa u e coefficiente di compressibilita K

come segue

= T, K ="Ca (1.6)
a

dove C rappresenta la costante di richiamo delle molle e K il coefficiente di compressibilita.
Si vede allora che la lagrangiana £ si puo riscrivere come integrale di Riemann di opportuna

densita:
L= /0 dr £ = %/0 dzx (,u w?(x,t) — K(u'(w,t))2> (1.7)

dove u(a j,t) = u;(t) e £ = £(4, 0yu,t) sono campo di spostamento e densita lagrangiana. La
novita e che I'interazione di primo vicino delle u; qui implica la dipendenza di £ dalla derivata
prima 0, u oltre che da %. Analogamente, le equazioni di moto diventano nel continuo

2 92

:U’ﬁu(x: t) =

cioe corrispondono all’equazione delle onde di d’Alembert in una dimensione, con parametro di

K@u(x, t) (1.8)

velocita v = \/% . Questo & confermato dal limite continuo della regola di dispersione

K k
WE=4—sin® (=) a0 vk (1.9)
k W a? 2

corrispondente ad onde elastiche di velocita v.
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1.3 Onde in tre dimensioni. Principio di azione

Il modello unidimensionale sopra considerato ha lo spostamento nella stessa direzione di propa-
gazione dell’onda, ed e quindi di tipo longitudinale. Tali sono le onde di pressione, tipiche dei
fluidi, le quali, in tre dimensioni spaziali, sono caratterizzate da campi di spostamento del tipo
u;, = Vi, dove ¢ e uno scalare. Invece le onde trasversali sono del tipo uyr = V x a, cioe si
rappresentano come rotazioni di un potenziale vettore. In generale si puo supporre V-a = 0. Le
onde elastiche di un materiale qualsiasi sono sovrapposizioni di onde trasversali e longitudinali
di velocita vy e vy diverse tra loro ed hanno quindi, per ogni direzione di propagazione, tre
gradi di liberta, due trasversi e uno longitudinale.

Non e¢ il nostro scopo quello di trattare in generale le onde elastiche. Vogliamo pero notare
come il metodo lagrangiano si possa estendere ai mezzi continui in modo da capire abbastanza
facilmente la decomposizione detta sopra. Il modello unidimensionale suggerisce di scrivere la

lagrangiana come integrale di una densita. L’azione corrispondente sara allora del tipo

A= /t dt /V P (u(x, 1), (%, 1), Oy u;(x, 1)) (1.10)

Il principio di azione generalizzato impone che A sia stazionario per qualsiasi perturbazione
dui(x,t) che si azzeri al bordo del sistema e agli istanti iniziale e finale. La variazione di A si

scrive integrando per parti le variazioni delle derivate, cioe

0L 0L 0L
— 4 . T - ——— _50..u: | = 1.11
0A = /Qd T ( » ou; + » ou; + ( szi) (58%%) ( )

o 9o9e o oL 9 [ 0¢ o [ a¢
— [ 4 _008 9 0% N 9 (9%5 )+ 2 (%% su )| 1o
/Qd v [(aui dtdu, oz, a(azju,-)) oui+ o (aui 5“) s (a(amjui)‘su )} (1.12)

e si nota che i termini di divergenza possono essere calcolati al bordo, oppure all’inizio e alla

fine, dove si annullano perche du;|sq = 0. Data arbitrarieta di du; all’interno di €2, possiamo

scrivere le equazioni del moto di Eulero-Lagrange per la densita di lagrangiana:

os_oos o oe

queste differiscono da quelle note per un numero finito di g.d.l. per la presenza dell’ultimo

(1.13)

termine, con le derivate rispetto alle coordinate spaziali.

Il metodo lagrangiano e particolarmente adatto a descrivere le onde elastiche in un mezzo
omogeneo e isotropo, perche in tal caso la densita di lagrangiana deve essere invariante per
rotazioni. E allora abbastanza facile convincersi che la pill generale espressione, quadratica
nelle u, u e nelle 9;;u; ¢, a meno di divergenze totali, della forma

Qzép (1'12—1)% (ﬁ-u)Q—v% (6xu)2—w§u2> (1.14)
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dove p denota la densita di massa in tre dimensioni. Le onde di tipo sonoro si ottengono per
wo = 0 e sono normalmente di tipo longitudinale. Se invece wy # 0, vuol dire che esiste una
forza di richiamo anche quando u e costante rispetto a x, e questo e tipico delle onde di torsione
(trasverse), oppure delle onde di plasma (longitudinali), le quali separano le cariche negative
(elettroni) dagli ioni corrispondenti.

Ad esempio, per wy = vy = 0, le equazioni del moto (1.13), derivate da (1.14), si scrivono
i— vV (V-u)=0 (1.15)

le quali si risolvono piu semplicemente ponendo u = 690, ove il potenziale scalare ¢ soddisfa
I’equazione di d’Alembert:
O —vAp =0 (1.16)

se invece vy = 0, ma wy # 0, le onde sono sempre longitudinali, ma I’equazione diventa:
¢ —vAp+wip =0 (1.17)

che contiene una frequenza di richiamo anche per il campo ¢ = cost.
Anche i modi propri sono facilmente generalizzabili quali onde piane in tre dimensioni. Nel

caso delle onde longitudinali, si ottiene

u(x, t) ~ ag ke 4o (1.18)

wi = y/v2k? + w? (1.19)

nel caso di onde di plasma. E da notare che la formau = V- ¢ del caso longitudinale si traduce

con wy = vy |k| nel caso sonoro, e

nella (1.18) con i modi propri in direzione k. Se invece v, = 0, ma vy # 0 e facile vedere che

la rappresentazione u = V x a (6 -a = 0) porta a modi propri
u@ (x,1) ~ apel® (k) elxwxt) L e, (1.20)

ove €M, ¢ sono due versori, ortogonali a k e fra loro, che rappresentano le due possibili
polarizzazioni trasverse del mezzo (isotropo). Infine, se sia vy che vy sono non nulli, u &
dato in generale da una sovrapposizione di onde di tipo (1.18) e di tipo (1.20), secondo la
decomposizione di u = 6(,0 +V X a.

E bene notare, per essere precisi, che la lagrangiana (1.14) differisce (come si pud mostrare)

per una divergenza totale dalla formulazione pili convenzionale

1 - 2
g = 3 (,01'12 - (V : u) —2u (e;5 €5) — pw§u2> (1.21)
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in cui interviene direttamente il tensore simmetrico delle deformazioni e;; = (Q;u; + d;u;)/2 e
A e p sono i moduli di Young, in termini dei quali le velocita di propagazione sono date da
vZ = pu/p ,v2 = (A+ 2u)/p- Le equazioni del moto sono dunque equivalenti, ma la (1.14) e
conveniente per la separazione di onde trasverse e longitudinali, mentre la (1.21) conviene per

le considerazioni energetiche.

1.4 Sviluppo in modi propri. Quantizzazione dei fononi

Partiamo di nuovo dal campo unidimensionale di una catena lineare di atomi con N gradi di
liberta. Lo spostamento piu generale u(z,t) sard una sovrapposizione dei modi propri (1.3)
della forma (cf. sez. 1.6)

kmam

Z (ag eF@i—wrt) 4 c.c) (1.22)
hFomin ¥ 2““”“
ovex; = £4, (j=1,---,N) e k =n2, (n < I) sono rispettivamente le coordinate atomiche

e i numeri d’onda dei mod1 propri, mentre wy € dato dalla regola di dispersione

v? | ka C
UJ]% = 4@ S1n2 <7) y ’1)2 = p (123)

E da notare che I'eq. (1.22) & automaticamente reale e sovrappone frequenze positive (negative)
con ay (a}), mentre k corre sulla prima zona di Brillouin, che & simmetrica per k¥ — —k, con
kmaz = —kmin = NT = 2. La normalizzazione ~ a/+/2wp & particolarmente adatta per
I’equazione dell’energia, come vedremo.

Gli N numeri complessi a; corrispondono a 2N numeri reali, tanti quanti le coordinate
¢; = u;(0) e i momenti coniugati p; = m1;(0) del sistema originario e possono essere considerate
come variabili dinamiche del sistema di modi propri. Mostriamo che le a; sono in corrispondenza
biunivoca con le q e le p. Infatti, dalle (1.22) segue

GO =1(0) = 3 e+ 0y (124

: 1 MWk ik, *
p;j(0) = mu;(0) = Z A\ on € " (ay, — a* )
P

e quindi le quantita ay a* , possono essere ottenute per trasformata di Fourier discreta inversa

da ¢;(0) e p,(0), cioé dalle condizioni iniziali del sistema. Si ottiene

ay = Z e\_/ij_;j (@qj(o) + 2;%;0]-(0)) (1.25)

J
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ove si nota la somiglianza con la definizione dell’operatore a dell’oscillatore armonico quanti-
stico.
Siamo ora in grado di esprimere I’energia del sistema in termini delle a; e a;. Usando una

notazione vettoriale a N componenti possiamo scrivere

H = % (p,p) + % (u,Vu) (1.26)

a®)

e, usando le (1.24) nella forma q = 35, u® ———(ar + a%y), p = X5, /G5 (ax — aZy) e
la ortonormalita delle u*) (Sez. 1.6), otteniamo

H=>)_ % (lag — a” > + lax + a* ) =D wiajay (1.27)
k k

Quindi I'energia (di eccitazione) si esprime come somma di ampiezze di oscillatori di frequenze
Wy, su tutti i modi k.

Un cenno particolare merita il caso in cui esista un modo wy = 0, come nel caso dei fononi
con condizioni periodiche al bordo. Esso corrisponde al baricentro del sistema Qo = )" ¢n/N
che, nel caso di modo zero evolve nel tempo con velocita costante, di modo che I'impulso totale
Py =), pn € conservato. In tal caso le (1.22) e (1.25) vanno modificate nel termine £ = 0, e
il contributo all’energia del modo zero & semplicemente P2 /(2mN).

Avendo ora ottenuto la corrispondenza (1.25) fra ampiezze dei modi e coordinate canoniche,
siamo in grado di quantizzare il sistema utilizzando le regole di commutazione canonica delle
variabili q e p originarie:

[gi, p;j| = ihdij, i,j=1,...,N (1.28)

Sostituendo le (1.28) nelle (1.25) e nel suo coniugato otteniamo

lak, @] = Tidyp (1.29)
apaw] = [af,ap] =0 (1.30)

dove si e usato a,j invece che aj per sottolineare il fatto che, al livello quantistico, a e a,j

sono operatori commutanti tra modi diversi e con commutatore & per lo stesso modo. Quindi
{a, aff } descrivono gli operatori di discesa e salita di N oscillatori indipendenti. Tenuto conto

di questo fatto, ’energia totale (1.27) diventa, a livello quantistico

H=> wilafar+araf)/2 =Y hwp(Ny+1/2),  Ny=0,1,... (1.31)
k k

avendo indicato con ANy gli autovalori di a;:ak. Lo stato fondamentale del sistema descritto
dalle (1.23), (1.29), (1.31) ¢ il prodotto diretto degli stati fondamentali di ogni modo, e lo
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denotiamo con |0), definito da

0) =] 100,  al0)=0 (1.32)

k

ad esso corrisponde 'energia di “punto zero”
1

che si aggiunge all’energia termodinamica dello stato di equilibrio di partenza.

Notiamo ora che energie di eccitazione non banali si ottengono da qualsiasi valore non nullo
di qualche Ni, raggiunto tramite I’applicazione degli operatori di salita dallo stato fondamentale.
Dato che a ogni ANy, = 1 corrisponde un AE = fuwy, € naturale denominare Ny come il “numero
di occupazione dei quanti hw,” invece che “il numero di eccitazione dell’oscillatore k—esimo”.
Corrispondentemente, a; (ax) assumono il significato di operatori di creazione (distruzione) di
tali quanti. I modi propri assumono percio il significato di “particelle” —i fononi — caratterizzati
da quanti di energia fiwy, e dalla regola di dispersione (1.23). Siamo quindi arrivati a descrivere
lo stato eccitazione del sistema vibrante con un insieme di fononi, il cui numero si conserva in
approssimazione armonica, ma che possono essere creati e distrutti nei processi di interazione,
agli ordini superiori.

Conviene notare anzitutto che le “particelle” fononi non sono da confondere con il sistema
di atomi o particelle che descrivono globalmente il corpo, ma rappresentano invece i modi di
vibrazione delle stesse attorno alla posizione di equilibrio, riassunti dalla regola di dispersione.
Notiamo anche che la regola di dispersione, inizialmente una relazione tra numero d’onda & e
frequenza wy fornisce anche una relazione tra energia hwy e impulso, purche si possa attribuire
al fonone I'impulso hk. Si puo far vedere che in effetti questo succede nel limite continuo e di
lunghezza molto grande del sistema, in modo che esso risulti veramente invariante per traslazioni
nella regione (finita) di spazio che ci interessa. In tale limite il fonone si puo considerare
veramente una particella, caratterizzata dalla relazione E = v|p| tra energia e impulso, simile
a quella del fotone (E = ¢|p|). Tuttavia, per i campioni finiti, 'impulso non si conserva agli
estremi. Inoltre, per N finito, bisogna ricordare che k, = n%” e che n e definito modulo N,
per cui p, = hk, & definito modulo th La finitezza del campione puo causare processi in cui
I’'impulso dei fononi non e conservato, ma scambiato con il campione nel suo complesso per
multipli di % Per questa ragione si preferisce parlare del fonone come “quasiparticella”, in
confronto con il fotone che si propaga nel vuoto (varieta continua e grande quanto si vuole) per
il quale I'impulso ¢ esattamente definito, come per una vera particella.

Le considerazioni fatte per i fononi in una dimensione si estendono senza problemi a tre

dimensioni e al caso dei plasmoni. In tali casi I’energia complessiva del sistema assume la
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forma

o 1
w , a=1,2, .
E = E:hk (N() 2) 1,2, 3 (1.34)

ove o = 1, 2 si riferisce ai modi trasversi e &« = 3 a quelli longitudinali. La regola di dispersione
ha la forma generale

w® = /22 + (D)2, a=1,23 (1.35)

in cui w® # 0 si riferisce al caso dei plasmoni, cio¢ ai quanti delle onde di plasma. Una simile
regola di dispersione vale anche per i fononi ottici e la corrispondente relazione tra energia e

impulso &

E9(p) = /v2p2 + (lw)?2, «a=1,23 (1.36)

Vale la pena notare che questa diventa la relazione fra energia e impulso di una particella

relativistica, pur di porre v = c e hw® = mc?.

1.5 Lo spazio di Fock e la meccanica quantistica. Energia

di zero

A partire dal vuoto, definito dalle (1.32), possono essere costruiti stati che corrispondono ad
una data configurazione di numeri di occupazione dei modi del sistema, con I'applicazione di
operatori di creazione (riscalati di un fattore /%), come segue:

Ny ooy N ) = .. |0) (1.37)

Tali stati sono tra loro ortonormali e, al variare di Ny, costituiscono la base del prodotto diretto

di un insieme numerabile di spazi di Hilbert

H =) Hi (1.38)

Lo spazio cosi costruito delle combinazioni lineari dei vettori di base (1.37) si chiama spazio di
Fock del sistema. Nel limite continuo N — oo lo spazio (1.38) & piti complicato di un normale
spazio di Hilbert.

Lo spazio di Hilbert ordinario della meccanica quantistica dei quanti (fononi o plasmoni) che
si considerano e un sottospazio dello spazio di Fock, caratterizzato da un numero di occupazione
totale N = >, N fissato. Naturalmente tale spazio non ha molto significato fisico per fononi o
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plasmoni, mentre lo ha per gli elettroni e i protoni che costituiscono, con la loro massa, i corpi

materiali. Si possono costruire stati a una particella, caratterizzati da funzioni d’onda (k)

o) = [ Phstkat ) o) (1.39)
R
a due particelle
|1ﬁ1,2) :/ d3]€1/ dskgl/)(kl,kg)a—i—(kl)a_l—(kg) |0> (140)
R3 R3
e cosi via, ove si e soppresso per semplicita l'indice di polarizzazione e si e usato il limite

3/2 i cui commutatori

continuo dei k (L — 00, sez. 1.6), ridefinendo gli operatori a(k) = ax(5=)
sono di tipo funzione delta. E facile vedere che i prodotti scalari indotti sulle funzioni d’onda
dalle regole di commutazione del tipo (1.29) sono quelli normali della rappresentazione degli

impulsi nella formulazione di Schrodinger:
(o) = [ Phe i)
R3
(P12,Y12) = /d?’kl/ d3k290*(k1ak2)w(k1ak2)
R3 R3

Inoltre, I’evoluzione temporale di questi stati ¢ determinata dall’energia di una o piu particelle
del tipo considerato. Infatti, dalla (1.39), si ottiene

() = ) = [ dhwt)e et ) 10) (141)
quindi 5
iy [ (1)) = H(p) i (1) (1.42)

dove H(p) & un operatore che ha autovalori fiwy su stati con p = fik definito. Analogamente,

per due particelle, si ottiene

i Wa(t) = [ () + H(p)] W2(0) (1.43

Si recupera cosi la formulazione di Schroedinger per una o pilt particelle libere.
E molto importante notare che gli stati a due particelle (1.40) hanno funzioni d’onda automati-
camente simmetriche nello scambio degli indici 1 e 2, semplicemente perche, secondo le (1.29),
altl e altz commutano tra di loro. Quindi le particelle di tipo fonone o plasmone sono bosoni,
cioe seguono la statistica di Bose-Einstein.

Una menzione a parte merita il significato di energia “di punto zero” (1.33) dello stato

fondamentale, che & stata sottratta nella evoluzione (1.41). E infatti un po’ sorprendente che,



12 CAPITOLO 1. CAMPI DI SPOSTAMENTO: ONDE ELASTICHE E FONONI

nel limite N — o0, tale energia diventi infinita per divergenza sul numero di modi a causa
del comportamento di w(k) ~ |k| per grandi |k|, tanto da far pensare ad una patologia del
metodo di quantizzazione. Questa difficolta viene ordinariamente evitata per sottrazione di Ej,
in quanto essa “rinormalizza” 1’energia dello stato di equilibrio di partenza (non esplicitamente
considerata) e l'energia ¢ comunque definita a meno di una costante. Va tuttavia osservato
che, se si cambia lo stato di equilibrio di partenza (ad es. il volume a bassa temperatura), la
sua energia cambia, e tale cambiamento e osservabile, e deve essere attribuito anche ad una
variazione finita di Ey. Quindi, la forma Ejy = %Zk,a hwl({a) ha conseguenze fisiche nel caso che
le frequenze proprie wl((a) subiscano una variazione dovuta a una (piccola) trasformazione dello
stato di equilibrio di partenza. Nel caso del campo elettromagnetico tali variazioni danno luogo
tra I’altro, all’effetto Casimir, cioe all’esistenza di una forza attrattiva di natura quantistica tra
due lastre metalliche scariche nel vuoto. L’osservazione sperimentale di questo effetto e, come

vedremo, una conferma della forma (1.33) dell’energia di punto zero.

1.6 Esercizi e complementi

1.6.1 Ortogonalita e completezza

Una base ortonormale dei modi propri (1.3) & data dai vettori

1 i2wng
ul™ = /Ne% (1.44)

le cui componenti sono potenze delle radici N —esime dell’unita con opportuna normalizzazione.
Essi soddisfano le relazioni di ortonormalita

Zugn)*ug_m) =0um (mod N) (1.45)
J
e completezza
Zug-")ul(")* =46, (mod N) (1.46)

Entrambe queste equazioni derivano poi dalla identita

3" = Nbjq , (mod N)] (1.47)

il cui significato geometrico ¢ molto chiaro: la somma delle radici ennesime dell’unita, o di loro

potenze, chiude un poligono regolare, salvo per il caso banale 5 = 0 in cui si ottiene N.
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Si noti che lo sviluppo in modi propri (1.22) usa la completezza (1.46) e puo essere derivata
come segue. Per la completezza e per le equazioni del moto si ha

u;(t) = ug-”) (Ane*i“’”t + Bnei“’"t) (1.48)

wl‘z M Nlz

Per la realta (u; = u}) deve essere B, = A*,, e infine cambiando variabile (n <» —n nel secondo

termine) e normalizzazione (A, = —z2—) si ottiene la (1.22). Analogamente la (1.25) si ottiene

dalla ortonormalita (1.45) tenuto conto delle normalizzazioni.

1.6.2 Densita degli stati

Abbiamo gia discusso il limite continuo, nella variabile x = a7, di un campione finito di lun-
ghezza L = Na, quando N — +0 e a = % — 0. In tale limite i modi propri sono descritti
dal parametro k = n%”, ove n & un intero che varia da —oo a +00, mentre la variabile x assume

valori continui tra 0 e L e le somme diventano integrali con la regola
o= [l S [T (1.49)
j j “

Vogliamo ora considerare anche il limite di campione infinito L — oo, in cui I'insieme dei
valori di k£ diventa denso, cosicché anche il numero d’onda diventa continuo. Questa volta le

somme su n diventano integrali con la regola

%Z —>/dk Z /Ldk (1.50)

Il fattore di conversione tra somme e integrali va sotto il nome di “densita” degli stati del

continuo. In tre dimensioni ci sono tre componenti k; = ni%, e quindi
3

3

Se si osserva infine che p = fik secondo le relazioni di De Broglie, si ha anche
V d3 Vdip
Z / / E (1.52)

secondo cui ad ogni stato quantico corrisponde una cella di volume h? nello spazio delle fasi.

L’elemento di volume d¢ = Vd®p/h® viene spesso chiamato”spazio delle fasi” della particella
considerata.
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1.6.3 Moto classico di due o tre atomi accoppiati

Si scrivano esplicitamente le frequenze e i modi propri normalizzati della catena lineare accop-
piata con condizioni periodiche al bordo per N = 2,3 e il corrispondente sviluppo (1.22). Si

risolva il moto di u;(t) con le seguenti condizioni iniziali

W (0) =u(0) = 0,  w(0)=—ux(0) =wo, (N =2);
ul(O) = ’LLQ(O) = ’LL?,(O) = Ug(O) = 0, Ul(O) = —UQ(O) = U, (N = 3)

Si discuta anche il caso N = 2 con u(0) = —u2(0) = uy, € con u1(0) = 02(0) = vy # 0 facendo

attenzione alle peculiarita del modo zero.

1.6.4 Velocita del suono nell’aria

Consideriamo I’aria un gas biatomico perfetto con peso molecolare M = 30g, e le vibrazioni
sonore in regime adiabatico (K =V g—{; 5)' Si derivi I'espressione della velocita del suono ed il
suo ordine di grandezza per T = 300K. (R = 8.31%)

1.6.5 Onde unidimensionali senza dispersione

Nel caso di un sistema molto lungo L — 400 con regola di dispersione w = v|k| la velocita di
dispersione non dipende dalla frequenza (equazione di d’Alembert) e la soluzione generale ha

la forma
u(z,t) = f(x —vt) + g(z + vt) (1.53)

Come si puo derivare questa equazione dallo sviluppo in modi propri? Si risolva il moto con le

condizioni iniziali %(z,0) = 0, u(z,0) = uee .



Capitolo 2

Campo Elettromagnetico. Fotoni

2.1 Equazioni di Maxwell. Gauge di Lorentz e di Cou-

lomb

Ricordiamo che il campo elettromagnetico (e.m.) @ caratterizzato dai campi E e B, propagantisi
nel vuoto a velocita ¢, costante universale indipendente dal sistema di riferimento. Non c¢’é,
dunque un supporto materiale delle oscillazioni elettromagnetiche — in altre parole, I’etere non
esiste — e la loro quantizzazione si basa direttamente sulla descrizione dei modi propri del campo
quale insieme di oscillatori. Per capire meglio il conteggio dei gradi di liberta, richiamiamo
prima la descrizione del campo in termini di potenziali e.m., e il meccanismo della radiazione
delle onde.

Scriviamo le equazioni di Maxwell nel sistema di unitd di Gauss razionalizzato, o di Heavisi-
de. In questo sistema, I'unita di carica é resa dipendente da quelle meccaniche [CGS] ponendo
la costante universale ¢y = 1, in modo da ottenere espressioni particolarmente semplici della
densita di energia e del vettore di Poynting. Inoltre E e B sono misurati nelle stesse unita di

1

misura fattorizzando  nella espressione della forza di Lorentz: F = ¢E + ¢2 A B. Si scrive

dunque

1.
divB=0 ; roE+-B=0 (2.1)
c

1 .
divE=p ; rotB= E(J +E) (2.2)

In queste unita, il potenziale coulombiano risulta ~ 22 da cui si deriva, ad esempio che

15
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1Coulomb = 3 - 10°[q]gauss =V4m  3-10%¢|c.r., € che la costante di struttura fina ha la forma

T |
= Jrhe = 137"

Le prime due equazioni di Maxwell (indipendenti dalle sorgenti) sono risolte ponendo
1.
B=rotA , E=-VA" - ZA, (2.3)
c

ove A e A sono i potenziali scalare e vettore. Ma bisogna notare che questi potenziali non
sono determinati univocamente dai campi B ed E, i quali sono invarianti sotto le cosiddette
trasformazioni di gauge

A'=A+VA A'O:AO—%A : (2.4)

Quindi si puo imporre una condizione arbitraria sui potenziali per determinarne la soluzione.

Ne considereremo — in alternativa — due:

0 1.
b g Lo .
—8m“A = divA + cA =0 (Gauge di Lorentz) (2.5)

divA =0 (Gauge di  Coulomb) (2.6)

La gauge di Lorentz & una gauge covariante, in quanto, con la definizione del quadrivettore
Ar = (A% A), z# = (ct,x) si pud porre sotto le forme di quadrivergenza 9, A* = 0, e permette di
scrivere le equazioni del potenziale in forma covariante a vista. In generale, infatti, le equazioni

di Maxwell (2.1), con le definizioni (2.4), si riscrivono nella forma (¢ = 0,1, 2, 3)
1
LA — 8”(8)\14)\) = EJM ’ (JM = (Cpa J)) (27)

ove O*=gtdy e g" =diag(l,—1,—1,-1).

Quindi, in gauge di Lorentz,esse diventano
1

04 =—-J* |, (O0=09,0") (2.8)
c

le quali sono covarianti a vista e si riducono, nelle regioni con J* = 0, alle equazioni di d’Alem-
bert per tutte e quattro le componenti di A#. Sappiamo pero, dalle (2.1) che i campi E e B delle
onde elettromagnetiche sono trasversi rispetto alla direzione di propagazione. Ci aspettiamo
percio che due delle componenti di A* non siano veri e propri gradi di liberta del campo e che
quindi la descrizione basata sulla (2.8) sia ridondante.

La gauge di Coulomb, d’altra parte, restringe bene i gradi di liberta dei potenziali, in quanto
divA = 0 & una condizione di trasversalitd, corrispondente a k - A(k,t) = 0 in trasformata di

Fourier. Inoltre le equazioni (2.7), imponendo divA = 0, si riscrivono

{ AA = —p

. 2.9
DA =13, = 1(J - VA" (29)
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Dato che la prima Eq.(2.9) non contiene derivate temporali, il potenziale scalare ¢ determinato
univocamente dalla densita di carica p come nella equazione di Poisson elettrostatica ed e quindi

dato dal potenziale “istantaneo”:

W) = [l = o (2.10)
’ drx —y| 7 V2
dove lo stesso tempo ¢ interviene nei due membri e, in particolare, A° = 0 per p = 0. Quindi,
solo le due componenti trasverse di A soddisfano I’equazione delle onde di d’Alembert in assenza
di sorgenti.
Quando invece vi sono sorgenti, le componenti trasverse J, soddisfano, per definizione, la

condizione divd | = divd — AA® = divd + p =0, grazie alla condizione di conservazione

locale della carica elettrica. In alternativa, si puo riscrivere simbolicamente J, =J-
% rendendo J trasversa a vista rispetto all’operatore V. Nelle regioni lontane dalle

sorgenti la (2.9) ammette soluzioni del tipo
A=0 | A(x,t)=Re[a ék)elxwb)] (2.11)

ove wi = c|k| & la relazione di dispersione delle onde, e k-é(k) = 0, dato che divA = 0. Dunque,
per ogni vettore d’onda k, esistono due polarizzazioni trasverse indipendenti che possono essere
scelte lungo i vettori reali & (k) (o = 1,2), che formano con k una terna destrorsa. Tutte le
onde che si propagano lungo k sono sovrapposizioni lineari di queste, con coefficienti complessi
a1 € ap. La sovrapposizione con numeri complessi permette di descrivere anche la fase relativa
delle oscillazioni lungo i due assi trasversi, e la polarizzazione che ne risulta e in generale ellittica.
In particolare i vettori € (k) = \%(Eﬂ) + ie?)) descrivono le polarizzazioni circolari destrorsa e
sinistrorsa, dato che il fattore 47 induce uno sfasamento +7 della dipendenza temporale delle
oscillazioni lungo i due assi, peraltro di uguale ampiezza.

In conclusione, le onde elettromagnetiche sono dello stesso tipo delle onde trasverse della
(1.20). Le componenti scalare e longitudinale di A* (presenti nella gauge di Lorentz) sono non

fisiche e rappresentano dei g.d.l. di "pura gauge”.

2.2 Irraggiamento classico. Funzioni di Green

Consideriamo ora il problema dell’irraggiamento, cioé 'emissione di onde del tipo (2.11) da
sorgenti J(x,t), variabili nel tempo e concentrate in una regione spaziale di dimensione a (si
puo pensare, sia ad emissioni atomiche con a = 1A, sia ad emissione da antenna di dimensioni
macroscopiche). In questi casi il campo di radiazione, a distanza r >> a varia tipicamente

come ' ~ B ~ %, in modo che il vettore di Poynting S, ~ T% dia luogo ad un flusso uscente
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finito da una superficie ~ 47r? che circonda la sorgente. Siamo quindi interessati a trovare la
soluzione dell’equazione (2.9) per A nella regione r >> a, e ad isolare i campi di radiazione di
tipo %, trascurando quelli statici ~ %2

Conviene riscrivere la (2.9) passando alle trasformate di Fourier temporali
A,(r) = [T LAt r)e™, come

oo 27
1~
(A4 E)A,(r) = —ju(r) = —EJLw(r) (2.12)
e studiare ’equazione di Green corrispondente
w?
(A+EHG,(r) = -8*(r) , k=" (2.13)

c2

E facile vedere che le soluzioni dell’equazione omogenea (2.13) son

a 6(r) impone che il flusso uscente del vettore —VG,, sia 1 per r — 0. Ne segue la soluzione

generale
Ci(w)et + C_(w)e
Gy(r)= 2.14
o(r) 4mr ( )
con la condizione C'y +C_ = 1. Particolarmente importanti sono la soluzione ritardata e quella
anticipata,

G'(r) = G

vyl ’

Gg‘lnt(’[") _ e—ik'r : k‘

dmr

Il

o &

le quali corrispondono a condizioni al contorno di pura onda uscente (entrante) per ¢ — oo.

Infatti, la dipendenza temporale corrispondente e data da funzioni delta di Dirac

G™(t,r) = —5( ) . G"™(t,r) = —6(t+ ) , (2.15)

Arr c Arr

localizzate intorno a r = c|t| per t > 0 (¢ < 0) rispettivamente. Di conseguenza, la solu-
zione della (2.12) si azzera nel lontano passato (futuro), come ci si aspetta per la emissione
(assorbimento) di onde e. m..

E anche di particolare importanza, per la trattazione quantistica perturbativa, la condizione
al contorno di Feyman in cui C; = O(w) e C_ = ©(—w) e quindi le frequenze positive sono

ritardate mentre quelle negative sono anticipate. In tal caso si ottiene la distribuzione

1
A723 2 — je

Gr(t,r) = , (2% = 212 — r?). (2.16)

la quale permette di tenere in conto la propagazione delle antiparticelle in una teoria relativi-
stica.
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La selezione dell’'una o dell’altra delle funzioni di Green e fatta in base alle condizioni
fisiche iniziali (o finali) del problema. Se non ci sono inizialmente onde e.m., allora la soluzione
rilevante e quella ritardata, e si ottiene

1 d’y x -yl
dre | |x—y| c "~ 4rclx|

Avig(t,x) = / d3yJ . (6 — % + ?,y) (2.17)

dove la seconda espressione e valida nella zona di radiazione, in cui A ~ C—lr Si noti che il ritardo

temporale delle sorgenti ha un termine dipendente dalla coordinata y di emissione, secondo lo

y?

X ). Questo termine puo essere trascurato

sviluppo [x—y| = (x?—2xy+y?)? = [x|—|y|- X +o( L
solo se in un tempo |C| ~ ¢ la sorgente varia poco, cioe se a << A, ove A ¢ la lunghezza d’onda

della radiazione emessa. In tali condizioni ci si puo limitare alla approssimazione di dipolo

X
Adz'p(t, X) ~ /d?’yJL(t — %, y) (2.18)

Ael|x|

nella quale tutti i punti della sorgente hanno lo stesso ritardo % Introducendo la corrente di
particella carica J =) eav("‘)(53(y — ¢(@)(¢)), 1a (2.18) si riscrive nella forma sintetica

Adzp

Ze&vL Sy D) (2.19)

47rcr c 47rcr

ove D=3 eo£@(t) ¢ il momento di dipolo del sistema di cariche considerate.

2.3 Campi e Spettro di Emissione di Dipolo

I campi di radiazione B = rotA e E = —%A in gauge di Coulomb sono calcolati in modo

abbastanza semplice usando due artifici di calcolo. In primo luogo ci si puo limitare alle

derivate spaziali del ritardo, in quanto V1 = O(-;), mentre V(Z) = £ = O(1). Di conseguenza,

in approssimazione di dipolo,

Dit-YAn , (n=7) (2.20)

B =rotA ~ 5
wTeir c

Inoltre, le componenti trasverse di D — calcolate attraverso il ritardo 7 — sono semplicemente

le componenti trasverse a n = Vr. Dunque

B=—A =~ (A-(A )=

y— (DAD)An (2.21)

e quindi E, B, n costituiscono una terna destrorsa con vettore di Poynting

1 n . T

S=cEAB= @n)? C3T2(DL(1§_E))2

(2.22)
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Di qui segue immediatamente la potenza irraggiata per unita di angolo solido

aw 1 . T\ 19
aQ  (4m)2c D=2 (2.23)

Il caso classico di una antenna lineare di semilunghezza ¢ & ottenuto, con il formalismo dei

vettori complessi, ponendo D = iIl, ove I = Iye ™! Quindi, nel caso monocromatico di

frequenza w si ottiene D= Iwl e, passando alle parti reali ed effettuandola media temporale,
dW Kkl ,11§

- = (— — 2 2
70 (47r) ~ 5 sin © (2.24)

ove O e l'angolo di emissione rispetto all’antenna, per cui ¢/, = /sin©. La potenza totale

irraggiata e dunque, integrando sull’angolo solido

(k0?13
W= 2.25
3cAm (2.25)
Si ricordi che stiamo usando unita di di misura di Gauss razionalizzate (9 = 1), legate al
sistema di Gauss da ¢*|gauss = qj;‘“.

Formule simili valgono nel caso di antenne circolari di raggio ¢, con corrente
I= Ioe_i‘”t\/%(é'l + ié5). In tal caso la proiezione ortogonale si fa indipendentemente per le

componenti 1 e 2 e si ottiene

aw

aw _ (k¢
dw

47

121
( )25505(1 + c0s°0), (2.26)
con la stessa potenza totale irraggiata. Si noti pero che le distribuzioni angolari (2.24) e (2.26)
sono molto diverse, che la luce irraggiata e¢ polarizzata linearmente nel caso di antenna lineare,

ed ellitticamente (con semiassi nel rapporto cos© : 1) nel caso circolare.

2.4 Lagrangiana e Hamiltoniana del Campo in Gauge di

Coulomb

Abbiamo visto che il campo e.m. e trasverso, cioe le rispettive onde hanno campi E e B che
formano, con il vettore d’onda k, una terna destrorsa. Ci si aspetta quindi che la lagrangiana
sia simile a quella delle onde elastiche trasverse, come nella (1.14) con v, = 0. Sappiamo pero
che ci sono quattro funzioni potenziale A*, e non due, come ci si aspetterebbe per un’onda
trasversa.

Questa descrizione ridondante & poi ridotta dalla invarianza di gauge (2.4) e, in particolare,
nella gauge di Coulomb si pone divA = 0, cioe il potenziale vetttore & esplicitamente trasverso.
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Inoltre, il potenziale A% ¢ fissato dalle (2.10) in termini delle cariche esterne, in particolare
A% = 0 per un campo libero. Quindi, i gradi di liberta si riducono effettivamente a due per
vettore d’onda, in questa gauge, che si chiama, per questa ragione, una gauge fisica.

Il prezzo da pagare, per una gauge fisica, e che le equazioni del moto non sono covarianti a
vista, come appare nella (2.9). I vantaggi sono perd preponderanti, ai fini della quantizzazione,
in quanto si puo seguire una semplice procedura canonica nelle variabili trasverse.

La lagrangiana del campo e.m. libero & uno scalare di Lorentz, dato da (¢ = 1)

1 1
L= 5(E2 - B?) = —ZFWF“” (2.27)
con F? = F' = —F,, F'2 = — B3 e cicliche, e quindi
0 0
F,=—A, - AR 2.28
B Om Oxv (2:28)
E facile verificare che
or _ —F* (2.29)
00, A, ’ ’
e quindi le equazioni di Eulero-Lagrange hanno la forma
9, F*" =0 (0 :i) (2.30)
K ’ B Ogm )

e danno due delle equazioni di Maxwell, mentre le altre due sono verificate grazie alla (2.28).

Notiamo anzitutto che la (2.29) permette di definire 3 densita di momento coniugato ad A®

IL; = 34, — i iy 9y (2.31)
A oz’

mentre A% non ha momento coniugato, in quanto A° non interviene nella Lagrangiana. Infatti

la (2.27) puo riscriversi nella forma
L. 1 . . .
L=T1-A— 5(H2 + (rotA)?) — A%divIl + div(A°TI) (2.32)

Si vede dunque che — a parte il termine di divergenza che non modifica le equazioni del moto
— A" interviene linearmente, come un moltiplicatore di Lagrange. Quindi la legge di Gauss,
coniugata ad A°,

divIl = 0 (2.33)

¢ da interpretare come un vincolo che lega le possibili condizioni iniziali dei campi A* e A° ad
un tempo fissato, piuttosto che una vera equazione di moto.
Se inoltre imponiamo la condizione di gauge di Coulomb (divA = 0), vediamo che la (2.33)
per la (2.31) diviene
AA’=0 , (divA =0) (2.34)
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e quindi A = 0 per campi regolari all’infinito. Avendo cosi eliminato il campo A°, la

trasformata di Legendre sui campi A’ d, per la (2.32), la Hamiltoniana
— 3 1 - ]. M
H=T-A-L= 5(H2 + (rotA)?) = 5(A2 + (rotA)?) | (2.35)

cioé I'usuale densita di energia con la particolarita che A% = 0.

La procedura che porta dalle (2.27) alle (2.35) puo essere ripetuta per il caso di un campo in
presenza di cariche esterne descritte dalle correnti J*(x,t) e con la Lagrangiana di interazione
£ = —J#A,. La differenza & che in questo caso, A° & determinato dal potenziale Coulombiano

istantaneo(2.10), mentre la Hamiltoniana acquista la forma
1, . 1
H= §(A2 + (rotA)?) + 5(VAO)2 -J-A (2.36)

dove compare la densita di energia Coulombiana $(VA°)? e l'interazione di A con la corrente

esterna J. Le componenti A’ restano gli unici ¢.d.l. del campo.

2.5 Sviluppo in Modi Propri. Fotoni

La quantizzazione canonica del campo A non e ovvia, per via della condizione di gauge

divA(x,t) = 0, la quale si diagonalizza nello spazio dei vettori d’onda (k - A(k,) = 0 ma
non in quello delle configurazioni, dove ¢ una equazione differenziale che lega le tre componenti.
Questo complica la procedura di quantizzazione nello spazio x. Infatti le regole di commutazione

canoniche delle A;(x,?) con le I;(y,t) = A,(y,t), sarebbero della forma

[Ai(x, 1), A (v, t)] = ihé(x —y) , (i,j =1,2,3) (2.37)
ma non sono accettabili, perche in contraddizione con la condizione di gauge secondo cui divA =
0 deve commutare con le Aj. Si devono dunque quantizzare due componenti e non tre, ma non
é chiaro a priori come le (2.37) si possano modificare.

Passiamo dunque allo spazio dei vettori d’onda, con lo sviluppo nei modi propri, che in
questo caso sono semplicemente le onde piane (2.11). Definendo due vettori di polarizzazione

& e &, che formano con k una terna destrorsa, si ottiene

k)& (k)elx et fee] | (2.38)

1 o
A(x,t) = k,;g %Mk)v[“ (

1Strettamente parlando, la trasformata di Legendre andrebbe fatta sulle due componenti di A essenziali,

avendo eliminato la terza con la condizione divA = 0. Tuttavia, la combinazione scalare I - A ottenuta con
questo procedimento, sarebbe la stessa nel sistema solidale con I’onda (z//k), essendo -k = 0, con lo stesso
risultato finale per H.
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Questa volta divA = 0 per qualsiasi scelta delle ampiezze complesse a!)(k) e a® (k, le quali
descrivono quindi due gradi di liberta indipendenti per ogni numero d’onda k.

Postuliamo allora, per analogia con i campi di spostamento, le regole di commutazione
canoniche per ogni coppia di variabili a(® (k), a{®*(k),le quali sono interpretate come operatori

di discesa e salita di oscillatori indipendenti:
@ (k),a? (k)] = [6"(K), P K)] =0, [a“(K),d P K)] = mapd(k, K) (2.39)

Il significato delle (2.39) & confermato dal calcolo esplicito dell’ energia, che secondo la (2.35)
e data da

9 h
H= / BPz=(A? + (rotA)? Zw (k) + aq(k Zwk )+§)
(2.40)
dove si sono usate le proprieta di ortonormalita dei modi propri, come nella(1.27). Si ottiene
dunque 'energia come somma di due oscillatori indipendenti per ogni modo k di frequenza
wi = c|k.
Lo spazio di Fock si costruisce come nel caso dei fononi. Lo stato fondamentale, vuoto dei

fotoni e definito da
ao(k)|0>=0 , (Vk, «) (2.41)

e, riscalando le a di V7, si definiscono gli stati della base dei numeri di occupazione

(et (k, ))™ (en)t (ke 1)
I1 (@7 k)" @ ED)T g sz i) onten) s (2.42)
ok n1! vV nT!
caratterizzati dalla energia totale
o 1
k,a

Gli indici di eccitazione nia)

sono interpretati come numeri di occupazione di fotoni nello stato
(k,a) con polarizzazione &® (k). Tali numeri sono conservati nella teoria di campo libero,
ma possono variare nella teoria in interazione con le cariche della materia, dando luogo alle
transizioni in cui i fotoni possono essere creati e distrutti, come vedremo.

Se dunque le regole di quantizzazione sono date dalla (2.39), si possono a posteriori calcolare
le regole di commutazione delle variabili A4; e A]- che sostituiscono la (2.37). Esse sono derivate
dallo sviluppo in modi propri (2.38) e sono

V.V, o 0 1

[A4ix,0), A4y, 0] = 100y = ~57)0(x =) = h(Bd(x = 3) + 5 5ae ) - (244)
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La seconda espressione deriva dalle prima perche il potenziale Coulombiano risolve I’equazione
di Poisson. La prima mostra che in effetti divA = V - A = 0 commuta con le Aj, ed e
conseguenza della relazione di completezza per le polarizzazioni,cioe
o o kik;
> a k) (k) = b - - (245)

a=1,2

Dalle (2.45), per trasformata di Fourier, si passa alle (2.44). E da notare che le regole di
commutazione (2.44) non sono canoniche e non sono neanche locali, nel senso che hanno una
coda non nulla di tipo~ |x — y|3. Entrambe queste caratteristiche derivano dal fatto che le

variabili A; non sono indipendenti, ma legate dalla condizione di gauge differenziale divA = 0.

2.6 Effetto Casimir

Come nel caso dei fononi, I'energia (2.40) dei fotoni attribuisce al vuoto [’energia di zero
Ey(V) = 3 Zka fiwy,, che & divergente come una potenza ~ k3,, nella regiona ultravioletta,
di piccole lunghezze d’onda(|k| < kp — o0). Per evitare la divergenza, questa energia puo
essere sottratta per un volume di quantizzazione di riferimento fissato V. Se tuttavia si pon-
gono condizioni al contorno che confinano il campo in un diverso volume di quantizzazione V',
la differenza di energia che ne risulta € in linea di principio osservabile, come viene evidenziato
dall’effetto Casimir.

Consideriamo due lastre metalliche scariche di superficie L2, poste a distanza d nel vuoto, e
di volume Vy = L%d. Esse modificano le condizioni di bordo del campo e.m., imponendo che la
componente tangenziale del campo sia nulla sulle lastre. Quindi la presenza delle lastre modifica
i modi propri della ragione V; nell’infrarosso, permettendo solo lunghezze d’onda A < d << L.
Il taglio di lunghezze d’onda, al di sopra di d, diminuisce I’energia di zero e ha per conseguenza
una forza attrattiva fra le lastre.

Quantitativamente, si pud considerare il volume V; immerso nel volume V = L2 di riferi-
mento, lasciando libero un volume V' = V —V,; = L?(L —d) per il campo e.m. fuori delle lastre.

La differenza di energia di zero fra questa configurazione e quella di riferimento ¢ dunque

AE; = Ey(Vy) + Eo(V') — Eo(V) =

kv g3 1 kar
= LQdL (;”; ~hwy, + L*(L — d) L —L3£ ~ (2.46)
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Ne deriva una pressione attrattiva

1 0AE; _ _37r2hc
L2 9d d*

Po = (2.47)

Si noti che la (2.46) da luogo ad una energia finita per unita di superficie, per cancellazione
della parte ultravioletta, tagliata da kj;;. Tuttavia, la dipendenza angolare della cancellazione
e complicata e il calcolo rigoroso da luogo a un coefficiente numerico diverso nel risultato

(2.47), che @ solo qualitativamente corretto. La natura quantistica del risultato & chiara per
via del numeratore hc. Dato che ;j.w = ﬁ, la pressione (2.47) corrisponde a quella di un

normale condensatore con una carica, su di una superficie di lato d, di una dozzina di elettroni

in tutto(!). L’effetto Casimir pud dunque essere rilevato solo con esperimenti di grandissima
precisione. Tuttavia, la sua importanza concettuale ¢ grande, perche conferma la espressione

(2.40) dell’energia, incluso il termine di ordinamento, origine dell’energia di zero %hwk per modo.

2.7 Esercizi e Complementi
1 - Unita di misura

e Scrivere le equazioni di Maxwell nel vuoto nei sistemi MKSA, Gauss e Gauss Razio-
nalizzato (Heaviside) e la corrispondente forma del potenziale Coulombiano e della forza di
Lorentz

e Dare i fattori di conversione seguenti:
1Coulomb = 7 [Gauss] = 7 [G.R.]
1Weber/m? = ? [Gauss] = ? [G.R.]

(g7 =1077¢* = 9-10°Nm>C?)
2 - Onde Piane

I potenziali A° = 0, A = (a € exp(i(k - x — w(k)t)) + c.c.), con wk) = ck|, k-€ = 0,
descrivono onde monocromatiche nella gauge di Coulomb.
e Dare le espressioni dei campi elettrico e magnetico e mostrare che la condizione di gauge
é soddisfatta.
e Studiare la dipendenza temporale e la polarizzazione del campo elettrico nei casi partico-
1

lari: k = ke3, A= C, C = C*, con €= ey, Ez\%(el + iep), Ez%(el —iey).

3 - Onde in una dimensione
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Le onde elettromagnetiche piane che si propagano in direzione z ubbidiscono all’equazione
di d’Alembert unidimensionale:

2 2
Dot~ oAt (=)
e Mostrare che funzioni A; della forma f(z — ct) + g(z + ct) sono soluzioni della precedente
equazione. Dare la forma di f e g per onde piane monocromatiche di polarizzazione lungo z,
con k = |k|es oppure k = —|k|e;.
e Sempre per polarizzazione lungo x, determinare f e g per A,(z,0) = aO(L — |z]) ,
Ag(2,0)=0.

4 - Conservazione dell’Energia

Sempre per polarizzazione lungo x e propagazione lungo z, calcolare densita di energia, u,
e vettore di Poynting, S, per I'onda progressiva destra A,(z,t) = f(z —ct) , Ay = A, =0.
Verificare la conservazione locale dell’energia u + divS = 0 , tenuto conto che divS si riduce
d
a =5,

0z %

5 - Irraggiamento di Dipolo

Una sorgente dipolare D(t) = Re(Dye ") emette onde elettromagnetiche. Dare ’espres-
sione della potenza irraggiata per unita di angolo solido a distanza r, tempo t e direzione
n =7 =r/r, in approssimazione di dipolo.

e Considerare esplicitamente Dy = e3qA (A reale) e dare la distribuzione angolare in 6, ¢
come funzione del tempo e come media temporale. Dare la potenza irraggiata in media.

e Considerare il caso Dy = %(el + iey)gA e ripetere il calcolo, sia della distribuzione
angolare, sia della potenza irraggiata totale. Qual’é la polarizzazione dell’onda emessa, in
funzione di 6 e ¢? Paragonare col caso precedente.

e Dare l'ordine di grandezza della potenza irraggiata da un atomo con un elettrone attivo
(g =1.6-1071°C, A =10"%cm) con XA = 500 nm. Quanti atomi devono irraggiare per avere una

potenza di 100 Watt? Qual’é ’ordine di grandezza del fattore di Boltzmann corrispondente?
6 - Funzioni di Green

Costruire la soluzione generale a simmetria sferica dell’equazione di d’Alembert omogenea,

sapendo che in trasformata di Fourier soddisfa I’equazione

A+ ) =0
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e Dimostrare che la differenza fra due funzioni di Green é soluzione dell’equazione omogenea.
e Costruire la funzione di Green tale che 'ampiezza delle onde uscenti sia in rapporto 3 : 1

con quella delle onde entranti.
7 - Campo elettromagnetico in una scatola

Mostrare che il campo e.m. racchiuso in una scatola metallica cubica di lato L é descritto,
in gauge di Coulomb, dai potenziali A° =0 e A dato da:

Al = Ccos(kyzy)sin(kywy) sin(ksxs)cos(wt + ¢)

A? = Cysin(kiwy)cos(koxa)sin(ksxs)cos(wt + ¢)
A? = Cysin(kizy)sin(koxs)cos(ksxs)cos(wt + ¢)
conw=clk|, ki=n7/L,n;=0,1,..ek-C=0.

(Si tratta di verificare non solo I’equazione di d’Alembert ma anche divA = 0 e la condizione
di bordo dei metalli che Ei4g/porao = 0)



Capitolo 3

Emissione, assorbimento e diffusione di

fotoni

3.1 Interazione radiazione—materia. Processi elementari

Sappiamo che, a livello classico, il campo elettromagnetico (em) influenza il moto delle cariche,
le quali, a loro volta, possono generare onde elettromagnetiche, se sono accelerate. Tuttavia,
la teoria classica non e in grado di descrivere le regole di transizione atomiche, le quali sono
un’indicazione non solo dello spettro discreto degli atomi (di natura quantistica), ma anche
dell’emissione (assorbimento) di luce in quanti discreti. La teoria dei campi & in grado, invece,
di collegare questi due fatti in quanto & capace di descrivere processi con variazione del numero
di fotoni. Vedremo inoltre che questi processi sono innescati dalla normale interazione tra
atomi e campi elettromagnetici. Si ottiene allora la teoria quantistica della radiazione, che
rappresenta storicamente il primo successo della teoria dei campi applicata agli atomi e alle
particelle subatomiche.

La descrizione delle interazioni radiazione-materia si basa sulla lagrangiana di una o piu
particelle cariche in campo em. Questa contiene, oltre alla lagrangiana libera del campo e delle
particelle, anche un termine di interazione del tipo J, A#, come segue (in unita per cui ¢ = 1):

L= Z (%mr&i N eTAO(&T’ t) + e""ér ) A(&r, t)) + /dsxﬁe.m. (31)

dove le &,.(t) sono le traiettorie delle cariche e, (r = 1,---, N). Dalle equazioni di Eulero—
Lagrange della (3.1) si possono verificare esplicitamente le equazioni del moto delle cariche,
inclusa la forza di Lorentz, facendo attenzione ad includere correttamente tutti i termini delle
derivate temporali, inclusi quelli impliciti tramite le &,.(¢).

28
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Per ottenere la hamiltoniana del sistema campo-particelle bisogna fare una trasformata di
Legendre sulla (3.1), sia per i g.d.l. del campo che per quelli di particella. I momenti coniugati

alle &, sono, al tempo di quantizzazione t = 0,

Pr = mrér + erAr(€r7 0) (32)

mentre le densita di momenti coniugati alle A, sono le I, della (2.31). Entrambi i tipi di

momenti non sono puramente cinetici e questo complica un po’ 'algebra dell’espressione.
H:Zpr-éT—i-/d?’xH-A—L (3.3)
T

Nella gauge di Coulomb divA = 0, il campo A, compare ancora come moltiplicatore di Lagrange

(cioeé senza derivata temporale) e I’equazione del moto coniugata ad Ay ¢ la legge di Gauss

dove o(x,t) = > e,63(x — &£,(0)) & la densita di carica delle particelle. Dunque il campo A, &

dato dal campo coulombiano istantaneo indotto dalle cariche e,.:

1 Pz
Ap(x,0) = r " 4WZ‘X (3.5)

L’espressione completa dell’hamiltoniana (3.3) contiene i termini cinetici delle particelle nel

campo trasverso A, la parte di radiazione em libera e la parte coulombiana, come segue

0 1. 1
H= Z 5“ )’ / Py [A2(@,0)+ (rotA)?] + / Bz (VAg(z,0)?  (3.6)
L’ultimo termine, per via della (3.5), puo anche scriversi nella forma

1 e.e
Ve oul — _/ d3 VA = — 3.7
Coul 9 Voo, 0 Z ‘g ( )| ( )

dove nell’integrale di volume regolarizzato sono stati sottratti i termini di auto—energia, cioe le
parti singolari di interazione di ciascuna particella carica con se stessa, le quali non dipendono
dalle coordinate §,..

Noi siamo interessati ad un sistema atomico in interazione em. L’atomo libero ¢ descritto

dall’hamiltoniana

2
2 : Pr
Hat = 2mr + VCoul (38)
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la quale predice, secondo la meccanica quantistica, uno spettro discreto e uno continuo dell’a-
tomo considerato, con autostati |A >=|n, j,l, s, j,,--- >. D’altra parte, la radiazione libera &

descritta dall’hamiltoniana
1 . (@)
H,py = /d3x§: [A2 + (rotA) } E hwkak a (3.9)

dove ¢ stata sottratta I’energia di zero introducendo il prodotto “normale” —in cui gli operatori

di distruzione sono spostati a destra — e gli operatori di salita e discesa sono stati riscalati di

VR al® — VAd®. Pertanto [aéa),a;:(ﬁ)} = 6a,50n € gli stati fotonici [n{* -+ ni®) >
()

sono determinati dai numeri di occupazione n,’ nei vari modi k del campo, con polarizzazione

e (k) (o = 1,2). Quindi ’hamiltoniana completa (3.6) si scrive
H=H,;+H,,+V=Hy+V (3.10)

dove
Zerpr' 6’"’0 +Z 2 A7(&;,0) (3.11)

rappresenta l’interazione del sistema atomo-radiazione e la quantizzazione nella formulazione

di Schroedinger ¢ effettuata a t = 0.

E da notare in primo luogo che l'interazione contiene sia gli operatori &, p, nello spazio di

(o ) ( ), i quali agiscono sullo spazio di

Hilbert dell’atomo H,;, sia gli operatori A, lineari in a,
Fock H,qq del campo. Quindi, lo spazio “di Hilbert” completo da considerare ¢ H,; @ Hraa- Si
usa anche dire che le §,., p, sono operatori di prima quantizzazione, in quanto non fanno variare
il numero di particelle, mentre a,(ca) e a,_:( ) sono di seconda quantizzazione, in quanto fanno
variare il numero di fotoni n. Termini lineari in A danno i processi con An = +1 e termini
quadratici i processi con An = +2. Notiamo peraltro che I'interazione (3.11) ha sia termini
lineari del tipo v-A che termini quadratici e quindi causa sia processi con An = +1 con ampiezza
proporzionale alla carica e dell’elettrone, sia processi con An = +2, con ampiezza ~ e2. I primi
sono i processi fondamentali di assorbimento (An = —1) e di emissione (An = +1), i secondi
danno luogo ai processi a due fotoni (An = £2) e alla diffusione (An = 0).

Per ottenere predizioni quantitative sui vari processi a partire dalle (3.10) & necessario espri-
mere ’ampiezza di transizione in funzione degli elementi di matrice di V', chiamati anche vertici
di transizione. Questo problema teorico e risolto dalla teoria delle perturbazioni dipendenti dal

tempo, la quale esprime le ampiezze di transizione come serie di potenze nel piccolo parametro

2
e >~ +/a, dove, a = 5
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3.2 Rappresentazione di interazione. Regola d’oro di

Fermi

L’ampiezza di transizione ¢ collegata, a grandi linee, con 'operatore di evoluzione U (400, —00),
dal lontano passato al lontano futuro. Per precisare questo concetto occorre pensare che nel pas-
sato (e nel futuro) il sistema ¢ descritto da Hy = Hyy + Hyqq, cioé che 'interazione radiazione—
materia diventi inefficace — in altre parole si “spenga” — in quanto fotoni e atomi sono suffi-
cientemente allontanati tra loro, come in realta succede negli esperimenti. Questa separazione
a grandi tempi puo essere ottenuta o tenendo conto delle dimensioni finite dei pacchetti d’onda
dei fotoni, oppure, piu semplicemente, anche con onde piane introducendo artificialmente un
fattore di spegnimento adiabatico nel potenziale: V — Ve ¢l In tal caso l'interazione &
efficace solo per un tempo finito 7 ~ % e questo e sufficiente per ottenere una buona definizione
della matrice di transizione per € > 0, facendo poi il limite ¢ — 07 alla fine dei calcoli.

Anche introducendo lo spegnimento adiabatico, risulta che la rappresentazione di Schroe-
dinger non e afgatto conveniente per la definizione del limite di grandi tempi, a causa dei fattori
oscillanti e’i#, che caratterizzano gli autostati liberi. Si definisce allora la rappresentazio-
ne “di interazione” come la rappresentazione in cui gli autostati liberi sono indipendenti dal
tempo, ponendo

_;Hoto

Up(t,to) = e P UL, tg)e  F (3.12)

dove U(t, o) ¢ il normale operatore di evoluzione in rappresentazione di Schroedinger, tale che
ihd = HU. Sostituendo questa equazione nella (3.12), si ottiene

iU (t,t0) = Hy (Ui (t,t0)  Us(to, to) =1 (3.13)

dove H;(t) = e’ Ve ele™ %" &il potenziale di interazione in rappresentazione di interazione.

Notiamo subito che U; & proporzionale a V, e quindi si azzera a grandi tempi: cioe i fattori
oscillanti indesiderati sono stati eliminati. Si puo allora definire la matrice S in rappresentazione
di interazione

S = lim U(+o0, —0) (3.14)

e—0t

e la matrice di transizione 7%;, collegate dalla equazione
Sfi = 5fz' - 27TZ(5(Ef - E«L)sz (315)

dove sono da notare la sottrazione dall’identita 1 — che non contiene processi di transizione
— e il fattore delta di conservazione dell’energia (nel limite ¢ — 07), dovuto al fatto che
’hamiltoniana non dipende esplicitamente dal tempo. Pertanto Sy;, nel limite ¢ — 0T, & un
operatore singolare di tipo distribuzione.
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Le quantita osservabili indotte dalle (3.15) dipendono dalla natura degli stati 7 e f. Normal-
mente in fisica delle particelle gli stati finali (o anche quello iniziale) non sono normalizzabili.
Ad esempio si puo avere i = A e f = A" + {e,k}, dove A e A’ sono stati di un atomo di
energia e impulso definiti e {&,k}, & un fotone di impulso k e polarizzazione . In casi di questo
genere P'unitarieta di U (e quindi di §) implica che |Sy;|* sia una distribuzione di probabilita
normalizzata solo nel senso continuo. La quantita calcolabile & una densita di probabilita per

unita di tempo, data dall’espressione (regola d’oro di Fermi)

2
dwg; = ;5(Ef — E;) |Ty:|? doy (3.16)

dove d¢s € Pelemento di volume nello spazio delle fasi finale (cf. sez. 1.6). Questa quantita &
direttamente osservabile nel caso di decadimento di uno stato iniziale (ad es. atomico) meta-
stabile, mentre differisce per il fattore di flusso dalla sezione d’urto osservabile nel caso di due
particelle o atomi nello stato iniziale.

La derivazione della (3.16) richiederebbe un’analisi dettagliata della probabilita di transi-
zione |Us(t,—oo)|* e della sua derivata, perd si pud capire approssimativamente dalla (3.15).

Notiamo infatti che la “probabilita di transizione”
|Spil* = 2m8(Ey — E;)2m6(0) [Tpi|” (3.17)

¢ divergente anche nel senso delle distribuzioni per la presenza del fattore 276(0). Introducendo

il fattore di spegnimento adiabatico esso puo essere sostituito dalla quantita

216(0) —» / dte™®! = § =T (3.18)
R

che puo essere interpretata come il tempo di interazione, il quale diventa finito a causa del
fattore di spegnimento. Si vede dunque, come nel caso di energia conservata, la probabilita di
transizione a grandi tempi cresce linearmente col tempo di interazione. Bisogna allora definire

una probabilita per unita di tempo, che , per stati finali del continuo ¢ la densita

dwg; _ |Spl”

J— — . ,2 o
G = = om0 (By = BT per it S (3.19)

in accordo con la (3.16).

3.3 La serie perturbativa della matrice di transizione

Con il metodo perturbativo, 1’equazione di Schroedinger in rappresentazione di interazione
(3.13) viene risolta iterativamente per U (¢, ty). Notiamo anzitutto che la condizione Uy (ty, to) =
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1 puo essere inglobata nella (3.13) riscrivendola come equazione integrale di Volterra

. t
Ut t0) =1~ / dt' H, (¢ YUy (¢ o) (3.20)

to

e questa pud essere risolta per iterazione, partendo da Y©® = 1:

. _ t1
Uy(t,~o0) =1~ / At Hy () + ( ’) / dt, / ity Hy (1) Hy (£) + (3.21)
to

La (3.21) da formalmente ’espressione di U;(t,—o0), € quindi di S, come serie di potenze di
H; — 0 meglio di un parametro A che rappresenta ’o.d.g. di H;. In generale, non esiste una
forma chiusa della serie perturbativa (3.21). La difficolta & che H;(t) & un operatore, e che in
genere [Hy(t1), Hy(t2)] # 0 per t; # ta, cioé gli H; non commutano a tempi diversi. In tal caso

#Hi(*) non & una soluzione valida della (3.13).

la forma esponenziale ~ e # T
La soluzione perturbativa della matrice & = U; (00, —o0) si ottiene dunque dalla (3.21) per
t — oo e si riscrive in forma piu semplice passando agli elementi di matrice, ed effettuando le

integrazioni temporali. Infatti
Spi=8% +80+8D + ... (3.22)

dove 8}?) = 0y; e, al primo ordine perturbativo

Sﬁ) _ %l/ dt < f|ei%0—tve—i£%i0|z- > e—cltl — %Vﬁ/ dte—(writtelt)
2um € 1 . (1)
= ——Vig——5—=—2ind(E; — Ey)T}, (3.23)

ho a2y W T
Questa derivazione del primo ordine perturbativo (approssimazione di Born)
1
T4 =V, (3.24)

mostra gli aspetti essenziali del problema. Innanzitutto, lo spegnimento adiabatico fornisce una
rappresentazione regolarizzata di larghezza Aw ~ 7, della delta di conservazione dell’energia,
che si ottiene dall’integrazione temporale nel limite 7 — oc.

In secondo luogo, troncando a t I'integrazione, si ottengono le ampiezze e probabilita di tran-
sizione a tempo finito ¢ > O:

(3.25)

0, -o0) = [ 1]

ﬁvﬁ{ (e + iwpit) +(s—z‘wﬁt)

2 2 e—ZEt 26—Et
=+ — +oe (3.26)

€ 2e €

E; - E,

Vi
—)

h

pg}g( ) ~ 276, (
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dove 7é.(z) = Di qui si vede facilmente che

e
dw; dp(lz) Vi 2 _ _ 2m
dgb]; - d;; =270, (wyi) % (2" — e ") — o+ ffs(Ef — E;) [Vpil? (3.27)

e si ottiene quindi il risultato (3.16), nel caso particolare (3.24). E da notare come la probabilita
(3.26) soddisfa
Soflx [ oy Vel o - BT =T <1 (3.29)
[#i I#i 4
che implica la condizione T < 7, dove 7 ¢ la vita media dello stato iniziale, quale condizione di
validita della trattazione perturbativa.
Le integrazioni temporali della (3.21) possono essre effettuate nella (3.22) anche a ordini
superiori. Si otterra cosi la forma (3.15) della matrice S, con una rappresentazione esplicita

per la matrice di transizione, data da

1 1 1
i = Vi | e Vv —V -V 3.29
Ty f+< E;, — Hy +ie )ﬁ"_( E,— Hy+1ic E;— Hy+1e )fi+ ( )
dove
Go(E;) = lim (E; — Hy + i)™ (3.30)
e—0t

¢ 'operatore di Green dell’hamiltoniana libera.

Consideriamo, ad esempio, il terzo termine della (3.21), che per ¢t — +oc da ’espressione
di secondo ordine della matrice S (3.22). Passando agli elementi di matrice e introducendo la
variabile 7 = t; — t3 > 0 si puo scrivere nella forma

() i\* [ —elt] i L dH0Z BT et
Sp = ~ /_Oo dte i dr < flVe' = (3.31)

Notiamo ora che, nella (3.31), sia |t| che 7 sono tagliati a valori del’ordine ~ L. Pertanto si pud
rimpiazzare e=**~7| — €77, rendendo indipendenti le integrazioni su t e 7 > 0. L’integrazione
su t produce una delta di conservazione dell’energia e quella su 7 la funzione di Green libera.

Si ottiene dunque

@ _ (v L v :/d _ VinVm 3.32

dove la presenza di +i¢ al denominatore regolarizza la singolarita per E; = E,, dell’integrazione
in d¢, nel caso continuo.

In seguito applicheremo la (3.29) ai problemi di emissione e assorbimento regolati dall’inte-
razione (3.11), tenendo presente che V = V) 4+ V() dove

(1) — Z Pr - £ra 0) V(2) — Z ez AZ(EM 0) (333)

2m,
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Se classifichiamo I'ampiezza come serie di potenze nel paramentro e (carica dell’elettrone),

otteniamo allora, limitandoci al secondo ordine

T =V, T =V (VOGEV) (334

fi

3.4 Transizioni di emissione e assorbimento. Approssi-

mazione di dipolo

La classe piu semplice dei processi € quella con An = 41 e corrisponde a transizioni atomiche
accompagnate dall’assorbimento o emissione di un fotone. L’ampiezza all’ordine piu basso e
di ordine e, ed & data, per la (3.34), dagli elementi di matrice dell’interazione di primo ordine
V(. Dato che, in un sistema atomico neutro, i protoni hanno una massa molto piti grande

dell’elettrone (m, ~ 2000m,), ci si puo limitare ai contributi elettronici scrivendo

V(l) = _%Zpr A(Ervo)
- N @ it
= —e ; v, kza NG (' (k)aq (k)e™* + c.c.) (3.35)

dove v, = Pr & 'operatore velocita dell’elettrone r—esimo e p, = —ihV,_in rappresentazione

delle coordinate. Come stati iniziali e finali consideriamo
li>=A> |-, nka >, lf>=|A"> | nga+t1,---> (3.36)

in cui cui il numero di occupazione ny , ¢ variato di +1 (emissione), oppure —1 (assorbimento),

mentre tutti gli altri ny o sono inalterati. Dalla (3.35) si ottiene, per I’assorbimento

Vaa(An = —1) = \/%\ [ricalie@ (k) - Y (vpe&) (3.37)

T

e, per ’emissione

VAA'(ATL = +1) = \/m
k

(nia + 1)he@ (k) - Y (ve™™ &) (3.38)

T

Notiamo che la differenza sostanziale tra (3.37) e (3.38) ¢ che il fattore fotonico cambia da

v/ a/n+ 1 per via della diversa azione degli operatori di discesa e salita:

an>=+/nn—1>, at In>=vn+1n+1> (3.39)
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In particolare a* crea un fotone anche dal vuoto e implica quindi nella (3.38) un elemento di
matrice non nullo per I'emissione spontanea, quando cioé non c¢’¢ onda em incidente (ny, = 0).

Pil precisamente si ha la relazione

Nk,a + 1

Nk,o

VAAI(ATZ = +1) = [VAIA(AT), = —1)] (340)

che collega le densita di probabilita di emissione e assorbimento per unita di spazio delle fasi

o = B8
em Nk,a +1 as
i) = Pt L,
2
— d3l€ 6 (Oz)* k _ik'ET 5
N (271')2 ka (nka + 1) € ( ) ) Z (vTe )AA’ (EA - EA’ - hCUk) (341)

Vedremo tra breve un’applicazione della relazione (3.41).
Notiamo ora che, in molte situazioni, si pud approssimare 1’elemento di matrice delle (3.37)
e (3.38) ponendo
e e ~ ek ~ (3.42)

(approssimazione di dipolo) in quanto & & di ordine di a e ka < 1 0 anche a < )\, dove a indica
il raggio atomico e A la lunghezza d’onda della radiazione emessa (ad esempio A > 100nm nel

visibile). Si ottiene allora per I’emissione

a 1 *
(M, +1) @

Vaa =
AA on

(k) (D) (3.43)

AA

dove D =e)_ &, & l'operatore di dipolo elettrico. Abbiamo visto nel Cap. 2 che I"approssima-
zione di dipolo corrisponde classicamente a trascurare la dipendenza del ritardo della radiazione
dai punti della sorgente. Dalla (3.42) vediamo che, quantisticamente, essa significa trascura-
re il vettore d’onda k nella funzione d’onda del fotone, ovvero il rinculo dell’atomo dovuto
all’emissione di un fotone di impulso k.

Calcoliamo ora la probabilita di transizione per unita di tempo dell’emissione di un fotone
nella transizione A’ — A. Dalle (3.27), (3.37) e (3.41), usando la delta di conservazione per

integrare sull’energia Awy del fotone finale si ottiene

(Zs e e )
AA!

dove abbiamo reintrodotto c¢, definito hwy = Ea — E4 e df)x ¢ lelemento di angolo solido

2

dwe _ @ W (Mo + 1) (3.44)

ko or 2

attorno alla direzione k del fotone finale.
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Nel fattore ng, + 1 il primo termine corrisponde all’emissione indotta. Imponendo che
l'intensita /(w)dw della radiazione incidente sia data dall’energia del numero ny, di fotoni

nella cella di spazio delle fasi corrispondente si ottiene la relazione tra I e ny 4:

I(w) = za: 0 (3)3 (3.45)

22 \¢

D’altra parte il termine 1 nella (3.44) corrisponde all’emissione spontanea di fotoni e non puod
essere predetto dalla teoria semiclassica della radiazione, che corrisponde al limite ng o > 1.
La relazione (3.41) fu applicata da Einstein all’equilibrio della radiazione em di frequenza w
con le pareti di un corpo nero alla temperatura T, per il quale esistessero due livelli E4 e F 4,
con Ey — E4 = hw. L’argomento di Einstein ¢ il seguente: se N4 e N4 sono le popolazioni
atomiche dei due livelli, in condizioni stazionarie, ci sono tante transizioni di emissione quante

di assorbimento e deve essere

NAdwa = NA:dwe (346)
con g—;‘, = ¢# per la distribuzione di Boltzmann. Dalla (3.41) e dalla (3.46) e (3.45) segue
allora

w -1 I 2
(e% - 1) =< ng >= (w37r3 (3.47)
n (%)

da cui si ottiene lo spettro di Planck per il corpo nero. Risulta anche che il numero medio
< nx > di fotoni nello stato k segue la distribuzione di Bose con potenziale chimico y = 0,

caratteristica questa della massa nulla del fotone.

3.5 Lo spettro di emissione spontanea. Vita media

Lo spettro di emissione (3.44) assume la forma pitu semplice nell’approssimazione di dipolo
(3.43). Notiamo innanzitutto che gli elementi di matrice di D sono collegati a quelli di D

dall’equazioni di moto nella forma di Heisenberg:

. 1 Ey—FEy
(D)AA, = < A|[Hy,D]|A >= "2 4 D), (3.48)

h ih

pertanto la (3.44) si puo riscrivere per ’emissione spontanea

(3.49)

e mostra alcune caratteristiche da notare:

1< Lo spettro e di ordine oo = 4;; ~ ﬁ, la costante di struttura fina, come ci si aspetta

da un processo al primo ordine.
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20 Lo spettro di potenza corrispondente ¢ ottenuto moltiplicando la (3.49) per hwy, che
e 'energia di ogni fotone, di modo che esso non dipende pilt da A. Esso diventa dunque tipico
dell’emissione di un dipolo “classico” (D) , 4, il quale & pero ottenuto direttamente dall’elemento

di matrice atomico: )

L)1 = [dviE) X Ew(e) (3.50

(&
dv =[] d*%,

ed e quindi una grandezza quantistica, in generale un vettore a componenti complesse.

&3<$ Calcolato o dato (D), 4, lo spettro (3.49) ha una dipendenza angolare non banale
per ogni polarizzazione €x . Di queste ne esistono due per ogni direzione di osservazione k,
con k - ex, = 0, e sono scelte a seconda della situazione sperimentale. Se non si misura la
polarizzazione del fotone, ma solo la sua intensita, allora il risultato (3.49) va sommato su

entrambe le polarizzazioni o = 1,2 e si ricostruisce cosi la proiezione trasversa al vettore k:

DiD7* * = DYDI*(§i4 B _ D, 2=DZ_ D& 1
> D'DViatiicq = D'D(6j — —5) = DL’ = [DP — |D k| (3.51)
a=1,2
da cui si ottiene \ )
dw k 1
e _ o i |ID 3.52
d Oz27rwlC e ( )

&4<$ Infine, la probabilita di transizione totale per unita di tempo si ottiene integrando

sull’angolo solido df2. Dato che in media angolare < k;k; >= %5ijk2 si ottiene la vita media

1 dw 4
i (9] ¢ — Zak?w
Te l/:i dek 3 k k

1 2

‘D,
e

(3.53)

Dunque gli stati eccitati atomici diventano instabili per radiazione di fotoni. Per una tipica
transizione del tipo 2p — 1s dell’atomo di idrogeno si ha 2 ~ a ~ %A, w e~ 10'%sec™t, ka ~

3102 e quindi
1 2
~D| ~ 10%sec™* (3.54)
€

1~ ak?w

E da notare che tutta la trattazione perturbativa data finora vale per tempi piccoli rispetto ai
tempi dell’ordine di 7 = 10™8sec per cui gli stati atomici diventano instabili. Cio si applica in
particolare al tempo di interazione 7, che deve essere molto lungo rispetto a wj; ', ma anche
corto rispetto a 7.

Notiamo infine che la distribuzione angolare della radiazione ¢ in genere non banale anche
nel caso non polarizzato (3.52), perché (D) ,,, puo essere un vettore complesso. Ad esempio,
nel caso delle transizioni 2p — 1s dell’idrogeno, ci sono tre stati 2p con proiezioni del momento
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angolare [, = m = 0 e m = +£1, dove l'asse di quantizzazione z ¢ definito ad esempio da un

campo magnetico che distingue i 3 livelli. Un semplice calcolo da allora

A )
(D)00 = A(O, 0, 1), (D)Oil = %(1, +1, 0) (3.55)
dove
Az a— [ drrted = Vot gy ~ 074 (3.56)
=a rrie” 2’ =v2—ag >~ 0. .
03\/5 R+ 35"

si vede che la transizione 0 — 0 corrisponde a un dipolo lineare lungo ’asse z e la distribuzione
angolare e

dw, 3 .
= — 0 3.57
dQy 87T S ( )

ove 0 = 0, ¢ I'angolo della direzione di emissione con quella del dipolo. In tal caso la radia-

zione emessa € plarizzata linearmente nel piano z,k e 'intensita e massima per la direzione di

™

osservazione f) = 7 , come succede per un’antenna rettilinea.

Invece le transizioni +£1 — 0 corrispondono a un dipolo nel piano z,y rotante in senso
orario (antiorario) rispettivamente. La distribuzione angolare si trova direttamente dalla (3.51)

ed e
dw,

dQy - 16mT

In tal caso la radiazione emessa € polarizzata ellitticamente, con semiassi dati da cos € nel piano

(1 4+ cos®6) (3.58)

z,k e 1 perpendicolarmente ad esso. L’intensita della radiazione & questa volta massima lungo

z, come succede per una corrente circolare nel piano zy.

3.6 Emissione di multipolo. Effetto Cerenkov

Abbiamo visto I'importanza del parametro ka, che nel caso delle perturbazioni atomiche é
dell’ordine del permille, e permette 1’'uso dell’approssimazione di dipolo. In altri casi ka pud
non essere piccolo (per i nuclei pué essere del percento, e piii), oppure ’elemento di matrice di
dipolo é nullo per qualche regola di selezione (ad es. nelle transizioni A¢ = 0, che conservano la
paritd). In tal caso gli esponenziali e¥™¢ nelle (3.37 3.38) vanno sviluppati in serie di potenze
di ka e, al primo ordine non banale per cui e*™¢ = 14 7k - £, la (3.38) contiene il termine

correttivo

hou = ec'k)y _ &i¢l (3.59)

oltre al termine di dipolo hp = ¢;D;.
Le correzioni cosi ottenute somo dovute agli elementi di matrice di quadrupolo elettrico e di
momento magnetico. Per vederlo basta decomporre il tensore e £i£{ nella parte simmetrica
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(collegata ad un tensore di spin 2) e antisimmetrica (collegata ad un vettore assiale), come

segue:
i ir€ s € i
= SEHQY + (kA €)= hg,

dove QY = e (€] — 11€,26%) ¢ il quadrupolo elettrico e p = £3° €, A €, é il momento
magnetico degli elettroni atomici (la parte §“ non contribuisce per ortogonalit € - k = 0).
Entrambi i termini (3.60) sono di ordine ka rispetto a hp, e il loro contributo é simile a quello
della (3.49), con gli elementi di matrice di hg,,,, al posto di quelli di hp. Termini con multipoli
di ordine superiore si ottengono dallo sviluppo di e a ordine (ka)? e oltre, ma non sono
trattati qui.

Le considerazioni fatte sopra si applicano se il sistema ha dimensioni a prefissate (elettroni
legati) e se il parametro ka é piccolo. La situazione é peré diversa nell’ultravioletto (grandi k)
oppure se il sistema ha dimensioni grandi o non prefissate, come del caso di elettroni liberi. Un
caso curioso di questo genere é quello dell’effetto Cerenkov, che consiste nell’emissione di luce
da parte di particelle cariche (come gli elettroni) quando si muovono in un dielettrico (acqua,
aria) con velocitd superiore a quella della luce nel mezzo. In tal caso si vedrd che 'esponenziale
et®€ della funzione d’onda del fotone é fondamentale per la conservazione dellimpulso del

processo e va considerato, ovviamente, a tutti gli ordini.

9E(p)
op

luce, cioé decadere in un elettrone di impulso p a in un fotone di impulso k. Nel processo si

Chiediamoci innanzitutto se un elettrone di impulso k e velocita v = possa emettere

conservano sia I'impulso che I'energia, per cui p’ = p — kK, e inoltre

E(p) = E(p — hk) + fuwy ~ E(p) — hv - k + huwy (3.60)

per cui deve essere
we ~k-v < |k| |v| (3.61)
Se il processo avviene nel vuoto la regola di dispersione é wy = |k| e quindi é impossibile

soddisfare la (3.61), che richederebbe v > ¢ = 1, cioé una velocitd dell’elettrone superiore
a quella della luce nel vuoto, in contraddizione con il principio di relativita. E ben noto
infatti che gli elettroni sono particelle stabili, e possono irraggiare nel vuoto solo se soggetti ad
accelerazione, se sono cioé in interazione con altre cariche esterne che trasmettono loro energia
ed impulso.

Se invece il processo avviene in un mezzo con indice di rifrazione n > 1, allora la regola di

[k

dispersione é wy = n' e la (3.61) richiede v > £ = X cioé una velocitd superiore a quella della

luce nel mezzo, cosa del tutto possibile per particelle molto energetiche . In tal caso la particella
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carica di velocitd v irraggia ad un angolo # con la direzione di v tale che, per la (3.61), (cono
di emissione Cerenkov)

cosf = = < 1. (3.62)
n

Questo processo ¢ alla base delle misure delle velocita di particelle molto energetiche (contatori
Cerenkov).

L’effetto Cerenkov pud essere descritto al primo ordine dall’interazione radiazione—materia
(3.35), tenendo conto peré di due peculiaritd: innanzitutto il campo em nel mezzo con indice
di rifrazione n d& un contributo dielettrico %EZ all’energia, con € = n?. Di conseguenza lo

sviluppo in modi propri di A viene a dipendere da n, come segue:

Ax,t) =) 4/ 2w2v% (€ (k)aq (k)e™ ™ <t + h.c.) (3.63)

dove wy = % e ¢ = 1. E facile verificare che la nuova normalizzazione (3.63) permette di

scrivere la hamiltoniana em
1 .
H= /d3m§ (nQA2 + T‘OtQ(A)> (3.64)
nella maniera standard

k
H=> hoa;@al?) (wk = U) , (3.65)
k,a

n

con [aq(k), a, (K')] = Oaer 0. Gli stati iniziali e finali del processo sono stati di elettrone libero,

con funzione d’onda nel continuo

= —e¢
Vi 7

ortonormali nel volume di quantizzazione V. Di conseguenza 1’elemento di matrice di emissione

(3.38) diventa

Up() = e (p::gzé(nh7m,n9> (3.66)

__evh
2wV @

@6 ("’T*p — k) nel limite di V' — oo, e la probabilitd di transizione

differenziale diventa anch’essa proporzionale ad una delta di conservazione dell’energia. Infatti:

Vop = (k) - v O v=s; (3.67)

cioé proporzionale a

_ 2me’h
 Vh2uwin?

dw

2 3 '
€ |26 (By — By — ) < ‘7;) 53 (p - L k) d;. (3.68)

lo spazio finale delle fasi é dato da d¢; = (;i—g;?,V(‘ka);V: esso cancella la dipendenza dal volume

di normalizzazione e fissa p' = p — fik e fiwx = F — E' ~ kv - k, secondo la (3.61). Integrando
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su p' e cos f) con la funzione delta di conservazione resta una probabilitd differenziale in w =

dw 9
= a— . —-1) = .
dw = « » E le - v|*©O(nv — 1) (3.69)

€

e 1. - (n<z>v)2]@ (vat):

dove nell’ultima riga si é usata la somma sulle polarizzazioni ~ sin?#, e si é ripristinata c e la

dipendenza dall’indice di rifrazione dalla frequenza. Lo spettro di frequenza (sostanzialmente
nel visibile) é sostanzialmente uniforme, ma tagliato ad alte frequenze (w < w.) perché n(w)
tende verso 1 e quindi raggiunge, alla frequenza di taglio, n(w.) = £, ciot il valore minimo
accettabile.

3.7 Diffusione della luce: scattering Thomson
Consideriamo ora il processo di diffusione di un fotone da un atomo
kl, €1 + A — k2, €y + A’ (370)

in cui lo stato finale A’ pué essere diverso da A. Dato che viene assorbito il fotone iniziale ed
emesso quello finale, ’ampiezza di transizione é di ordine e?. Ad essa contribuiscono, secondo

la (3.34) sia il vertice V(?) al primo ordine perturbativo che quello V() al secondo ordine:

fi - %\/2(,01‘/2&)2‘/ EA + hw1 — En

dove il fattore 2 nel primo termine deriva dal calcolo dell’elemento di matrice di A2, in quanto

2 g e ' AV M A
T = C 2 ah Ntk g s 3OS AW D> nVIA> g )

uno qualsiasi degli A pud distruggere (creare) il fotone iniziale (finale).

L’espressione (3.71) é ricca di struttura, ma si semplifica drasticamente se l’energia del
fotone hw; > AFE é molto piu grande delle differenze di energia atomiche, sempre restando mel
limite non relativistico (hw; < mc?). Cié é dovuto alla soppressione causata dal denominatore
di energia nel secondo termine della (3.71). Se inoltre si usa Papprossimazione di dipolo e®*¢ ~
1 elemento di matrice nel primo termine diventa semplicemente 44 ed é possibile solo la

diffusione elastica. Si ottiene quindi

2) ~ 62 77,

P Qmwlv(SA,Aneel - €5 (3.72)

dove n, é il numero di elettroni atomici. In altre parole il fotone diffonde da ciascun elettrone
come se fosse libero, e lo stato atomico non viene cambiato. L’ ampiezza limite (3.72) prende il
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nome da Thomson e viene di solito considerata come il limite universale di bassa energia della
diffusione di cariche elementari (la condizione w; > AE permettendo di congelare la struttura
atomica).

Osserviamo ora che la quantitd misurabile in un processo di diffusione non é la probabilita
di transizione, ma la sezione d’urto. Infatti nel processo di diffusione (3.70) lo stato inizialeé
non normalizzabile, e corrisponde ad un flusso ¢; = %c = % di fotoni entranti che dipende dalla
normalizzazione degli stati del continuo e viene qindi fattorizzato, definendo la sezione d’urto
differenziale (per un solo elettrone)

2
€1 - 6; dQQ (373)

2

2Vdik e

(27)?

d
T T h 1L

Ne€q - €

_dwy; 2n6(A(w —w2)) | R
B drmc?

B 2mw V'

Vediamo che la (3.73) é indipendente, come deve, dal volume di normalizzazione V. Notiamo
anche che nella (3.73) interviene il raggio classico dell’elettrone ry = 4;% e non interviene,
invece, la costante di azione h. Si tratta quindi di un risultato semiclassico la cui struttura é
dovuta soprattutto alla geometria del prodotto scalare delle polarizzazioni € - €.

Per capire la distribuzione angolare della (3.73) consideriamo il caso in cui il fotone k;
incide lungo 'asse z, con polarizzazione lungo ’asse =, mentre quello uscente ko ha anomalia 6
e azimuth ¢. Una base delle polarizzazioni finali é ad es.

€1 = (cos ¢ cos b, sin ¢ cos B, — sin ) € = (sin @, — cos ¢, 0) (3.74)

caratterizzate dall’essere nel piano di scattering zk, la prima e ortogonale ad esso la seconda,

sempre con €; - ko = 0. Se non si osserva la polarizzazione finale si ha semplicemente

do

el |z = 72(cos® ¢ cos® O + sin” @) (3.75)

Per un fascio incidente polarizzato lungo y si avrebbe

d
d_SGZ |, = 5 (sin® ¢ cos® O + cos® ¢) (3.76)
e, per uno non polarizzato
do 1 (do do '\ o1,
=3 (gle+ i) = rigteost 041 (8:77)

risultato che, in questo caso, non dipende da ¢. E da notare che, nell’ultimo caso, si é usata una
media incoerente. Da tutte le espressioni precedenti, integrando sull’angolo solido, si ottiene
la sezione d’urto totale Thomson ¢ = 87r2/3, la quale ¢ indipendente dalla polarizzazione
incidente e piuttosto piccola, dato che ry e dell’ordine di 1 fermi.
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Il fascio di fotoni incidente potrebbe essere anche parzialmente polarizzato con probabilitd

p lungo z e (1 — p) lungo y. Intal caso si avrebbe
do do do
= (rkra-ne) (379

risultato che non é invariante per rotazioni attorno all’asse z, dipendendo da ¢ in modo non
banale, nel caso p # 1/2. Questo mostra che, per specificare uno stato misto parzialmente

polarizzato, bisogna precisare bene la base delle polarizzazioni che lo definisce.

3.8 Scattering Raman

Se I’energia del fotone fuv; é dell’ordine dell’energia tipica di transizione atomica AF, il secondo
termine della (3.71) va tenuto in conto, anzi pué essere molto piu importante del primo. Notia-
mo allora che gli stati intermedi |n > possono coincidere con lo stato eccitato n dell’atomo, ma
possono anche contenere uno stato atomico m e i due fotoni, quello finale e quello iniziale. Si
ottengono quindi due termini o diagrammi, i quali differiscono perché nel primo viene assorbito
prima il fotone iniziale ed emesso poi quello finale, e viceversa nel secondo. Si ha allora, in

approssimazione di dipolo

h e? (D ' 6§>A:n (D . el)nA _ (D ' 61>A’m (D . 63)

Ty = ——— | —€1-€ndan : 2 md3) 79
f 2V \Jwiws mE1 €amedan + fil(wy — wpa + ie€) F(wy + wima — i€) ' )
h

= —— fu 3.80
TN fara (3.80)

dove hAw,, = E, — FE 4 e, corrispondentemente

dO' (o) fAIA

=2 = ) .81
10 o | 4 Wy = W1 +Wwaa (38 )

In questo caso, a causa del secondo termine della (3.79), & possibile anche diffusione anelastica
A" # A (scattering Raman).

L’ampiezza f4r4,in parentesi quadra nella (3.79), ha le dimensioni di una lunghezza, e pué
essere messa in una forma piu conveniente con 1’'uso di varie identitd fra gli elementi di matrice

(che non riportiamo qui) come segue:

(D ) 6;)A’n (D ) 61)nA _ (D ) 61)A’WL (D ' 6;)'mA
A(wi — wpa + ie€) (w1 + Wmar — i€)

fara = wiw, (3.82)

dove e stata inglobata ’ampiezza Thomson e sono state fattorizzate le frequenze iniziale e

finale. Quest’ultima forma é tipica del potenziale efficace di dipolo Ve;y = —D - €, e mostra
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chiaramente la struttura delle risonanze quando w; ~ wy, per qualche n. Inoltre i fattori di

frequenza si combinano a dare g—g ~ wi ( Ai‘]‘j;y nel limite di bassa frequenza w; < Awar4, se
cioé wy é piu piccola della frequenza di transizione tipica. Questo spiega ’andamento di tipo
w? della diffusione a bassa frequenza.

Resta da analizzare la regione di risonanza, in cui w; si avvicina ad una delle possibili
frequenze di transizione. E da notare che la (3.82) ha, a rigore, una divergenza nel limite
w1 = wpa e cessa qindi di essere valida per w; — w4 ~ 1/7 dove 7 é la vita media dello stato n
dovuto alla transizione n — A. Questo significa che, in questo limite, gli ordini perturbativi
superiori diventano importanti: si puo infatti arguire che il denominatore di energia andrebbe
corretto, da questi ordini superiori, sostituendo € con la larghezza naturale v = 1/7 dello stato.
Quindi per Aw = wy; — wpa ~ % la sezione d’urto non polarizzata assume approssimativamente

la forma di una risonanza alla Breit—-Wigner

127 72 /4
ki (Aw)? +72/4

(3.83)

Oris =

ed ha un massimo 0,4, = 3A?/7, di tipo geometrico, molto piti grande dell’ o.d.g. tipico 47r3.



Capitolo 4

Condensazione di bosoni e superfluidita

Consideriamo ora una applicazione della teoria dei campi alla materia a bassa temperatura. In
questo caso i campi con numero variabile di particelle da considerare sono quelli degli atomi o
degli elettroni - rispettivamente bosoni o fermioni - in un regime di energie non relativistico.
Si tratta dunque di particelle con massa, caratterizzate dall’equazione di Schroedinger ad una
particella, con regola di dispersione wy, = hk?*/2m. Dato che la massa implica una grande
energia di riposo mc?, un sistema statistico con un numero N di particelle non ha fenomeni
importanti di fluttuazione del loro numero totale ad energie non relativistiche. Tuttavia, la
teoria dei campi & utile per descrivere i fluidi bosonici (e fermionici) a temperature vicine allo
zero assoluto. Nello stato fondamentale di tali sistemi gli stati quantistici di energia piu bassa
sono occupati da una buona frazione del totale delle particelle e il formalismo della teoria dei
campi € in grado di trattare gli scostamenti dalla situazione di equilibrio e le fluttuazioni del
numero di particelle eccitate.
Il fluido di Bose degenere é caratterizzato dal fenomeno della condensazione nello stato con
k = 0. Ricordiamo la distribuzione di Bose:
3
dN = é‘;)’; — (k> 0) (4.1)
e k8T —1

in cui valori positivi di u sono esclusi, perche la (4.1) avrebbe una singolarita non integrabile

nello spazio k. Allora il potenziale chimico p < 0 é determinato in funzione di n = % e T dalla

condizione di "normalizzazione”

V 7 h
N=—_fl-+t-) , N e —n_— 4.2
A3 (KBT) vV 27rmKBT ( )

4 [ 2%dx 3
f(a):ﬁ/o ng(i) per a<0.

46
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T A
£(3/2)
T>TC
ey
-~
o= 1K)

Figura 4.1:

Esiste dunque una temperatura critica per cui

-per T'> T, si ha p < 0, determinato per basse densita come per il gas di Maxwell

-paxT=T, = p=0 e n=CE)\NT)3~ Tcg

- per T < T, , solo una frazione delle particelle n(T) = ((3)N(T)~® si trovano negli
stati con £ > 0 , mentre n — n(7T) = ny si trovano nello stato fondamentale con k& = 0.

Sotto la temperatura critica si forma dunque un condensato, con un numero macroscopico
di particelle nello stesso stato quantico. In queste condizioni, il numero di particelle ”in moto”
pu6 fluttuare in quanto il condensato funge da serbatoio e pertanto gli effetti di mescolamento
di numero di particelle sono importanti. Per questo, conviene descrivere il sistema con un

campo quantistico non relativistico.

4.1 Campo bosonico di Schroedinger

Consideriamo la quantizzazione degli stati a molti corpi di una particella di spin zero (ad
esempio un atomo nel suo stato fondamentale) il cui moto segue 1’equazione di Schroedinger.
Dato che, nel limite classico, si ottengono stati di una particella e non un campo — il quale
corrisponderebbe ad un’onda di De Broglie sovrapposizione coerente di stati a molte particelle
— conviene partire direttamente dallo spazio di Fock degli stati a numero arbitrario di particelle.
Sappiamo che gli stati ad una particella di funzione d’onda 1 sono descritti dalla sovrapposizione
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[ >=> " tal|0> (4.3)
k

di modo che |¢)|? d4 la distribuzione di probabilité negli impulsi p = hk. E allora naturale

definire il campo ¢(x,0) in modo che

[ >= / Brp(x)pl(x,0)[0 >  dove p(x) = Z \/iveik%k (4.4)

é la funzione d’onda nella rappresentazione delle coordinate. Identificando le (4.3) e (4.4) segue

che

Z ake_’k'x (4.5)

ha il significato di operatore di creazione ”nel punto x”.

Si noti che i casi fononico e fotonico esaminati in precedenza sono diversi, perche ci sono sia
frequenze positive che negative, e la parte u{~)(x, 0) del campo a frequenze negative non si pué
estrarre da u con un operatore locale: percié u~ non ha l'interpretazione di creare particelle

localmente. Invece, per il campo di Schroedinger si pué definire un campo con solo frequenze

positive
1 , hk?
et R Z(k'x_‘-")kt) —_
d(x, ) ij N W = 5 (4.6)
il quale soddisfa ’equazione di Schroedinger libera
ny V2

e le regole di commutazione a tempi uguali con il campo coniugato

[6(x,1), 6" (y,8)] = 6(x — y) (4.8)
tipiche di operatori di creazione e distruzione locali.

Esiste anche una lagrangiana

V¢iVe
2m
le cui equazioni di Eulero-Lagrange danno la Eq.(4.7), ma che ha diverse peculiaritd. Infatti,

L=ihptd —RP— = (4.9)

essa é del primo ordine in ¢, con momento coniugato II = ih¢!, e con hamiltoniana,

ViV

H = quS L=r—"T"T
2m

(4.10)
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Dunque, le regole di commutazione canoniche fra ¢ e II, cioé [¢(x,t),I1(y,t)] = ihd(x — y)
diventano regole di commutazione fra ¢ e ¢! e danno luogo precisamente alla Eq.(4.8).

La ragione di queste peculiaritd sta nel fatto che ¢ é un campo complesso, il quale ingloba
due variabili reali, cioé il campo vero e proprio e il suo momento coniugato. Si pud infatti

riscrivere ¢ in termini di parte reale ed immaginaria
1 i oo 1 .
¢ —ﬁ(go + ﬁﬂ) , iho —ﬁ(ﬂ' + 1hep) (4.11)
e riformulare il problema in modo che appaia di secondo ordine nel tempo per il campo reale ¢, il
quale ha regole di commutazione canonica con 7. La ridefinizione (4.11) non é poi sorprendente
dato che, per le (4.6) richiama la relazione che esiste fra ay e la coppia g, px in rappresentazione
degli impulsi.

Notiamo infine che I’energia totale del sistema é data da

H—/’Hd?’x—Za*a S (4.12)
- R T '

come ci si aspetta per un insieme di particelle di Schroedinger libere. Nel seguito intro-
durremo delle interazioni nella Hamiltoniana, in modo da dare un modello campistico della

condensazione.

4.2 Modello di Landau del condensato con interazioni

Si vuole descrivere un gas di Bose a temperature vicino a T' = 0 in cui da una parte si forma il
condensato a k = 0, e dall’altra le particelle non possono avvicinarsi troppo a causa dell’intera-
zione repulsiva per volume finito degli atomi (gas di Bose quasi perfetto). Il modello di Landau
contiene un termine di potenziale attrattivo a piccole densité e repulsivo a grandi densitd, come
segue

h2
2m

Hers = 5 (V6)|(V6) — nd'6 + 59(810)° (4.13)

ove i e g sono costanti positive. Si tratta di un modello fenomenologico, i cui parametri, al
variare della temperatura attorno a quella critica di condensazione, descrivono la transizione
di fase del sistema. In particolare il parametro p (potenziale chimico) varia da g < 0 (fase
ordinaria) a p > 0 per la fase condensata che vogliamo considerare.

Notiamo che il termine attrattivo, corrispondente ad una massa negativa (!) - o potenziale
chimico positivo - favorisce grosse densita |¢|*> e sard 'origine - vedremo - del condensato. Il
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secondo termine, repulsivo, descrive invece gli effetti di volume finito delle particelle quando
queste si urtano.

A VUIH D
1%
4
\/ i
Figura 4.2:

Appare dalla forma del potenziale che |¢| = 0 é un massimo instabile, mentre il minimo é
a |¢o| =+/11/9g, per qualsiasi valore della fase di ¢y. Si deve dunque cambiare tipo di sviluppo,
definendo lo sviluppo “spostato”

b=d+éx) , dx)=> % (4.14)

Ik|>0

3

ove ¢y = |¢ple? é uno qualsiasi dei minimi degeneri.
Scegliere 0 (ad es. @ = 0) equivale a scegliere lo stato fondamentale dello sviluppo descritto

dallo stato coerente

6o >= Neap (ﬁ%ag) 0> | <|¢0\2 = g = % = no) , (4.15)

ove aé é l'operatore di creazione nel modo k = 0. D’altra parte, la Hamiltoniana (4.13) é
invariante sotto trasformazioni di fase ¢ — e¢ con § = cost (trasformazione globale), e
quindi H.p; commuta con N = Y, alay, generatore di tali trasformazioni. Percid lo stato
fondamentale, in cui § puo variare di poco attorno ad un valore fissato, rompe la simmetria .

Scegliendo ¢ reale e sviluppando in q3 fino ai termini quadratici si ottiene la nuova forma
della hamiltoniana

1Si pud mostrare che gli altri stati fondamentali degeneri rispetto a # non possono essere generati dallo
sviluppo attorno a ¢ se lo spazio delle x ha pii di una dimensione, in particolare in tre dimensioni. Questo
perche la transizione “tunnel” fra diversi 8 € soppressa dalle dimensioni spaziali.
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p? VoiVe  p

_ = 2 [l 7H\2 73 74 4.1
Hegy = —5, =0 +5(0+ 60" +0(¢%, ¢7) (4.16)
e, per integrazione su d*z,
2 21,2
Iz hk 7
Hepp= —%V + E [(u + o ) alag + §(aka_k +alal )] . (4.17)

k[>0

Si noti che 'ultimo termine pud creare o distruggere coppie di particelle di impulso oppo-

sto. Quindi H.¢; conserva l'impulso, ma non N = Z|k‘>0 a,tak, e non ha piu esplicitamente
I'invarianza per trasformazioni di fase della (4.13) 2.

La Hamiltoniana (4.17) non é piii diagonalizzata da a, e a!,, ma da una loro mescolanza,

ottenuta con la trasformazione di Bogolubov:

1 1
Ay = cosh <§0k> ay + sinh (§0k> a‘:k . [Ax, A};,] = Oppr- (4.18)

Infatti, si pud scrivere esplicitamente

Heff = E() + Z €(hk)A};Ak (419)
|k|>0
purché si ponga
p 21
E,+ v =_ inh?= :
0+ ng Z e(hk)sinh 20k <0, (4.20)
k|>0
p”\’ p p*\’
= — | —p?=4/—p? — 4.21
¢(p) (u+ Zm) Iz P <2m) , (4.21)
2k2
tghf, = =hk . 4.22
ghOy = p/ <u+ 5 ) , P (4.22)

Ne derivano alcune importanti conseguenze:

1) Il nuovo stato fondamentale é definito da

Ak|</;0 >= 0= (ckay, + SkaT_k)‘q;o > (4.23)

ed ha la forma

2Scegliendo un diverso minimo ¢g = |@o|e?, la fase 6 entrerebbe direttamente nella (4.17) e nelle espressioni
che seguono. Cioé, solo il complesso delle hamiltoniane H,zz(6) rispetterebbe la simmetria.
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g >= Nexp[—% Z tgh (%Hk) alal,]|po > (4.24)

|k|>0

2) I nuovi modi propri, o eccitazioni elementari del sistema sono del tipo AL|¢~>0 >, con energia

¢(p) :\/%pQ n (%3 . { v|p| perp—0 (ve =v/E) (4.25)

p?/(2m) per p — c©

con p = hk.

Quindi il nuovo condensato contiene anche coppie con |p| > 0, di impulso opposto. Inoltre,
lo spettro é fononico per |p| — 0, e solo per grandi impulsi si riconnette con la nota dispersione
di particelle libere. Lo spettro (a) che ne deriva é confrontato, in figura(4.3), con lo spettro
fisico dell’elio (b), il quale presenta un minimo locale, dovuto ad altre interazioni attrattive
di media distanza (rotoni), ed inoltre una curvatura negativa per |p| — 0, importante per la

stabilta dello spettro.

€(P)
N

Figura 4.3:

4.3 Superfluidita e rottura di simmetria

La conseguenza fisica principale dello spettro di Landau ora discusso é quello della superfluidita:
cioé, un corpo che si muove nel fluido con v < v, non presenta viscositd - cioé, non riesce a
trasmettere energia al fluido stesso - perché ’emissione delle eccitazioni del sistema é proibita
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dalla conservazione dell’energia e dell'impulso. Infatti, per tale corpo deve essere soddisfatta la
relazione:
P? (P - hk)?

A e fik - v = e(hk) (4.26)

e quindi deve essere €(fik) < hilk| - |v| per qualche |k|, ove v & la velocita del corpo.

Se dunque |v| < Min(e(p)/|p|) = ve, 'energia non si pué conservare e la viscosita é zero.

Figura 4.4:

Si vede dalla figura 4.3 che il fluido di Landau di tipo (a) ha o8 =y, = i/ m, mentre o)

é determinato dal minimo rotonico. Si avrebbe invece v, = 0 per lo spettro €(p) ~ p?/2m , di
tipo particella, da cui siamo partiti: il fluido di particelle (quasi) libere é viscoso per qualsiasi
velocitd. E dunque essenziale, per la superfluidita, la formazione del condensato che ha dato
luogo al mescolamento di particelle e di coppie nella trasformazione di Bogolubov.

Il modello a cappello messicano del potenziale di Landau é comune a molti campi della fisica
e connesso con il fenomeno dalla rottura spontanea della invarianza per trasformazione di fase
gid notata. Benché la Hamiltoniana di partenza sia invariante, la scelta della fase di ¢y rompe
la simmetria nella forma (4.17). In questi casi, in cui la simmetria é rotta dalla scelta dello
stato fondamentale, si parla di rottura spontanea della simmetria. Resta tuttavia una traccia
della degenerazione del minimo rispetto alla fase, dato dalla esistenza dei fononi €(|p|) =~ v.|p|
i quali corrispondono grosso modo alle oscillazioni di fase del campo.

Nel caso della magnetizzazione spontanea, la simmetria rotta é l'invarianza per rotazioni, e
fononi corrispondenti sono le onde di spin, o magnoni.

Nel caso della Cromodinamica quantistica, teoria relativistica delle interazioni nucleari forti,
la simmetria rotta é la cosiddetta simmetria chirale, e i fononi corrispondenti sono particelle di
massa nulla ( i ”bosoni di Goldstone”) oppure piccola, come il pione di Yukawa nel caso della

simmetria chirale.



Capitolo 5
Equazione di Dirac

La scoperta dell’equazione relativistica dell’elettrone é un esempio illustre di come, cercando
la soluzione di un problema mal posto, si arrivi in realta a risolverne un altro, pii importante,
con conseguenze non immaginate prima. Il problema iniziale é quello delle equazioni quanti-
stiche, relativistiche, locali, a una particella, che generalizzino I’equazione non relativistica di
Schroedinger. In realtd, si scopre poi, queste quattro condizioni sono fra loro incompatibili e la
soluzione del problema porta a definire un campo di Dirac, a numero indefinito di particelle pia
coppie particella - antiparticella e non, come si voleva, una funzione d’onda ad una particella.
E si scopre anche che la natura prevede una antiparticella di carica opposta per ogni particella,
il positrone nel caso dell’elettrone.

Che le quattro condizioni dette sopra siano fra loro incompatibili si pué capire sulla base
del principio di indeterminazione. Per localizzare una particella — ad esempio un elettrone e~
— in uno spazio Az bisogna fornire un impulso Ap 2 h/Az e una energia AE ~ cAp. Ma
se si vuole Az arbitrariamente piccolo (equazione locale) allora AE diventa arbitrariamente
grande: in particolare, per Az < i/(2me) si ha AE > 2mc? |, e viene creata una coppia e~ -
et ; quindi, non ¢é pid una sola particella, ma una particella pit un mare di coppie che possono
essere localizzate, cioé un campo. Dunque relativita e localita entrano in contraddizione con la
meccanica quantistica a meno che non si parli di un campo di Dirac e non di una particella di
Dirac.

Proviamo ad abbandonare la localita: allora é facile costruire una equazione d’onda quan-

tistica e relativistica, semplicemente ponendo

ih%wa =Vp’? +m’cY, , (p=—iliV) (5.1)

ove 0 = —§,..,+s per uno spin s. Questa equazione é a frequenze positive e relativistiche, ma
non € locale perché la radice pué essere solo definita come operatore integrale o, in altre parole,

o4
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contiene un numero infinito di derivate. Si pué pensare di passare ad una equazione locale

semplicemente quadrando la (5.1), e si ottiene

1 02 m2c?
(?ﬁ‘v2>w+ =0 (5.2)

Questa é 'equazione di Klein - Gordon, corrispondente ad onde di plasma di velocita c e

wo = mc?/h. Essa si pud usare per un campo di spin zero, ma non per una funzione d’onda,
in quanto contiene sia frequenze positive che negative, e inoltre non ammette una semplice
interpretazione probabilistica perche’ la densita della sua corrente conservata non e definita
positiva.

Dirac pensé di cercare una equazione del primo ordine nel tempo, cioé una “radice quadrata”
della (5.2), che peré fosse locale, cioé con un numero finito di derivate. Dato che questo
é impossibile per una sola componente (vedi la (5.1)), si pué cercare una soluzione con pid
componenti (lo spin!) e che sia lineare nel gradiente, V, data la forma quadratica della (5.2).
Cioé:

s
ot

ove ¢; e [ sono 4 matrici in uno spazio da determinare. La condizione che il quadrato dia la

ih = [mc25 -+ ca - p]aailﬁal = ilao"llja' (p = _’th) (53)

(5.2) si scrive, con h=c¢ =1,

1
mpi{aiB;} +m*B* + pipj§{oziozj} =m? + p*

da cui

B=ai=1, {aoy}=0 (i#j) , {a;,B}=0 (5.4)

Cioé, le 4 matrici 8 ed a; hanno quadrato 1 e anticommutano con indici diversi.
La soluzione pit semplice delle condizioni (5.4) si trova in uno spazio a 4 dimensioni, ponendo

ad esempio

1 0 0 ¢
= , a= 5.5
P 0 -1 a0 (5:5)
con una notazione di sottomatrici 2 x 2 1. La soluzione (5.5) non é 'unica possibile, e va sotto

il nome di rappresentazione di Dirac: essa é particolarmente utile nel limite non relativistico,

'Le 3 matrici o; di Pauli sono di quadrato 1 e anticommutano a indici diversi. Per aggiungere una quarta,
anticommutante, bisogna raddoppiare lo spazio. Infatti, le matrici o e § hanno quadrato 1 e quindi autovalori
1 e —1. Pero’, dato che anticommutano, sono anche a traccia nulla, per cui devono avere dimensione pari.
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mentre altre rappresentazioni si possono ottenere con una trasformazione di similitudine. Esiste

. . . 01 .
una quinta matrice, 5 = —taqy o0 = Lol che anticommuta con 3 e Sa; ed ha quadrato

1, la quale é collegata con la cosiddetta chiralitd, importante nel limite di massa nulla.

Notiamo innanzitutto che la (5.3) ammette la corrente conservata J° = yf, J* = ¢layp,
tale che 9,J* = 0. Pertanto si potrebbe pensare ad una interpretazione probabilistica con J°
densita di probabilita. Tuttavia, dato che h2 = p% +m? = E?, la Hamiltoniana h ha autovalori
+E,, cioé sia positivi che negativi. Ci si potrebbe dunque fermare qui, in quanto I’equazione di
Dirac non pué definire - per questa ragione - una buona funzione d’onda localizzabile ad una
particella.

Vedremo per6 che tutte le soluzioni - a energia positiva o negativa - ammettono interpre-
tazione fisica come campi di spin 1/2 di particella o antiparticella. Per questa ragione, le
componenti sono 4 e non 2. Inoltre, le soluzioni a energia positiva in campo Coulombiano
danno un’ottima descrizione delle correzioni relativistiche all’atomo di idrogeno. Studieremo
dunque sia le soluzioni dell’equazione libera, che rappresentano i modi propri del campo, sia
il limite non relativistico delle soluzioni a energia positiva in campo elettromagnetico esterno,

prima di passare alla interpretazione relativistica e quantistica del campo di Dirac.

5.1 Soluzioni dell’equazione libera

L’equazione libera di Dirac ammette soluzioni stazionarie della forma

¢ — e—zEtezp-x — e—zEt( )ezp-x ’
X

ove ¢ e x sono spinori a due componenti che sono “grandi” e “piccoli” nel limite non relativistico,

e soddisfano I’equazione

E(z) B ( ET-np 5—771: ) (i) - (—Tr:r(isx++2 P;<¢) (5.6)

con F = £FE,. Per le soluzioni a energia positiva £ = Ej conviene esprimere le piccole

1

componenti come x = (E, + m)~'d - pp. Si ottiene dunque

o) = ( % WE+m 57)

dove lo spinore a 4 componenti é normalizzato a ufu = 2E, se ¢'¢p = 1.
Lo spin di % pué essere studiato dalla definizione di momento angolare nel sistema di
quiete, cioé per p = 0, e usando poi le trasformazioni di Lorentz, in quanto I’equazione di Dirac
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é covariante (vedi seguito). Piu semplicemente, si pudé notare che h nella (5.6) commuta con

g-p 0
Op . . |,dove p=p/|p|. Quindi gli stati con proiezione
g-p

i% dello spin lungo I'impulso si ottengono semplicemente ponendo

Poperatore di elicitd, ¥ - p =

G por = (A=) (5.8)

e sono dati da 1/JI()J;) = ¢!Px~Erl)y, (p) , con

ux(p) :\/m(ﬁqb) . A==+l (5.9)

Ep+m
Si noti che x, = O (%) o per |p| << m, mentre nel limite di massa nulla y, = A¢, e quindi
u) diventa autostato dell’operatore s, detto chiralita:

Tua(P) = dua(p)  (m=0) (5.10)
Per le soluzioni ad energia negativa £ = —E},, é conveniente esprimere ¢ in termini di x, in
quanto le componenti si scambiano di ruolo: ¢ = —(E, +m) '3 - px. Inoltre conviene definire

la soluzione di base vy (p) con elicitd e impulso cambiati di segno, come per 'energia ?, ponendo

Ypr = e E00,(p) L opua(p) = —Aua(p) (5-11)

Si ottiene allora I’espressione

i-p —Ipl y
vA(P) =\/Ep+m(EP+mX)‘) =\/Ep+m(Ep+m XA) , (5.12)
XA XA
con gpxx = —AXx. Nel limite di massa nulla viene dunque ad essere y5vx(p) = —Ava(p). Cioé,

chiralitd ed elicitd sono equivalenti per un fermione di massa nulla (candidato, il neutrino), a

parte il segno dell’energia.

5.2 Soluzioni in campo esterno. Limite non-relativistico

Un campo elettromagnetico esterno viene introdotto nelle equazioni di Dirac con la sostituzione

minimale che, nel caso stazionario, corrisponde alla sostituzione

E—-E—-eA’ |, pop—eA=7 (5.13)

2Gli stati con significato fisico sono quelli di antiparticella che, come vedremo, appaiono come “buchi” nel
mare di stati ad energie negative ad hanno quindi, energia, impulso ed elicita opposti.
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L’equazione si scrive dunque nella forma

E(¢>:((m+eA°)qﬁ+&-7?x) | .14

X G-Td+ (—m+eAd)x
che studiamo per energie positive £ = m+ A, con A << m. Lo spinore x pué essere eliminato

scrivendo simbolicamente

(A—eAVp =G -7x =5 -7(2m+ A —eA®) G- 7¢ (5.15)

Questa equazione pué essere sviluppata in serie di potenze di (A —eA%)/m ~ v?/c?. All’ordine
pit basso il secondo membro si riduce a (& - 7)%/(2m), e quindi
e A\2

Ad = |eA® _ 7. B 1
¢ = [eA” + 5 5l ¢ (5.16)

dove si é usata I'identita
— N2 _ =2 - 1
(O"ﬂ') = 0,0;T;T; =T —i—zeijkaké[m,wj]

con [m;, ;] = [pi — €A;, pj — eA;] = ie(0;A; — 0;4A;).
Si nota dunque come la (5.16) contenga una interazione dello spin dell’elettrone con il campo
magnetico esterno corrispondente al momento magnetico
eh eh
u:%a:%-% , (5.17)
da cui segue che il fattore giromagnetico dell’elettrone é g. = 2, una predizione importante
dell’equazione di Dirac.
L’ordine sucessivo dello sviluppo della(5.15) é parecchio pid complicato, ma é comunque

importante per la struttura fina dell’atomo di idrogeno 3. Si parte dall’approssimazione

1 A —eA°
A—eA)p~g - 7—|(1—-—— )& -7 1
( eA")p ~ & L ( 5 )o TP (5.18)
che si riscrive passando A a 1° membro:
(7 - 7)? (7-7)? o G-7eA'% -7
All ~ A" ———— 5.19
( N (2m)? ¢ 2m oA (2m)? ¢ (5.19)
Successivamente si ridefinisce ¢ =4/1 + (%)QQS e si ottiene A¢ = he, con

3Uno sviluppo sistematico richiede I'uso delle trasformazioni di Foldy - Wouthuisen. Qui ci limitiamo a
definire una hamiltoniana efficace al secondo ordine.
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(@72 _[(@-#) 1[527: [Q’QAOH

~ eA" - - =
- 8m? 2 2m

ove si é approssimato [1 + (%)2} ~1-— (ﬁ)2 raggruppando 4 termini dello sviluppo nel
doppio commutatore.

Il terzo e quarto termine della (5.20) danno le interazioni di struttura fina, rispettivamente
la correzione v*/c? all’energia cinetica e I'interazione spin - orbita. Infatti, ponendo A = 0 per

il caso dell’idrogeno, si ottiene *

a-p [d-P e .., . e e .
—, | =—,eA’|| == [0V, 6-E]|=—=7 -EA ——divE 5.21
[Qm’[Qm’e H (2m)? V.5 E] omz’ p+4m2 v (5:21)
e, infine
~ eh? 1 0A° eh?
- 7L+ —AA° 5.22
= ome 2mr or © + 8m? (5:22)

[ termini di ordine v*/c* nelle (5.20) e (5.22) contribuiscono alla struttura fina degli atomi

idrogenoidi, cioé alle correzioni di ordine relativo (Za)? ~< v? > /c? ai livelli. 11 loro effetto

viene valutato usando la teoria delle perturbazioni al primo ordine. Il termine — (é’;f é valutato
usando la relazione fra 2> e il potenziale e d4a la correzione Eéo) = —mCQ@
2m 2n
(P2)2 (0) (Za)? 1 3
—<8m302 =—|EY| n i3I <0 (5.23)
njl

che dipende da ¢ e non da j, ove gli autovalori di j?, s* = 3, 2 e j, = my caratterizzano il

livello imperturbato.

Il termine (5.22) di spin - orbita é valutato con il valor medio (up = ;2-)

2mce
Zi - o (Zo) (11
4 =|E — L#0 5.24
<47T7’30_ >nje | n‘ n g_i_% ]+% ’ ( 7é ) ( )
per £ # 0 e con
26277,2 (0) 2 0 (Za)2
=z | Ynio :|EH|T>0 . (¢=0) (5.25)

4 Attenzione al commutatore, contiene matrici o e operatori differenziali
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per £ = 0, dove contribuisce la cosiddetta interazione di Darwin ~ Zed®(x) = —AA° nella
(5.22). Sommando alla (5.23) la (5.24), oppure la (5.25), si ottiene il risultato complessivo
G<isn—3)

Za)? (3 1
AE, ;= |E° (Zo) <—— ) <0 5.26

che é indipendente da /¢, e dipende solo dal momento angolare totale j oltre che dal numero

quantico principale n. Casi particolari della (5.24) sono

AFE (1s%> = —|Ey| (Zj)Q (parita P =+),
AE (23%) = AE (Qp%) = —|E, 15—6(204)2 (P =14)
AE (205) = - || (212)2 P =-).

Quindi ¢’é una degenerazione rispetto alla paritd dello stato per un dato 7, in particolare fra
i livelli 25*% e Zp% dell’atomo di idrogeno. Questi livelli in realtd non sono degeneri, ma separati
in frequenza da Aw = AF 1 /i =~ 103Mhz, come fu trovato sperimentalmente da Lamb (Lamb
shift).

L’equazione di Dirac non é capace di spiegare da sola questo effetto. I livelli idrogenoidi

sono solubili esattamente (Darwin) e danno il risultato

=

M (Zay” 2
|

E,; =mc (5.27)

n+y/(i+3) - (Za) = (j+1)

dipendente solo da n e j e non dalla parita dello stato, che é un buon numero quantico della
Equazione di Dirac 5. Il Lamb shift é spiegato dalla Elettrodinamica quantistica, come effetto
di ordine relativo ~ (Za)?’logi, dovuto alle fluttuzioni di posizione dell’elettrone. Quindi le

correzioni di ordine superiore nella (5.27) sono poco significative.

SLa paritd determina il momento angolare £ delle componenti grandi, che pué assumere solo i valori £ = j+1/2
per dato j (eccetto il valore massimo j =n —1/2 per cui £ =n —1).
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5.3 Covarianza Relativistica

Per capire la covarianza della (5.3) conviene riscriverla in forma pid simmetrica fra tempo e

spazio, tramite il vettore d/0z*. Introduciamo le 4 “matrici gamma”

con le regole di anticommutazione

{"*. 7} =2¢" (1=0,1,2,3)

e riscriviamo la (5.3), con i = ¢ = 1, nella forma

i () = my(a) (5.28)

rH
dove si nota a destra uno scalare (la massa) e a sinistra una specie di prodotto scalare con le
matrici .
La (5.28) é covariante nel senso che, per ogni trasformazione di Lorentz z# — z'* = Abz”,

si pu6 trovare una matrice S(A) tale che

Ya(®') = Sap(M)ipp(z) , (2" =Az) (5.29)

é soluzione della equazione primata se 1 é soluzione di quella non primata.

Dato che % =Af af'w é sufficiente che le 4* trasformino in maniera vettoriale, cioe

STIyES = Aln” (5.30)

perché il primo membro della (5.28) sia davvero un prodotto scalare e quindi la covarianza sia

dimostrata. La forma della S, che non dimostriamo qui, é

S =exp (—% wao’“’> = exp (—%wwo’“’) ) (5.31)

p<v

con o* = Z[y*,~"] , e in particolare

0_23 _ ( 01 O ) 0_31 _ ( g9 0 ) 0_12 _ 03 0 )
0 o ’ 0 o ’ 0 o
' 2 ’ (5.32)

. o; 0
oY = 1 = 1Y50; laj > ( Oj o )
j
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Gli w nella (5.31) sono i parametri delle trasformazioni di Lorentz, ad es. wiy = 6 per una
rotazione nel piano 12, wg; = n = arcth(v/c) per una trasformazione di Lorentz pura lungo
o 0
g=1 .

0 ¢

(come ci si poteva aspettare), mentre i generatori delle trasformazioni di Lorentz pure sono K =

[\

1. Dungque la (5.31) mostra che i generatori delle rotazioni sono dati da J = 1

(1/2)37s, con 'importante differenza che i primi sono hermitiani e i secondi sono antihermitiani.

Dunque S non é unitaria nel caso delle trasformazioni di Lorentz, ma soddisfa in ogni caso

705140 = 571 (5.33)
Una importante conseguenza delle (5.31) e (5.33) é che ¢’ — S% implica

(') = (61@) , (1) 5 = (@) 5 (57) 5, (5.34)
e quindi S diventa unitaria nella metrica (1), che non & definita positiva. Si ottiene di qui
la regola per costruire scalari e vettori con le 1. Infatti ¢») é uno scalare, ¢y"1) (la corrente
conservata) é un vettore, 1y*7"1) é un tensore del secondo ordine. Anche 1)y5¢ é uno scalare
di Lorentz, ma cambia segno per paritd spaziale. Questo perché ,(x,zo) = Y'9(—x,x¢) € la
giusta trasformazione per I'inversione spaziale, e v° anticommuta con ~s.

Si pué anche scrivere una equazione di Dirac coniugata. Usando la notazione abbreviata

(iv“a;z” — m) Y=({P—m)p =0 (5.35)
e le proprieta di coniugazione
YT=9" , AT =—y =400 (5.36)
si ottiene facilmente
e
P(—id —m)=0 (5.37)

Allora per soluzioni ad energia positiva ¢(t) = e=#%y si ha

# —m)yp™ =P (g —m) =0 (5.38)

e per quelle ad energia negativa ¢(7) = ey

#+mp) =@ +m) =0 (5.39)

Le proprieta di ortonormalita nella metrica 1 si riscrivono
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Uruy = 2moyy , Oy = —2mdyy , U vy =0 (5.40)

e quelle di completezza

dowuz=W+mly o Dty = —m)y (5.41)

I secondi membri della (5.41) sono anche i proiettori sulle energie positive e negative

dell’equazione.

5.4 1l campo di Dirac. Sviluppo in modi propri

L’equazione di Dirac a una sola particella incontra grosse difficoltd quando le interazioni (ad
es. eAY) sono forti (eA® 2 2mc?) e possono causare transizioni agli stati ad energia negativa.
Esempi di queste difficoltda sono il paradosso di Klein per la trasmissione da un gradino di
potenziale molto repulsivo e la “zitterbewegung”, cioé oscillazioni di velocitd da —c a +c,
dovuti a interferenze fra energie positive e negative in un pacchetto localizzato.

Si tratta dunque di reinterpretare I’equazione di Dirac come teoria del campo quantistico

x,1). Esso pud essere sviluppato in modi propri, come segue
Y(x,1) p pp propri, g
1 . . .
bx,1) = Y ——— (apaun(p)e T+, vy (—p)e) X = (5.42)
\/2E,V ’ P
PA p

(ap,,\u,\(p)e_ip“c + pr,/\UA(p)eim>

1
B ;, 2E,V

dove la prima espressione é conveniente per le relazioni di ortonormalita nella metrica (f):

U;U,)‘I = 2Ep5A)\I s UI\U)\I = 2Ep5)\/\l y uf\(p)v,\:(—p) =0 (543)

mentre la seconda conviene per la metrica (7):

uuy =2my = —vvxy , ur(p)uv(p) =0 (5.44)

La equazione di Dirac deriva dalla lagrangiana

L =it —wthy (B — fm — iV - &) (5.45)
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che é del primo ordine, come per il campo di Schroedinger®. I momenti coniugati sono

M, = —— =
a

i),
e la Hamiltoniana

H= [Hds . H=Taa— L=yl (5.46)

11 valore di he) si trova facilmente dalla prima forma (5.42), dove h moltiplica per E, (—E,)
i due termini della somma, cambiando il segno relativo. L’integrale (5.46) é fatto usando

lortogonalitd delle onde piane e 1'ortonormalitd (5.43) degli spinori. Infine si ottiene

H =" Ey (a} a2 = bpabhs) (5.47)
P:A

Se le variabili complesse a e b sono considerate classiche, la (5.47) non é definita positiva, e lo
stesso succede se ap ) € by » sono promossi ad operatori con le normali regole di commutazione.
Le cose possono cambiare solo se, cambiando 'ordine di b e b' si ha un cambiamento di segno,

cioé, regole di anticommutazione:
—bpbl = —1+b] \box
In tal caso, se si definisce lo stato di vuoto come quello annullato da ap » e bp »

ap,A\O >= bp,)\|0 >=0 (548)

si pué riscrivere la H come

H=Ey+Y By (ahsapa+babos) + Eo=-3_F, (5.49)
DA

P:A

dove il termine operatoriale annulla il vuoto, ma é peraltro definito positivo.

5.5 Quantizzazione di Fermi. Spin e statistica, antipar-

ticelle

Postuliamo dunque le regole di anticommutazione

6 Anche in questo caso si tratta di un campo complesso, che assomma in sé le variabili reali di campo e di
momento coniugato, la cui separazione si potrebbe ottenere con un formalismo di secondo ordine nel tempo.
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{apy, ap x} = {bpr, by x} =0 (5.50)

{ap,aly o} = {bpas bl v} = pp O

le quali danno allo spazio di Fock costruito sul vuoto (5.50) delle caratteristiche particolari :

e I numeri di occupazione di tipo a'a hanno autovalore 0 e 1. Infatti soddisfano, per la
(5.50), (afa)? = (a'a) ; ma é comunque chiaro che, essendo (a;,\)2 = (b;;)\)2 = 0, non si possono
costruire stati con pid di una particella nello stesso modo.

e Gli stati soddisfano il principio di Pauli, cioé sono antisimmetrici per scambio degli indici
di stato. Infatti, I'identita

|0 >= —GT |0 >= |p2)\2,p1)\1 > (551)

‘pl)‘lap2)‘2 >=a P22 p1>\1

T
101 A1 pz)\z

é una conseguenza diretta delle regole di anticommutazione. Si trova dunque una giustificazione
diretta del fatto che gli elettroni sono fermioni. Questa é una conseguenza importante di localita,
meccanica quantistica e relativitd che va sotto il nome di teorema di relazione fra “spin e
statistica”. Cioé le particelle di spin intero (0, 1,2, ..) soddisfano la statistica di Bose-Einstein

e quelle di spin semidispari (% la statistica di Fermi-Dirac.

2 2’ )

e L’energia H é definita positiva dopo sottrazione dell’energia di zero, che é infinitamente
negativa. Questa proprietd, che ha motivato le regole di anticommutazione, pué essere inter-
pretata dicendo che ’energia di zero é quella di un “mare di Fermi” che riempie completamente
gli stati di energia negativa. I “buchi” in questo mare sono creati da b;)\ e sono allora i positro-
ni, 1 quali mostrano energia, impulso, elicita e - vedremo - anche carica opposta allo stato di
partenza.

e La descrizione della carica elettrica si ottiene reinterpretando la corrente di probabilita

dell’equazione di Dirac,

Jr= (hy,gtay) 9" =0 (5.52)

come corrente di carica. Infatti la “carica totale”

Q — e/dewal/) = ez <a;/\ap,\ + bp,\b;/\) (553)

P,A

pub essere riscritta, usando le r.d.a. (5.50), come

Q— Qo= ez ( AprapA — pApr) (5.54)



66 CAPITOLO 5. EQUAZIONE DI DIRAC

ove (Qy - la carica del “mare” di stati a energia negativa - viene sottratta. Quindi la nuova
“carica”, a secondo membro delle (5.54) ha autovalore e (incluso il segno negativo) sugli elettroni
(con numero a;/\ apy), € autovalore (—e) sui positroni (con numero b;'»\ bpy) e risulta non definita
di segno.

e Dalle proprieta della carica, si vede che il campo complesso ¢, quantizzato con regole di
anticommutazione, descrive sia particelle di spin 1/2 (elettroni) che antiparticelle con ugual
massa e carica opposta (positroni); questa é allora la ragione fisica del raddoppio del numero di
componenti (da 2 a 4). La simmetria fra particelle e antiparticelle & messa formalmente in evi-
denza dalla trasformazione di coniugazione di carica ¥, = Cy*, ove C = C* ' & una opportuna
matrice, dipendente dalla rappresentazione, tale che Cy**C~! = —v#. In rappresentazione di
Dirac si pud scegliere C' = i7? e x\ = i09¢)", per cui si ha vy, = Cupy- Questa trasformazione
lascia invariata 1’equazione di Dirac libera, ma cambia il segno del suo accoppiamento con un
campo e.m. esterno A*. Quindi v, ha l'interpretazione di campo del positrone, di carica oppo-
sta all’elettrone, e differisce da 1 solo per lo scambio delle a con le b, con le stesse conseguenze
fisiche.

In conclusione, la richiesta che I’energia sia positiva ha messo in evidenza la differenza so-
stanziale fra campi di spin zero (di Klein-Gordon) e spin 1 (fotone) e quelli di spin ; (elettrone
e positrone). Questi ultimi, avendo regole di anticommutazione, sono fermioni (stati antisim-
metrici per scambio), mentre i primi sono bosoni (simmetrici per scambio). Parallelamente,la
presenza di cariche di segno opposto ha messo in evidenza 1’esistenza delle antiparticelle.

Un ruolo importante nella nostra descrizione ha giocato il “mare di Fermi” degli stati a
energia negativa. In realtd, la prima applicazione di questo concetto é proprio il gas di Fermi
degenere vicino alla zero assoluto, caso in cui si sa che gli stati p con % <ep= % sono pieni
a causa del principio di esclusione di Pauli. Questa é una situazione non relativistica, in cui il

campo dell’elettrone pud essere sviluppato nella forma

Z ap,sxg exp{ (p-x— %t)] (5.55)

ferme restando peré le regole di anticommutazione’

{aps, apzsz} =0 y {aps, a]t,s,} = 5pp15331 (556)

Si nota ora come il vuoto, definito da a,s;/0 >= 0, non ¢ una buona descrizione del gas

degenere, in cui gli stati con p < pp sono pieni. Chiamato |F' > tale stato, si avrebbe invece

"Queste regole hanno giustificazione solo a livello relativistico (come visto prima), in cui intervengono anche
gli stati ad energia negativa (positroni) che qui non sono considerati.
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aps|F >=0  (p>pr) , dJF>=0 (p<pp) (5.57)

E allora conveniente ridefinire a},s =b_p, s (p<pr),cioé reinterpretare i creatori di elettroni
come distruttori di “buchi”, analogamente a quanto fatto per il campo di Dirac. Lo sviluppo

del campo diventa

PFr 2 2
= Loy e *i(p"‘*gfmt) § : 1 (s) i(P'x*%mQ
’ ;v piRe T e ’ (5.58)

e quello dell’energia

2 2 2
_ Z Py _ Z Py Z P i
H = %apsaps = EF - %bpsbps + %apsaps (559)

p<pr P>pF

ove Er ¢ l'energia dello stato fondamentale |F' >, il quale soddisfa

aps|F >=10 (p>pr) ; bys|F>=0 (p<pr) . (5.60)

Questo formalismo ha applicazioni per lo studio delle proprietd del gas di Fermi degenere.
Ricordare comunque che i “buchi” in questo caso nulla hanno a che fare con i positroni!

5.6 Equazione e campo di Weil

Il limite di massa nulla dell’equazione di Dirac e di particolare interesse perche mette in evidenza
la simmetria chirale, importante per la teoria elettrodebole e per il neutrino. Infatti, in questo

limite, la (5.3) si riduce alla equazione (o; = v505)
it = 753 (=iV)¥ (5.61)

la cui hamiltoniana commuta con 5 e puo quindi essere classificata secondo i suoi autovalori
x = +:
ihy = +G(—iV )Y (5.62)

Ciascuna delle equazioni di Weil (5.62) puo descrivere un campo, il quale perd non ha
paritd definita, in quanto +°, che anticommuta con 7s, fa passare da una chiralitd all’altra. E
facile vedere che le soluzioni libere della (5.61) hanno elicita A, segno dell’energia € e chiralita
x collegate dalla relazione A = €Y, come gia notato prima, nel limite di massa nulla, per le
soluzioni libere della (5.3). Pertanto, un campo di Weil di chiralitd x contiene una particella
di elicita x e una antiparticella di elicita —y. In particolare, il neutrino (di massa nulla) delle
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correnti deboli di tipo Vettoriale meno Assiale (dette V' — A)- che violano massimamente la
parita - ha A = xy = —1, mentre ’antineutrino ha A = +1. Si ha dunque lo sviluppo
hxt) === 3 ﬁ(u (P)e™ + b}, v (p)e™) (5.63)
Si noti che questo campo ha solo due componenti indipendenti, essendo stata congelata
Delicita; inoltre u_(p) e vy (p) differiscono solo per un fattore di fase, dipendente dalle conven-
zioni di fase per gli spinori ¢_ e x4. Si vede dunque che la possibile esistenza del neutrino di
WEeil a due componenti si basa sul fatto che, per massa nulla, elicita e chiralita sono invarianti
per trasformazioni di Lorentz proprie, anche se non per parita. In realta, I'attuale evidenza
sperimentale per le oscillazioni dei neutrini indicano I’esistenza di una piccola massa, e quindi
un mescolamento con la chiralita opposta. Infine, un’ulteriore possibile particella neutra di spin
1/2 e con massa ¢ il neutrino di Maiorana, caratterizzato dall’essere autoconiugato, cioé con

antiparticella uguale alla particella, come per il fotone.

5.7 Argomentazione di Bethe per il Lamb Shift

Il Lamb shift deriva dalla trattazione della interazione radiazione-materia agli ordini superiori
in «, in cui 'elettrone interagisce con i fotoni virtuali, i quali sono emessi e riassorbiti in un
tempo finito. La trattazione completa del problema richiede la Elettrodinamica quantistica,
secondo la quale sia fotoni che anche elettroni sono trattati come campi. Tuttavia, l'origine
fisica dell’effetto puo essere capita con la discussione seguente.

Si suppone in primo luogo che la correzione ai livelli dovuti alla interazione con il campo
elettromagnetico provenga da fluttuazioni nella posizione x(t) dell’elettrone sotto 1’azione del
campo elettrico dei fotoni quantizzati. Queste fluttuazioni hanno media lineare nulla, ma media
quadratica non nulla, causando la dispersione della carica e su un raggio (9x2) ~ « (fi/mc)* L’e-
lettrone acquista dunque un raggio finito, con conseguente modifica del potenziale coulombiano
e dei livelli atomici.

Per calcolare le fluttuazioni di posizione, si parte dalla equazione dx = —=E,, e, passando

alla trasformata di Fourier si ottiene:

2
e <E2 > _ 4mahchw (5.64)

~92 _
<5X (w)> T om2wh /T 20t
dove si & supposto che I’energia media dei fotoni virtuali sia iw/V per ogni modo del campo

e.m. Sommando poi su tutti i modi k, w si ottiene:

4ok 3k 2 B\ 2
(6x%) = 7ra20/ =—a (—) log% (5.65)

m (2m)3w?  w
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cioe, il raggio quadratico di cui si parlava all’inizio. Ne segue la modifica al potenziale Coulom-
biano

1 9?7V 1 ,

che e proporzionale a una funzione delta nell’origine, e infine lo spostamento dei livelli in onda
s(£=0):

8Z2 3
(XY O = [Fno| 5 —log

(A =~ ma perche il raggio di Bohr ay = %i taglia le lunghezze d’onda infrarosse nella inte-

2ral

§E,0 = (5.67)

o'
grazione su w). Il risultato finale & ragionevolmente accurato e la trattazione completa serve a

trattare le divergenze ultraviolette e a fissare meglio la parte finita della integrazione logaritmica
sulla variabile w.



